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Modeling Nontraumatic Aneurysm Evolution, Growth and Rupture  
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Abstract: We have presented a mathematical model to study the evolution, growth and risk rupture of nontraumatic 

aneurysms contained within a cylindrical region of blood vessels. Analytical and numerical solutions are studied. Results 
affirmed that the intra-aneurysmal pressure and bloodstream flow account for the evolution and growth of aneurysms, 
and we find that an aneurysm may rupture when the ratio of the lateral membrane contraction to longitudinal membrane 

extension approaches one. Numerical properties of intra-aneurysmal pressure, impact fluid velocity, membrane 
displacement and the deformed radius with respect to the Poisson ratio, membrane thickness and extensional rigidity are 
studied. The importance of the findings is rested on the fact that they can be used to improve noninvasive means for 

predicting aneurysm rupture, and treatment and management decisions after rupture. 
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1. INTRODUCTION 

In this paper, we describe a mathematical model 

which may lead to understanding the evolution, growth 

and rupture potential of nontraumatic aneurysms. The 

model describes a quasi-static, non-convectional 

acceleration, axi-symmetric Navier-Stokes equations in 

cylindrical coordinates coupled with the Camenschi-

Fung [1, 2] type linear elastodynamic system of 

equations with filtration. The profile of solutions of the 

system of equations described may help to provide 

insights in developing noninvasive means for detecting 

when a nontraumatic aneurysm may rupture and 

deciding the best treatment and management 

strategies of ruptured aneurysms. 

The genesis of a nontraumatic aneurysm is 

contingent on any condition that causes the walls of the 

blood vessel to weaken [3-8]. The most commonly 

investigated forms of aneurysms are the aortic, 

cerebral artery and intracranial aneurysm[3, 5-7, 9-11]. 

The development of the cerebral aneurysm, for 

example, is contingent on various physical factors 

associated with blood flow [3, 5, 10]. Studies suggest 

that the inertial forces of the bloodstream result in the 

local elevation of intravascular pressure and the flow 

impact [9]. This means that, the impacting forces and 

the local pressure elevation at the aneurysm have a 

large contribution to the development of cerebral 

aneurysms. The other contingent factor is the wall 

shear stress, which is the viscous friction of the  
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bloodstream that acts parallel to the vessel wall [3, 9, 

12]. The overall impact of these forces on the thinning 

of the aneurysm wall has not been suggested in the 

literature. In this study, we have shown that when the 

lateral contraction of the membrane wall is in balance 

with the longitudinal extension, an aneurysm may 

rupture and that at the rupture point about 80% of the 

membrane wall thins out. The analytical and numerical 

results presented here affirms the results in the 

literature [3, 9, 10] that the intra-aneurysmal pressure 

and the bloodstream flow contribute to the evolution 

and development of aneurysms. 

Modern neuroimaging techniques often detect 

unruptured cerebral artery aneurysm, which is 

estimated to be present in 3%-6% of the population [9, 

10]. Aggressive rupture preventing treatment is often 

an option, but may lead to morbidity. The specific risk 

for rupture of a nontraumatic aneurysm is unknown and 

risk assessments are based on general knowledge of 

factors leading to subarachnoid hemorrhage deduced 

from epidemiological studies [6, 9, 10]. Additionally, 

aneurysms of large size, proximal location, and small 

neck, or fundus ratio are associated with increased risk 

for rupture [5, 9, 10]. Thus, more reliable parameters to 

predict the risk of aneurysmal rupture are needed. 

Intra-aneurysmal pressure gradients, bloodstream flow 

profiles, membrane displacement profiles, membrane 

thickness, and Poisson ratio could provide additional 

information regarding the risk of rupture. Moftakher, R. 

et al. hypothesized in [13] that Phase Contrast with 

vastly undersampled isotropic projection reconstruction 

could accurately assess intra-aneurysmal pressure 

gradients in a canine aneurysmal model when 

compared with invasive measurements. Isaken, J. G. et 

al. developed in [9] a computational model for 

simulation of fluid-structured interaction in cerebral 
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aneurysms based on patient specific lesion geometry, 

with emphasis on wall tension. 

In the proposed model, we have introduced 

additional parameters, the Poisson ratio and 

membrane wall thickness, as determining measures 

predicting the potential for an aneurysm to rupture. The 

mathematical model is constituted by equations (1) - 

(14) of section 2. We used the Camenschi 

dimensionless variable transforms and quasi-static 

conditions [1] to reduce the problem to parameters that 

can be measured by noninvasive means. The 

analytical solutions provide conditions for membrane 

enlargement to minimum and maximum stretches that 

depends on the intra-aneurysmal pressure gradients 

and rates. It also reveals that a nontraumatic aneurysm 

may rupture when the Poisson ratio, 0, approaches 

anisotropic material values. In section 3, we provide 

numerical analysis of the solutions based on 

experimental data of parameters derived from the cited 

literature. The analysis confirms that the profile of the 

deformed radius and the displacement components of 

the membrane becomes discontinuous as the Poisson 

ratio approaches anisotropic material values. 

Numerical analysis of intra-aneurysmal pressure, 

membrane displacement and thickness affirm that their 

profile before and after the rupture of an aneurysm are 

consistent with in vitro and in vivo observations. In 

particular, it shows that when 80% of the membrane 

wall thins out then the aneurysm may rupture. 

There are many hypotheses regarding aneurysm 
enlargement and rupture [3-10]. However, the roles of 
the Poisson ratio and the thinning of the membrane 
wall are not well understood. Shah and Humphrey 
suggested in [14] that studies on the mechanics of 
saccular aneurysms should be focused on quasi-static 
analyses that investigate the roles of lesion geometry 
and material properties including growth and 
remodeling. The model presented here has taken the 
material properties, growth and remodeling into 
account. Remodeling of the membrane wall in 
responses to tears is incorporated in the filtration 
coefficient and retain the normal balance in the micro-
vascular mechanism in supplying tissues or the 
surrounding fluids with nutrients and clearing waste 
products. However, the model does not take into 
consideration the healing process of the membrane 
layers. Another interesting finding is that when the 

Poisson ratio is in the range 0 < 0 < 1, and 0 > 2, the 

aneurysm may stretch or shrink but not rupture. In fact, 
most experimental studies choose values of Poisson 

ratio in the isotropic material range 0 < 0 < 0.5 and do 

not factor the filtration process and anisotropic material 
composition of the membrane’s inner and outer layers, 

which remain in place after the media has deflated 
(aneurysm has ruptured), into consideration. We have 
considered the Poisson ratio in the anisotropic material 

range 1 < 0 < 2 in this study to indicate that the 

membrane extensional rigidity is weakened by 
generating a substantial anisotropy in stiffness. This is 
discussed in section 2 in the activities leading to the 
development of an aneurysm sac in the media layer of 
the membrane which is surrounded by the inner and 
outer layers made of dominantly polyurethane material 
which is anisotropic [15]. In section 4, we provided the 
post rupture analysis and demonstrated how the 
membrane extensional rigidity deduced from the 
membrane wall thickness and Poisson ratio can be 
used to design a grading scale to measure the severity 
of aneurysm rupture. 

