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A Weak form of Hadwiger's Conjecture 

Dominic van der Zypen* 
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Abstract: We introduce the following weak version of Hadwiger's conjecture: If  G  is a graph and  is a cardinal such 

that there is no coloring map 
  
c :G ,  then 

 
K  is a minor of G . We prove that this statement is true for graphs with 

infinite chromatic number. 
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1. DEFINITIONS 

In this note we are only concerned with simple 

undirected graphs 
  
G = (V , E)  where  is a set and 

   
E P

2
(V )  where  

    
P

2
(V ) ={{x, y}: x, y V  and x y}.  

We denote the vertex set of a graph  G  by V (G)  

and the edge set by 
  
E(G) . Moreover, for any cardinal 

 we denote the complete graph on  points by K . 

For any graph  G , disjoint subsets 
  
S ,T V (G)  are 

said to be connected to each other if there are 

s S ,t T  with 
  
{s,t} E(G) . Note that 

 
K  is a minor of 

a graph G  if and only if there is a collection 

  
{S : }  of nonempty, connected and pairwise 

disjoint subsets of 
  
V (G)  such that for all 

 
,  with 

 the sets 
 
S  and 

 
S  are connected to each other. 

Well-founded trees and well-founded tree 
decompositions as defined in [1] will be central later on: 

1.1. Definition 

A well-founded tree is a non-empty partially ordered 

set 
  
T = (V , )  such that for every two elements 

  
t
1
,t

2
 

their infimum exists and the set 
  
{t V : t < t} is a well-

ordered chain for every  t V . For 
  
t
1
,t

2
V =V (T )  we 

set 
   
T[t

1
,t

2
] ={t V (T ) : t inf{t

1
,t

2
} and (t t

1
 or t t

2
)}.  

1.2. Definition 

A well-founded tree-decomposition of a graph G  is 

a pair (T ,W )  where  T  is a well-founded tree and 

  
W :V (T ) P(V (G))  is a map such that 
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• 
   
V (G) = im(W ) , and 

E(G) {P
2
(W (t)) : t V (T )} ; 

• if t T[t
1
,t
2
]  then W (t

1
) W (t

2
) W (t ) ; 

• if 
  
C V (T )  is a chain with 

  
c = supC V (T ) , then 

  
{W (t) : t C} W (c) . 

Note that (W1) says that every vertex of  G  is 

contained in some 
  
W (t) , and every edge has both its 

endpoints in some 
  
W (t) . 

1.3. Definition 

We say that a well-founded tree-decomposition has 

width <  if for every chain 
  
C V (T )  we have  

card(
t C

{W (t ) : t C,t t}) < .  

For the singleton chain 
  
C ={t}  this implies 

  
card(W (t)) <  for every 

  
t V (T ) . 

2. THE WEAK HADWIGER CONJECTURE 

In [2], Hadwiger formulated his well-known and 

deep conjecture, linking the chromatic number 
  

(G)  of 

a graph  G  with clique minors. He conjectured that if 

  
(G) = n  then 

 
K

n
 is a minor of  G . However for 

graphs with infinite chromatic number, the conjecture 
does not hold: in [3] a graph  G  is given such that 

  
(G) = , but 

 
K  is not a minor of  G . 

We consider the following weaker form of 
Hadwiger's conjecture: 

Weak Hadwiger Conjecture 

Let  G  be a graph and  be a cardinal such that 

there is no coloring map 
  
c :G , . Then 

 
K  is a minor 

of  G . 
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Note that in the finite case, this statement translates 

to: if 
  

(G) = n  then 
  
K

n 1
 is a minor of G . As of now, it 

seems to be an open problem whether the weak 
Hadwiger conjecture is true in the finite case. 

However in the infinite case, we can use the 
following structure theorem by Robertson, Seymour, 
and Thomas: 

2.1. Theorem 

[1] Let  be an infinite cardinal and let  G  be a 
graph. Then the following two conditions are 
equivalent: 

(1) G  contains no subgraph isomorphic to a 

subdivision of 
 
K ; 

(2)  G  admits a well-founded tree-decomposition of 
width < . 

The strategy is the following. We fix any graph  G  

and cardinal  and assume that 
 
K  is not a minor of 

 G . Then we construct a  -coloring of  G . 

If K  is not a minor of  G , it is not a topological 

minor of  G , which is equivalent to condition (1) of 
structure. So we apply theorem structure and it remains 
to prove the following statement: 

2.2. Proposition 

Let  G  be a graph with a well-founded tree-
decomposition of width < . Then there is a coloring 
map 

  
c :G , . 

Proof. It is sufficient to construct a mapping 

  
f :V (G)  such that the restriction 

  
f |

W (t )
 is injective 

for every  t T : since every edge lies entirely in some 

  
W (t) , the function 

 
f  will be a coloring of  G . 

We set 
  
X :=V (G) . Denote the ordering relation on  T  

by 
 T

. It is easy to see that 
 T

 can be extended to a 

total well-ordering 
 wo

 on  T . Moreover, for  x X  we 

define  

  
m(x) = min{t T : x W (t)},  

where the minimum is taken with respect to the well-

ordering 
wo

 on T . (Note that the minimum is taken 

over a non-empty set since X =
t T
W (t) .) For  t T  let 

  
t :W (t) card(W (t)) <  be a bijection. 

Endow  X  with a total well-ordering relation 
 X

 

defined by  

   

x
X

y m(x) <
T

m( y) or [m(x) = m( y)

 and 
m( x )

(x)
m( y )

( y)].
 

We define 
  
f : X  recursively by  

   
f (x) = min( ?{ f (z) : z <

X
x and z W (m(x))}).  

Note that the minimum above exists since 

  
> card(W (t))  for all t T . 

It remains to show that for t
0
T  and a b W (t

0
)  

we have f (a) f (b) . Take any 
  
a <

X
b W (t

0
) . We 

consider the tree elements 
  
m(a),m(b) T . If 

  
m(a) = m(b)  then by the very definition of 

 
f  we get 

  
f (a) f (b)  directly. 

So suppose that 
  
m(a) m(b) . If  then 

consider 
  
i = inf{m(b),t

0
}  in the tree. Clearly i < m(b)  

and because of axiom (W2) we have 

  
b W (m(b)) W (t

0
) W (i) , which contradicts the 

minimality of 
  
m(b) . Since the same argument can be 

made for m(a)  we get  

  
m(a),m(b)

T
t
0
.  

The definition of 
 X

 and the fact that 
 
a <

X
b  and 

  
m(a) m(b)  jointly imply m(a)

wo
m(b) . Since 

predecessors of 
  
t
0
 are linearly ordered in 

 T
 we have 

  
m(a)

T
m(b)  or 

  
m(b)

T
m(a) . Recall that 

 wo
 extends 

 T
, so we get 

  
m(a) <

T
m(b) . Therefore 

m(b) T[m(a),t
0
]  and we can apply axiom (W2) again 

to get  

  
a W (m(a)) W (t

0
) W (m(b)).  

Again we go back to the recursive definition of 
 
f : 

we have 
   
f (b) = min( ?{ f (z) : z <

X
b and z W  

  
(m(b))}) , and we get 

  
f (b) f (a)  from the fact that 

  
a W (m(b)) . 
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