2. MATHEMATICAL MODEL 

We will derive a model and then illustrate how it can 
be used to model the evolution, growth, and predict the 
rupture potential of nontraumatic aneurysms. It is 
known that inertial forces of the bloodstream results in 
local elevation of intra-vascular pressure and the flow 
impacting force together with local pressure elevation 
at the aneurysm contributes to the development of 
aneurysms [10, 12]. It is also hypothesized that 
aneurysms rupture when the wall tension exceeds the 
strength of the wall tissue. We shall consider an axi-
symmetric motion of equation in two media; the 
Newtonian fluid, coupled with the linear elastic 
membrane. Due to the nature of the origin of the blood 
flow into the blood vessels, which is imposed by the 
heart pumping blood into the circulatory system, we 
shall consider non-convection acceleration, axi-
symmetric, viscous, incompressible pressure driven 
Navier-Stokes equations in cylindrical coordinates 
coupled with the Camenschi-Fung type elastic 
membrane equations [1, 2, 16]. We shall assume that 
the aneurysm occurs within a cylindrical portion of the 

vessel of length L . We let 
  
a

0
 be the undeformed 

radius of the cylinder and 
  
a(z,t)  be the deformed 

radius describing the curvature of the aneurysm. We let 

  
P(z,t)  be the intra-aneurysmal pressure with 

  
P

1
(t)  and 

  
P

2
(t)  the end pressures at   z = 0  and  z = L  respectively 

(See Figure 1). 

If we let 
   
= ( ,u)  be the velocity vector of the fluid 

flowing through the portion of the vessel containing the 

aneurysms where 
  

(z,r,t)  and 
  
u(z,r,t)  are the 

transversal and longitudinal components, and 
  
= ( , )  

is the displacement vector of the membrane. 
  

(z,t)  

and 
  

(z,t)  are the transversal and longitudinal 

components of the membrane displacement 
respectively as illustrated in Figure 1 and furthermore, 
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if 
 
t

rz
 and 

 
t

rr
 are the stress tensor components in the 

fluid then, we have the Camenschi-Fung type system 
of equations [1, 2]:  
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r
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0
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t
rr
= P 2μ

u

r
r = a

0
          (7) 

defined in the region 
  
0 < r a

0
a(z,t); 0 < z < L; t 0  

where  is the mass density of the fluid, μ  is the 

dynamic viscosity, 
 m

 is the mass density of the 

membrane,  h  is the thickness of the membrane wall, 

  

D =
Eh

1
0

2
 is the extensional rigidity of the membrane, 

 E  is the Young’s modulus, and 
0
 is the Poisson ratio. 

A normal artery wall consist of three layers. The 
innermost endothelial layer is called the intima, the 
middle layer consisting of smooth muscle is called the 
media and the other layer consisting of connecting 
tissues is called the adventitia [2]. The deformed 
curvature of the blood vessel or aneurysmal sac is 
composed of only the intima and adventitia. The 
material composition of the intima and adventitia is 
made up of dominantly anisotropic polyurethane. The 
intima, based on in vitro and in vivo observations [17, 
18] remains normal but subintimal cellular proliferation 
also occurs when aneurysm developed. The internal 
elastic membrane responsible for the thinning of the 
artery wall is either reduced in size or absent causing 
the media to retract to the junction of the aneurysm 
neck with the parent blood vessel. This development 
transforms the membrane within the aneurysm region 
from pseudoelastic isotropic to anisotropic media. 
Thus, the deformation transforms the curvature of the 
weakened portion of the blood vessel into an 
aneurysmal sac and hence tolerating the extension of 
the membrane and transverse shear, curving and 
pressure difference. We shall consider the blood 
vessels as permeating deformable shell filled with a 
pulsating incompressible fluid and constrained by the 
surrounding tissue and fluid. The extensional rigidity D 
of the membrane depend on its stiffness and the 
deformation grows in the direction of the space created 
by the surrounding tissue due to impacting forces on 
the vessel wall. The deformation of the vessel is not 
volume preserving but the biological material properties 
of the membrane are more or less the same 
everywhere and transition from isotropic to anisotropic 
media as aneurysm evolved. It is also biologically 
known that the interior of a cell is anisotropic due to 
intracellular organelles. This characteristic may be 
responsible for the development of two or more 
aneurysms on the same artery. Multiple aneurysms are 
due to defects in the arterial wall and may be 

 

Figure 1: Model of a deformed membrane contained within a cylindrical portion of a blood vessel. 



396    Journal of Basic & Applied Sciences, 2014 Volume 10 Kwembe and Sanders 

congenital [19]. Nevertheless, we shall consider the 
membrane as a pseudoelastic isotropic material in the 
biological sense [2] that the material properties of the 
membrane remain the same throughout the 
deformation process becoming anisotropic only during 
the development of aneurysm sac. This feature holds 
only for nontraumatic aneurysms. The theory of 
isotropic elasticity allows the Poisson ratio in the range 

1
0
0.5  for an object with surface with no 

constraint. Physically, this means that for the material 
to be stable, the stiffness must be positive. That is, it is 
required that both the bulk and shear modulus be 
greater than or equal to zero [20, 21]. On the other 
hand, isotropic objects that are constrained at the 
surface can have Poisson ratios outside the above 
range and be stable [20, 21]. Since the blood vessels 
are constrained by the surrounding tissue and fluid, we 
shall consider values of Poisson ratio to include values 

outside the isotropic range 
 

1
0

0.5 . This 

consideration also includes the regime of anisotropic 
deformation, when the constituted material of the 
membrane within the aneurysm region is made up of 
the intima and adventitia, since the concept of Poisson 
ratio can be extended to anisotropic materials with 

values outside the isotropic range 
 

1
0

0.5  [15, 20-

23]. 

We shall also assume that the natural vascular 

process of exchange of nutrients and waste from the 

evolution and development of aneurysms are by 

filtration. Thus, the boundary conditions expressing the 

adherence of the fluid to the membrane wall and the 

fluid filtration through the membrane are:  

  

(z,a(z,t),t) =
t
+

n, f

1+
a

z

2
         (8) 

u(z,a(z,t),t) =
t
+

n, f

a

z

1+
a

z

2
*

         (9) 

where 
 nf

 is the filtration velocity normal to the 

membrane wall, and we supposed that it is governed 
by the Darcy-Starling Law [14, 24] given as:  

  
n, f

=
k *

μh
(P(z,t) P

e
)         (10) 

where   k *  is the permeability coefficient and P
e
 is the 

constant exterior pressure. 

We will now justify (10). In a normal vascular 
system of functions, there is a free exchange of 
nutrients, water, electrolytes and microphage between 
the intra-vascular and extra-vascular components of 
the blood vessels. Several mechanisms are 
responsible for this critical function of the vascular 
system. Physiologists, including Michel [12, 25, 26] 
investigated the mechanism by which plasma and its 
solutes cross the vascular barrier. They discovered that 
capillaries are the vascular segment responsible for 
molecular exchange in normal tissues and that gases, 
water and microphages cross the capillary endothelial 
cell barrier freely, but the passage of larger molecules 
such as plasma proteins are tightly restricted. They 
also discovered that several mechanisms are involved 
in this exchange. The most important, though, are the 
bulk flow and diffusion. The rate of change in either 
direction is determined by physical factors such as 
hydrostatic pressure, osmotic pressure, and the 
physical nature of the barrier separating the blood and 
the interstitium of the tissue. That is, the permeability of 
the membrane wall. While the diffusion process is 
deemed the most important mechanism in this 
exchange, the diffusion coefficient in the Fick equation 
[27] depends on molecular size [28]. It is important for 
the exchange of small molecules which is driven by 
molecular concentration gradient across vascular 
endothelium defined by the Fick equation 

  
J

0
= k(C C

i
) . 

 
C C

i
, is the concentration difference. 

Sample and Golovin employed this condition in [29, 30] 
to study the dynamics of a double-lipid bilayer 
membrane by coupling intermembrane separation and 
the lipid chemical composition of a two-component 
membrane and dependence on the membrane 
curvatures. They focused on the thermodynamical 
equilibrium in [29] and non-equilibrium in [30] of fluxes 
across the membrane. In this derivation, we are 
considering the impacting forces on the membrane, 
rather than the concentration of the fluid content of the 
blood vessels and hence admit the exchange of large 
molecular fluxes, such as plasma proteins. 
Consequently, filtration is much more important than 
diffusion for flux of large molecules such as plasma 
proteins and is governed by the Starling equation [12, 
13, 25, 26]:  

  
nf
=

k *

μh
P(z,t) P

e( ) e( ) ,  

where   k * , the filtration coefficient, is a property of the 
membrane wall and a measure of the permeability of 

the membrane to water, P P
e
 and 

e
 are 

hydrostatic and osmotic pressure differences, 
respectively, between the plasma and the interstitium, 

 is the osmotic reflection coefficient and varies from 

zero to one. High values of  indicate little plasma-

protein escape [28]. When P(z,t) P
e

( )
e

( )  is 
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positive, filtration takes place and when it is negative 
reabsorption takes place. The amount of fluid filtered or 
reabsorbed per unit time, the filtration velocity or flux is 
determined by the permeability of the membrane and 
by the surface area available for the exchange. 

Vascular permeability is essential for the health of 

normal tissues and it is also an important characteristic 

of many disease state in which it is greatly increased 

[12, 25, 26, 28]. Since aneurysm is caused by the 

weakening of the membrane which results in high 

levels of plasma-protein escape activity, we shall take 

the osmotic reflection coefficient to be zero and, 

therefore, arrive at the Darcy-Starling filtration velocity 

given in equation (10). That is, when an aneurysm 

evolved, the reabsorption process is stopped. 

The values of the pressure at the ends of the 
aneurysm region are given by:  

  
P(0,0,t) = P

1
(t); P(L,0,t) = P

2
(t).       (11) 

We further assume that, the end at   z = 0 , the 
beginning of the aneurysm region is fixed and the end 
of the aneurysm region  z = L  is free of stress, we 
have:  

z=0
= 0; D

z
+

0
a
0

z=L
= 0; t 0       (12) 

The deformed radius is given by  

  
a(z,t) = a

0
+ (z,t); 0 < z < L; t 0.       (13) 

We further make the following assumptions: (1) the 

length  of the aneurysm region must be much larger 

than the undeformed radius of the blood vessel and (2):  

a
0

L

2

1;
u
*
a
0

μ
1; m

hu
*

2

D
1.       (14) 

where 
  
u

*
 is the characteristic longitudinal speed. 

Thus, equations (1) - (14) constitute the 
mathematical model describing the evolution and 
development of aneurysms contained within a 
cylindrical portion of the blood vessel. If any form of 
aneurysm occurs within the cylindrical portion of the 
arteries or blood vessels, in general, then the deformed 

radius a(z,t)  defines the geometry of the aneurysm. 

Since, as Figure 1 shows, the extension, or stretch, of 

  
a(z,t)  is measured through the neck of the aneurysm, 

or the opening into the aneurysm (fundus aspect ratio), 
from the bloodstream vessel. Consequently, the model 
given here can be used to study the characteristics of 

all forms of aneurysms within a cylindrical portion of the 
vessel. 

Assumption 2 in (14) leads to a quasi-static 
problem. That is, initial conditions are not needed to 
solve and analyze the problems of aneurysm evolution 
and development. We now non-dimensionalize 
equations (1) - (13) using (14) and the following 
Camenschi [1] dimensionless variable transformations  
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where  <1  is a dimensionless parameter given as  

=
P
*
a
0

D
=
μu

*
L

a
0
D
.  

The expression for  and condition (14) are natural 

scaling obtained from the nondimensional analysis 
process and agreed with those of fluid flow in 
permeable media and Camenschi [1]. The superscript 
index "0" is used for dimensionless quantities. Upon 
dropping the index after transformation, equations (1) - 
(13) reduces to the following dimensionless equivalent 
equations:  

  

P

r
= 0; 0 < r 1 a(z,t); t 0        (15) 

P

z
=
1

r r
r
u

r
; 0 < r 1 a(z,t); 0 < z <1;t 0    (16) 

1

r r
r( ) +

u

z
= 0; 0 < r a

0
a(z,t); 0 < z <1      (17) 

  
0

z
+

2

z
2
=

u

r
r = 1; 0 z 1        (18) 

  
0

z
+ = P(z,t); 0 z 1; t 0       (19) 

along with the boundary conditions:  

  
(z,r,t)

r=a( z ,t )
=

t
+ (P P

e
); 0 z 1; t 0      (20) 

where 

  

=
k

*
L

2

ha
0

3
.  

  
u(z,r,t)

r=a( z ,t )
=

t
; t 0; 0 z 1       (21) 
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  z=0
= 0;t 0          (22) 

  
z
+

0 z=1
= 0;t 0         (23) 

  
P(0,t) = P

1
(t); P(1,t) = P

2
(t); t 0       (24) 

  
a(z,t) = 1+ (z,t); 0 z 1; t 0.       (25) 

We note here that the dimensionless system of 
equations constitute only the intra-vascular pressure, 
the components of the fluid velocity and membrane 

displacement, the Poisson ratio 
0
 and the filtration 

coefficient   k
*  as the inertial forces impacting the 

membrane wall. Since in simulation,  will always be 

taken to be less than one, the mass densities and fluid 
viscosity do not play a major role in the evolution and 
development of an aneurysm and in its potential to 
rupture. In dimensionless analysis, the evolution of an 
aneurysm will always depend on the size of the 
transversal displacement of the membrane and wall 

thickness,  h . 

We also note that the dimensionless equations of 
the non-convection acceleration Navier-Stokes 
equations are the same as with the Camenschi’s 
convection acceleration, quasi-static equations. Thus, 
making the mathematical model given here a slow flow, 
quasi-static problem. The solutions to the system of 
equations (15) - (24) as with Camenschi in [1] are 
obtained by direct integration under the conditions that 

  
(z,r,t)  and 

  
u(z,r,t)  remain bounded at   r = 0  and 

noting from equation (15) that P = P(z, r, t) only. 
Hence, we have the following expression for the fluid 
velocity and membrane displacement components. The 

argument (z, r, t) is omitted in P, , and  in some 

cases for printing convenience.  
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We know that the influence of the stress tensor 

components 
 
t

rz
 and 

 
t

rr
 in the fluid have been 

incorporated in solving for the components of the 
membrane displacement. Hence, the genesis of the 

aneurysm is in the weakening of the membrane at 

  
r = a

0
. Therefore, (28) and (29) constitute the 

components that measure the dynamical changes of 
the aneurysm wall and the deformed radius given in 
(25) in dimensionless representation, measures the 
size of the aneurysm radially and whose change with 
respect to P(z,t) may not be linear. 

The dimensional equivalent of the aneurysm size is 
given in (13). The velocity and membrane components 
and the aneurysm size are completely determined if the 

pressure functions P(z,t),P
1
(t)  and P

2
(t)  are found. 

For the pressures 
  
P

1
(t)  at the beginning of the 

aneurysm region z = 0  and 
  
P

2
(t)  at the end of the 

aneurysm region z = L , we will use the Milnor [3, 31, 
32] pressure waveform  
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m
+ ( A
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N

(n t) + B
n
sin(n t)),  

where 
 
P

m
 is the mean blood pressure, 

 
A

n
 and 

 
B

n
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Fourier coefficients for N  harmonics, and  is the 

circular frequency. In the case of Brachial Artery 

aneurysms, 
  
P

1
(t)  and 

  
P

2
(t)  can be taken as the 

Brachial Artery Peripheral Pulse Pressures measured 
non-invasively with any of the modern conventional 

sphygmomanometry. P
1
(t)  is the diastolic pressure 

wave form for   N <10 , and 
  
P

2
(t)  is the systolic 

pressure waveform for   N 10 . 

So, 
  
P = P(z,t)  is the intra-aneurysmal pressure and 

from (15), (16), (19), (20) and (26) - (28) it satisfies the 
nonlinear partial differential equation  
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              (30) 

We shall employ the perturbation method of [1, 33] 

by developing the pressure function P(z,t)  in a power 

series with respect to the small parameter  and 

neglecting the 
  
O( 2 )  terms. That is, we assume that 

  

P(z,t) =

n
P

n
(z,t)

n!
n=0

        (31) 
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Consequently, we have the following system of 

partial differential equations in 
  
P

0
(z,t)  and 

  
P

1
(z,t) : 

  

1

16

2
P

0
(z,t)

z
2

= [P
0
(z,t) P

e
]        (32) 

  

1

16

2
P

1
(z,t)

z
2

P
1
(z,t) =

1

16
3

2
0

2(1
0

2 )
P

0
(z,t) +

3
0
P

2
(t)

2(1
0

2 )

2
P

0
(z,t)

z
2

(2
0
)

8(1
0

2 )

P
0
(z,t)

z

2

+
1

4

1 2
0

1
0

2

P
0
(z,t)

t

P
2

' (t)

1
0

2

+
2

0

2(1
0

2 )

P
0
(z,t)

t
+

0
P

2

' (t)

2(1
0

2 )

           (33) 

The solution of equations (32) - (33) are solved by 
direct integration, using the boundary conditions in 
(24). The perturbation solution is then 

P(z,t) = P
0
(z,t) + P

1
(z,t) . The expressions for P

0
(z,t)  

and 
  
P

1
(z,t)  are given in Appendix A. The approximate 

aneurysm wall development using (25) and (28) is 
given by the equation 

a(z,t) = 1+
2

0

2(1
0

2 )
P(z,t) + 0

P
2
(t)

2(1
0

2 )
      (34) 

Thus, the evolution and development of the 
aneurysm size is dependent on the following impact 

forces and parameters: (i) The Poisson ratio, 
 0

, which 

we henceforth defined as the ratio of the lateral or 
transversal contraction to longitudinal extension, (ii) 
The pressures at the beginning of the aneurysm region 

  
z = 0; P

1
(t)  and at the end of the aneurysm region 

z = 1, P
2
(t) ; The intra-aneurysmal pressure 

  
P(z,t) , 

which in turn depends on 
 0

, 
  
P

1
(t) , 

  
P

2
(t) , the rates 

  
P

1

' (t)  of 
  
P

1
(t)  and 

  
P

2

' (t)  of 
  
P

2
(t)  and the filtration 

velocity coefficient . The filtration velocity coefficient 

 accounts for the thinning of the aneurysm wall and 

contributes to the way the intra-aneurysmal pressure, 

  
P(z,t) , is moderated. It also accounts for the 

remodeling and growth of the membrane in response to 
the tension exerted on it by the forces of fluid flow and 
stress tensors. 

We will now examine the morphology of the 
aneurysm curvature by establishing conditions 
determining the extent to which the deformed radius 

  
a(z,t)  can stretch. As seen in (34), 

  
a(z,t)  depends on 

  
P(z,t)  and so the extrema of 

  
a(z,t)  occurs at the 

same location within the aneurysm region as those of 

  
P(z,t) . That is, the morphology of the aneurysmal wall 

curves the same way in all directions; downward if 

P
zz
< 0  or upward if P

zz
> 0  and the morphology can 

also be up in some direction and down in others. We 
shall examine these characteristics with respect to the 

values of the Poisson ratio 
0
. Theorem 2.1 

establishes conditions that allow for a minimum and 
maximum stretch of the deformed radius and hence 
aneurysmal curvature. Theorem 2.2 establishes 
conditions on the Poisson ratio conditioned for 
aneurysm rupture. 

THEOREM 2.1. Let P  be twice differentiable with 

respect to  z  and  t  and 
  

2
P(z,t)

z t
=

2
P(z,t)

t z
 such that  

  

2
P(z,t)

z
2

2
P(z,t)

t
2

+
0

2
0

2
P(z,t)

z
2

P
2

"(t) >
2
P(z,t)

z t

2

,  

and 
0
[0,1) (1,2) (2, ) . If a(z,t)  given in (34) is 

twice differentiable in  z  and t  then the aneurysm wall 

attains a minimum extension at some point 
  
z (0,1)  for 

all   t 0  provided  

  
f (

0
, P(z,t), P

2
)P

2

"(t) + g(
0
)(P(z,t) P

e
) > 0  

Similarly, if  

  
f (

0
, P(z,t), P

2
)P

2

"(t) + g(
0
)(P(z,t) P

e
) < 0  

then the aneurysm wall attains a maximum extension 
where  

  

f (v
0
, P(z,t), P

2
) =

1

(1 v
0

2 )(2 v
0
)

2 v
0

2(1 v
0

2 )
P(z,t) +

v
0

2(1 v
0

2 )
P

2
(t)  

and  

g(v
0
) =

2

v
0

2
v
0
+1

 

Furthermore, the aneurysm curvature is up in one 
direction and down in the other if  

  

2
P(z,t)

z
2

2
P(z,t)

t
2

+
v

0

2 v
0

2
P(z,t)

z
2

P
2

"(t) <
2
P(z,t)

z t

2

 

Proof. a(z,t) is differentiable in z and t since P(z,t) is 
and from equation (34), we see that the equilibrium 

points occurs when 
  

P

z
= 0  and 

  

P

t
=

v
0

2 v
0

P
2

' (t); v
0

2 . Upon substituting the 

equilibrium points into the pressure equation in (30) we 
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see that 
  

2
P

z
2
> 0  for a minimum extension and 

  

2
P

z
2
< 0  

for a maximum extension and 

  

2
a

z
2

2
a

t
2

2
a

z t

2

> 0 . 

Furthermore, 

  

2
P

z
2

2
P

t
2
+

v
0

2 v
0

2
P

z
2

P
2

"(t) <
2
P

z t

2

, 

gives that 

  

2
a

z
2

2
a

t
2

2
a

z t

2

< 0  and the theorem 

holds.  

THEOREM 2.2. Let a(z,t,v
0
)  be given in (34) and 

  
P(z,t) = P

0
(z,t) + P

1
(z,t) . Then, there exists a 

functional 
  
M (z,t,v

0
, P

1
(t), P

1

' (t), P
2
(t), P

2

' (t))  such that for 

  
z

0
 and 

  
t
0
 fixed, we have  

(1 v
0
)2 a(z

0
,t
0
,v
0
)

1

4
M (z

0
,t
0
,v
0
,P
1
(t
0
),P

1

' (t
0
),P

2
(t
0
),P

2

' (t
0
))  

and 

  
lim
v

0
1

(1 v
0
)2

a(z
0
,t

0
,v

0
) N  

where N > 0 is a constant. Furthermore, there exists  

N = N (z,t,v
0
,P
1
(t),P

1

' (t),P
2
(t),P

2

' (t))  that is finite and 

positive at each fixed point 
  
(z

0
,t

0
)  given that 0 < z < 1 

and t > 0 such that 

   
lim
v

0
1

(1 v
0
)2

a(z
0
,t

0
,v

0
) N (z

0
,t

0
,v

0
, P

1
(t

0
), P

1

' (t
0
), P

2
(t

0
), P

2

' (t
0
)).  

Similarly, there exists 

  
N

1
= N

1
(z,t,v

0
, P

1
(t), P

1

' (t), P
2
(t), P

2

' (t))  and  

N
2
= N

2
(z,t,v

0
,P
1
(t),P

1

' (t),P
2
(t),P

2

' (t))  which are finite 

and positive at each fixed point 
  
(z

0
,t

0
)  such that  

  
lim
v

0
1

(1 v
0
)2 (z

0
,t

0
,v

0
) N

1
 and 

  
lim
v

0
1

(1 v
0
)2 (z

0
,t

0
,v

0
) N

2
 for all points 

  
(z,t) (0,1) 0, ).  

Proof. The proof is a direct consequence of (28), 
(29), (34) and the perturbation expression for the intra-

aneurysmal pressure P(z,t) .  

We note that Theorem 2.2 says that 
  
v

0
= 1  is a 

singularity of the deformed radius a(z,t,v
0
)  and the 

components of the membrane displacement 
  

(z,t,v
0
)  

and (z,t,v
0
) . Consequently, they blow up as v

0
 

approaches one. This implies that the aneurysm may 

rupture at some point 
  
z

0
;0 < z

0
<1  and time 

  
t t

0
 for 

some fixed 
  
t
0
. However, for 

  
v

0
1 , the transversal and 

longitudinal components of the membrane 

displacement remain bounded for fixed 
  
(z

0
,t

0
) . 

Consequently, the aneurysm wall remains stable at any 

fixed point (z
0
,t
0
);0 z

0
1;t t

0
, when v

0
1 . 

2.1. The Impact of Filtration and Fluid Flux 

In this section, we examine the impact of filtration 
and the total fluid flux on the aneurysm wall. In 

dimensionless parameters, the filtration velocity 
  
v

n, f
 is 

given as  

v
n, f

= (P(z,t) P
e
)         (35) 

which is completely defined by the perturbation solution 

for 
  
P(z,t) . The total flux crossing the undeformed 

radius, denoted by 
  
Q

n, f
, is given as  

  
Q

n, f
= v

n, f
d         (36) 

where d = a(z,t) 1+
a

z

2

d dz; 0 2 ; 0 z L , 

and  is the whole surface of the aneurysm region. In 

dimensionless parameters, 
  
Q

n, f
 is given as  

  
Q

n, f
= a(z,t)[P(z,t) P

e
]dz.

0

1

 

The profile of the impact of the filtration flux is given 

in subsection 3.3, when O( 2 )  terms of the series 

solution are neglected. On the other hand, the total 

fluid flux, 
  
Q(z,t)  in any cross-section of the aneurysm 

given in dimensionless parameters is  

  
Q(z,t) = 2 ru(z,r,t)dr

0

a( z ,t )

       (37) 

which is completely defined by (27), and (34). The 
profile is given in subsection 3.3. 

The filtration velocity as with the pressure, deformed 
radius and components of the membrane displacement 

depends on the Poisson ratio 
  
v

0
. Numerical analysis of 

the filtration rate shows that the flux blows up as 
  
v

0
 

approaches one. A similar conclusion is reached for the 

case of total fluid flux Q(z,t) . 
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So for any fixed point (z
0
,t
0
); 0 < z

0
<1; t

0
0 , if the 

Poisson ratio approaches one, both 
  
Q

n, f
 and Q(z,t)  

blows up, indicating the potential for rupture. 

3. NUMERICAL METHODS AND PARAMETERS 

Human aneurysms are formed in different sizes and 
shapes, and they exhibit a variety of material behavior 
[6, 8, 10, 13]. As indicated earlier much of the work 
geared towards understanding the development and 
evolution of an aneurysm has focused mostly on the 
fluid content dynamics, shape and size. The current 
interests are to determine more reliable parameters to 
predict the potential for aneurysmal rupture. So, we will 
use the data collected in the literature [6, 8-10, 13, 31, 
34] to fit the mathematical model developed in section 
2. We have considered an aneurysm within a 
cylindrical portion of a blood vessel of length L = 2cm,  

a membrane of thickness h = 0.25cm , and an 

undeformed radius of 
  
a

0
= 0.5cm . We also considered 

a permeability coefficient of   k
*
= 2.5 10

7  and the 

Darcy-Starling coefficient 

  

=
k

*
L

2

ha
0

3
. For the end 

pressure P
1
(t)  and P

2
(t) , we shall considered the 

Ferguson [3, 6, 31] pressure formula described by the 
Fourier series  

  
P

i
(t) = P

m
+ [A

n
cos

n=1

N

(n t) + B
n
sin(n t)]; i = 1,2.  

Milnor [3, 6, 31, 32] suggested that   N = 10  is 
sufficient to describe systemic blood pressure in 
general with   N <10  in the diastole vasculature. Here, 

we shall take 
  
P

1
(t)  to represent the diastolic pressures 

and P
2
(t)  the systolic pressures. All pressure 

measurements considered here are in 
 
mmHg . We 

shall take 
  
P

m
= 65.7mmHg , see [6], the coefficients of 

the Fourier series given in row vector form are:  

   
A

n
= [ 7.13 3.08 0.130 0.346 0.0662 …]  

B
n
= [4.64 1.18 0.564 0.346 0.120 …]  

and we have taken 
  
P

e
= 70mmHg  where we have used 

the Shah and Humphrey data in [6]. 

Since the heart beats about 72 times per minute, we 

shall take 
 

2
=

60

72
, or   = 8rad / s  for a regular heart 

beat. As deduced in section 2, the mathematical model 
developed is a quasi-static form of a slow flow. 
Consequently in dimensionless parameters, the fluid 
characteristics such as density and viscosity do not 

figure in the numerical solutions. The surviving 
parameters are size of the aneurysm region,  L , 

permeability and filtration coefficient , undeformed 

radius a
0
, membrane thickness,  h , the Poisson ratio 

  
v

0
, and the time scale. All of which can be measured 

by noninvasive means. Intra-aneurysmal pressure 

  
P(z,t) , fluid flow patterns, membrane displacement 

and the dynamics of the deformed radius are 
expressed in terms of the surviving parameters. As can 
be seen, the numerical results given here indicate that 
the Poisson ratio, intra-aneurysmal pressure gradients, 
flow profiles and membrane displacement could 
provide additional information regarding the rupture 
potential of aneurysms. 

Towards that end, we use the MATLAB
®
 platform 

version 7.10, 207B, 208B to numerically and 
graphically understand the roles the bloodstream 
impact forces, intra-aneurysmal pressure elevations 
and Poisson ratio play in the rupture potential of 
aneurysms contained within cylindrical portions of 
blood vessels. The method begins with the 
dimensionless solutions of the fluid velocity 

components 
  
v(z,r,t) , 

  
u(z,r,t) ; the membrane 

displacement components 
  

(z,t) , 
  

(z,t) ; the deformed 

radius 
  
a(z,t) ; the intra-aneurysmal pressure, 

  
P(z,t) ; 

the filtration velocity, 
 
v

nf
; the rate of filtration 

 
Q

nf
, and 

the cross-sectional fluid flux 
  
Q(z,t) . We have 

developed MATLAB
®
 codes of these solutions to 

produce numerical data and graphical representation at 

the circular frequencies 
  

= 2 f  where 

  
f = 0.2,0.5,1,1.2,5,8,10  to simulate in vitro tests. It is 

known that most actual laboratory tests are performed 

at values of 
 
f  at 0.1 or 0.2 [6, 31]. The impact of the 

Poisson ratio on the comparative relationship of the 

deformed radius, 
  
a(z,t) , with intra-aneurysmal 

pressure, 
  
P(z,t) , and with the local elevations of the 

intra-aneurysmal pressure is expressed for the Poisson 

ratio ranges of 
  
0 < v

0
<1,1< v

0
2 , and 

  
v

0
> 2 . 

3.1. Results and Analysis 

Computations revealed discontinuity in the profiles 
of the impact fluid velocity and its components, the 
membrane displacement and its components, the intra-
aneurysmal pressure, the deformed radius, the rate of 
filtration and the flux on any cross-section of the 
membrane within the aneurysm region when the 
Poisson ratio approaches 1. We shall interpret the 
points of discontinuity in the solution profiles as 
indicators for aneurysm rupture. The dynamic profiles 
of the bloodstream impacting forces, intra-aneurysmal 
pressure elevations and the deformed radius exhibit 

similar characteristics for f = 0.1,0.2,0.5,1,1.2, and 5 . 
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However, we shall present the results for the cases 

  
f = 1.2  corresponding to the regular heart beat of 72 

beats per minute, and 
  
f = 0.2 , the experimental value 

at irregular heart beat of 12 beats per minute. In each 
case, we considered two scenarios, the case where a 

fixed point 
  
(z

0
,t

0
)  is considered within the aneurysm 

and one where all points 
  
(z,t)  are considered within 

the aneurysm region. In both cases, we see that for 

f = 0.2  and f = 1.2 , time changes of the simulations of 

the intra-aneurysmal pressure, 
  
P(z,t)  are in synchrony 

with the membrane displacement components, its 
magnitude and the deformed radius (See Figures 2, 3, 
12, 13 and 13). For the figures presented here, we 

maintained P
1
(t)  and P

2
(t)  at the same oscillating 

values. Even when one end is maintained at higher 
pulsating pressure values there were no significant 
differences, in regards to rupture potential indicators, in 
the characteristics of the profiles of the intra-
aneurysmal pressure, membrane displacement, 
deformed radius, filtration velocity, filtration rate and 
fluid flux.  

In Figures 2 and 3, the profile of the deformed 

radius 
  
a(z,t)  is flat before and after the discontinuity. 

However, in Figure 10 which is associated with the 
case of a regular heart beat, it shows local elevations 

before the discontinuity at the time 
  
v

0
= 1  and then it 

oscillates with time afterwards to vanish. In Figure 11 
corresponding to the case of irregular heart beat, the 
profile of the deformed radius increases before the 

discontinuity and then drops gradually after the 
discontinuity and then oscillates and die out. In Figures 

10 and 11, the intra-aneurysmal pressure, 
  
P(z,t)  

shows local pressure elevations before the 
discontinuity. Following the point of discontinuity, the 
pressure profile drops and then elevates and then 
oscillates and die out. The transversal component of 
the membrane displacement shows the same 

characteristics with the deformed radius, a(z,t) . But 

this is not surprising, since 
  
a(z,t) = 1+ (z,t) . The 

longitudinal component of the membrane displacement 
elevates slightly followed by a drop leading into the 
point of discontinuity, then delays afterwards slightly 
and elevates, then oscillates to vanish. The profiles of 
the impact fluid velocity in Figure 10 and 11 shows 
elevated values leading into the point of discontinuity 
and oscillates to zero afterward. Similarly, the profile of 
the magnitude of the membrane displacement elevates 
rapidly leading to the point of discontinuity and then 
oscillates to zero afterward. There are more oscillations 
following the point of discontinuity for the case of a 
regular heart beat than the case of irregular heart beat. 

3.2. Impact of the Poisson Ratio on the 

Relationship of 
  
a(z,t)  with 

  
P(z,t)  

The impact of the Poisson ratio on the relationship 
between the deformed radius and intra-aneurysmal 
pressure can be seen from the linear relationship 

between 
  
a(z,t)  and 

  
P(z,t)  given in equation (34) for 

values of 
  
v

0
(0,1) . 

 

Figure 2: Membrane displacement, deformed radius, pressure vs time, f = 1.2 , z and 
  
v

0
 varies. 



Modeling Nontraumatic Aneurysm Evolution, Growth and Rupture Journal of Basic & Applied Sciences, 2014 Volume 10      403 

 

Figure 3: Membrane displacement, deformed radius, pressure vs time, f = 0.2, z and v
0

 varies. 

 

 

Figure 4: a(z,t) vs. P(z,t) for fixed z. 

We see from Figure 4 that at a fixed point 
  
(z

0
,t

0
)  

within the aneurysm, 
  
a(z,t)  increases linearly with 

  
P(z,t)  before the point of discontinuity. For values of 

  
v

0
(1,2)  after discontinuity, 

  
a(z,t)  decreases linearly 

with increasing 
  
P(z,t) . When 

  
v

0
= 2 , 

  
a(z,t)  remains 
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constant at the point (z
0
,t
0
) , since P

2
(t
0
)  is constant. 

For v
0
> 2,a(z,t)  again increases with 

  
P(z,t) . 

When 
  
(z,t)  varies within the aneurysm region, we 

see in Figure 5 that the relationship for 

  
0 < v

0
<1,1< v

0
< 2  and 

  
v

0
> 2  is not linear. The 

curvature display concavity. Thus, by Theorem 2.1 of 
section 2, the aneurysm curvature attains maximal or 
minimal stretches and exhibit saddle point behavior. 

In Figures 2 and 3, we see that the intra-aneurysmal 
pressure is in synchrony with the longitudinal 
component of the membrane displacement before the 
discontinuity with elevated values leading to the point 
of discontinuity. After the discontinuity, the pressure 
and the transversal component of the membrane 
displacement are in synchrony, delaying right after the 
discontinuity and then peaking and then pulsating to 
vanish. We note that the oscillations are more rapid in 
the case of the regular heart beat in Figure 2 than the 
case of irregular heart beat in Figure 3. In Figures 6 
and 7 we considered the usual experimental Poisson 

ratio value of v
0
= 0.45 . Results shows the profiles of 

the impacting forces and membrane displacement with 
respect to time as seen in most of the literature [5, 6]. 
There are no breaks in the graphs and they exhibit 
pulsating characteristics at the irregular heart beats 

and regular heart beats frequencies f = 0.2  and 

  
f = 1.2  respectively. The same observations are seen 

when v
0
= 1.2  in Figures 8 and 9. Similarly, we see in 

Figures 12 and 13, the profiles of the magnitude of the 
membrane displacement and the intra-aneurysmal 

pressure are in synchrony for v
0
= 0.45  and v

0
= 1.2  

with respect to time. In Figure 14, we display the 
profiles of the relationship between the transversal and 
longitudinal membrane displacements, intra-
aneurysmal pressure and the deformed radius with 

respect to time when 
  
v

0
= 1.2 . A similar profile is 

observed for 
  
v

0
= 0.45 .  

3.3. The Role of Filtration and Membrane Thickness 

In Figure 15, we present the time varying profiles of 
the filtration velocity, filtration rate, and the fluid flux. 
The graphs have a discontinuity at the time of 
aneurysm rupture. In Figure 16, we presented the 
thickness varying relationship to the filtration velocity 
and rate and the deformed radius at the regular heart 
beat and in Figure 17 at the irregular heart beat. We 
observed that the graphs exhibited a discontinuity at 
the membrane thickness of about 0.05cm from 0.25cm. 
That is, the aneurysm may rupture when 80% of the 
membrane thins out. 

 

Figure 5: a(,z,t) vs. P(z,t) for all z. 
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Figure 6: Profile of solutions for v
0
= 0.45, f = 0.2.  

 

 

Figure 7: Profile of solutions for v
0
= 0.45, f = 1.2.  
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Figure 8: Profile of solutions for v
0
= 1.2 , f = 0.2.  

 

 

Figure 9: Profile of solutions for 
  
v

0
= 1.2 , f = 1.2. 

4. POST RUPTURE ANALYSIS 

Aneurysm rupture leads to the development of 
vasospasm and vasospasm is the leading cause of 

disability and death from aneurysm rupture [17, 23, 35]. 
Ruptured aneurysms are most likely to rebleed within 
the first day with the risk remaining very high for the 
first two weeks if left untreated [17, 19, 23, 35]. Open 
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Figure 10: Profile of solutions for varying v
0
, f = 1.2.  

 

 

Figure 11: Profile of solutions for varying 
  
v

0
, f = 0.2.  
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Figure 12: Membrane Mag, P(z,t) vs time for v
0
= 0.45.  

 

 

Figure 13: Membrane Mag, P(z,t) vs time for 
  
v

0
= 1.2.  

surgery and clipping, endovascular coiling and catheter 
or stent insertion, and aggressive treatment of 
vasospasm are the most common methods of 
treatment that have been correlated with improved 
outcome [17, 23, 36]. The problem is, most aneurysms 
do not cause symptoms until they rupture. When they 
rupture, they are associated with significant morbidity 

and mortality if treatment is not sought on time. 
Therefore, there is need for a clinical method that 
measures the levels of severity of aneurysmal 
subarachnoid hemorrhage and which enables the 
decision on the best clinical approach for stabilizing the 
affected portion of the vessel and the method of 
treatment. Currently, the two widely used methods for 
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Figure 14: Membrane Displacement Components, Pressure, and Deformed Radius vs Time at 
  
v

0
= 1.2.  

 

 

Figure 15: Plots of Filtration velocity, Filtration flux, and the Cross-sectional flux vs time. 
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Figure 16: Plots of Intra-aneurysmal pressure, the deformed radius, and filtrationvelocity against the thickness of the wall 

membrane with varying v
0

, f = 1.2. 

 

 

Figure 17: Plots of Intra-aneurysmal pressure, the deformed radius, and filtrationvelocity with the thickness of the membrane 

wall with varying v
0

, f = 0.2. 
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grading the clinical severity of ruptured aneurysms are 
the Hunt and Hess six-point scale and the Fisher 4-
point grades [17, 37]. The grade levels for these scales 
are determined by the level of blood on a CT scan. 
However, an aneurysm rupture can be severe and the 
CT scan may have no blood images. For example, the 
vasospasm is most common in Fisher grade level three 
which indicate the presence of localized clot or vertical 
layers less than 1mm thick, but it is rarely found in 
patients with no blood on CT scans [17, 19, 38, 36]. 

The profiles of the Intra-aneurysmal pressure 

  
P(z,t) , the membrane thickness h and the Poisson 

ratio after an aneurysm rupture given in Figures 2-5, 8-
11 and 14-17 can provide a means for an alternative 
grading scale for measuring the severity of an 
aneurysm rupture that is not predicated by the 
presence of blood on a CT scan. The parameters can 
be used to noninvasively measure the membrane 

extensional rigidity D =
Eh

1 v
0

2
 after an aneurysm has 

ruptured and therefore, determine the severity of the 
rupture according to the values of the Poisson ratio 
extrapolated from the readings of the intra-aneurysmal 
pressure and membrane thickness. In the range 

  
0 < v

0
<1 , the extensional rigidity D is positive. It is 

positive and large for small values of 
  
v

0
, meaning that 

the membrane wall can be repaired or retracted to its 
original form [39, 40]. For values of the Poisson ratio in 

the range 
  
1< v

0
< 2 , during aneurysm rupture, the 

membrane extensional rigidity D is negative, meaning 
that the aneurysm wall is weakened and cannot be 
retracted to its normal position. With further study, 
aneurysm rupture severity grading scale range can be 
developed which incorporate the readings of the Intra-
aneurysmal pressure, membrane thickness h, the 
Poisson ratio, and the membrane extensional rigidity D 
in deciding which treatment method to use in cases of 
ruptured aneurysms. 

5. DISCUSSION 

This study reports an analysis of a non-convectional 
acceleration axi-symmetric blood flow through a 
cylindrical shaped blood vessel containing an 
aneurysmal region. The model considers the deformed 
radius as the appearance of the aneurysm within the 
blood vessel of length L. In this context, we used the 
expressions for the deformed radius and membrane 
displacement to establish the dynamic evolution, 
development and rupture potential of aneurysms, side 
wall aneurysms in particular, could be a good fit for the 
model. We found that the intra-aneurysmal pressure, 
membrane thickness and the Poisson ratio are 
parameters that can be used for noninvasive prediction 
of the risks for aneurysm rupture. We have also seen 

that the common dependent forces that influence the 
dynamics of the impact flow velocity and its 
components, the membrane displacement and its 
components, the deformed radius and pressure is the 
Poisson ratio. The profile of solutions in the post 
rupture analysis may help to provide insights in 
developing an aneurysm severity grading scale for 
deciding the best treatment and management of 
ruptured aneurysms. The numerical results are 
computed within the inbuilt allowable approximations of 
MATLAB

®
 and hence are amenable to improvement 

through other computational techniques and larger data 
values. 

We hope that the results presented here will bring 
further insights in developing noninvasive means for 
detecting the potential of an aneurysm to rupture and 
even the ability to develop preventive procedures 
based on patient symptoms.  
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APPENDIX: THE STANDARD EXPRESSIONS FOR 
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