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A Piece of Paper and a Pair of Scissors 
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Abstract: In this paper we will discuss the problem of splitting a given geometrical figure in two regions of equal area by 

drawing a line through a given point in the interior of the figure. For some geometric figures we will further discuss the 

possibility of splitting the figure in regions with areas p% and (100 p)  %. 
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INTRODUCTION 

The problem is relatively simple in the case of some 
symmetrical geometric figures. For instance, in the 
case of a circle, given any point there is always a 
diameter through that point which will split the circle in 
two equal area regions. If the areas are not to be equal 
one could find, using methods of Calculus or 
Geometry, the line which will split the region in p% and 

(100 p)  % for certain values of p , which will depend 

on the distance from the center to the chosen point. 

THE CIRCLE 

As stated, the solution to splitting a circle in regions 
of 50-50% is to draw a diameter through the given point 
(a,b) . All the results in the case of a circle are exactly 

as expected, however, we would like to prove these 
results using some Calculus methods. We can find the 
possible maximum and minumum areas obtained from 
a straight line drawn through this point by analyzing 
how the slope m  of line l  through (a,b)  affects the 

resulting sectional areas. 

In Figure 1, a circle has been scaled so that it has a 
radius of 1 , its center is (0,0) , and (a,0)  lies on the x-

axis. The shortest distance between the center of the 
circle and the line y = mx ma  through point (a,0)  is 

given by  

d((0,0),l) =
|ma |

m2
+1
.  

The area of the sector determined by the line 

y = m(x a)  is  where 2  is the smaller angle 

between the two radii, that means:  

Asec tor = cos
1 |ma |

m2
+1
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Figure 1: A circle, oriented so that a point (a,0) , taken 

arbitrarily, lies on the x-axis. 

The area of the triangle nested within this sector is  

Atriangle =
|ma |

m2
+1

1
|ma |

m2
+1

2

 

By subtracting the area of the triangle from the area 
of the sector, we obtain the area of one region created 
by the line. This area is equal to  

A1 = cos
1 |ma |

m2
+1

|ma | m2
+1 m2a2

m2
+1

 

Mathematica can be used to plot the function  

A(a,m) =
1
cos 1(

|ma |

m2
+1
)
|ma | m2

+1 m2a2

m2
+1

 

which is a function of the slope m  of the line l  and the 
distance a  of the point (a,0)  from the origin as a 

fraction of the overall area of the circle, which is . 

This plot is shown in Figure 2, below. 

As one can see from the graph, at a distance of 
zero from the origin, the only possible split of the circle 
is in 50-50%. This is evident also analytically, since the 
value of the function at a distance of a = 0  is given by  
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Figure 2: Plot of A(a,m) = cos 1(
|ma |

m2
+1
)
|ma | m2

+1 m2a2

m2
+1

. 

A(0,m) = cos 1(0)
0

1
=
2
.  

Similarly shown by the graph, as the distance a  
increases, a 50-50% split is always possible, but 
smaller regions are also created as the slope 
approaches infinity. The minimum (and thus the 
maximum as well) is attained as expected through a 
vertical line through (a,b)  given by 

lim
m

A(a,m) = a 1 a2 .  

PARALLELOGRAM 

Next we will look at the case for a paralleogram, in 
which we will give a completely geometric proof. In 
Figure 3, let ABCD be an arbitrary parallelogram and 
O  be an arbitrary point in the interior of the 

parallelogram. We construct the line segments OF  and 

OE  parallel to sides AB  and AD , respectively. Moving 
at the opposite vertex C we pick the points G  and H  
such that CG = AF  and CH = AE.  The line connecting 
point O and O' will be the line that splits the 
parallelogram in 50-50%. 

 

Figure 3: An arbitrary parallelogram, with vertices labeled 

and an arbitrary line l  through the point (a,b) . 

SCALENE TRIANGLE 

For a scalene triangle, we note first that if the point 
chosen lies in any of the medians then the respective 
median gives us the 50-50% split. To simplify the 

calculations we will assume that the largest side of the 
triangle has a length of 1 and we place that side on the 
x-axis with one vertex at the origin and another at 

(1,0) . Let the third vertex lie at (k,h) , as depicted in 

Figure 4. We will like to note that in this scenario both 
h,k (0,1).   

 

Figure 4: A scalene triangle, with vertices (0,0) , (1,0)  and 

(k,h) . 

Clearly, if (a,b)  lies on any one of the medians, we 

will have a 50-50% split. For all of the other cases we 
will have a complete proof. We will assume for 
simplicity of the argument that a < k.  We will see at the 
end of the proof that the case a > k  will yield a very 
similar result. 

The idea of the proof is to show that the function 
that gives the area of the region inside the triangle and 
under the line l  is a continuous function of m  (the 
slope). This function is a piecewise defined function of 

m,  the slope of the line through (a,b).  We will have to 

look at the points where the function changes its 
behavior. If the line l  is a vertical line then the area to 
the left of our line is the area we will be loking for and 

that area is equal to A =
ha2

2k .  As the slope of the line l  

changes from ( , b
a 1)  the area inside our triangle and 

below the line l  is given by  

A(m) =
1

2

h(b ma)

h mk

am b

m
=

h(b ma)2

2m(h mk)
 

which is clearly a continuous function on our interval. 

Likewise, as m ( b
a 1 ,

b
a )  the area inside our triangle and 

below our line l  is given by  

A(m) =
h

2

1

2
det

k h 1
k (b ma)
h mk

h(b ma)
h mk 1

(k 1)(b ma)+h
h m(k 1)

h(b ma+m )
h m(k 1) 1

=
h

2

h( b + h +ma mk)2

2(h +m km)(h mk)
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In the previous line we use Mathematica to compute 
and simplify that determinant. Continuing in the same 

fashion, for m ( ba ,
h b
k a )  the area inside our triangle and 

below our line l  is going to be given by  

A(m) =
(1 am b

m )( h(b ma+m )
h m(k 1) )

2
=
h(m ma + b)2

2m(h m(k 1))
.  

Finnaly, as m ( h b
k a , )  we obtain that the area 

inside the triangle and below our line l  is given by  

A(m) =
h

2
(

h(b ma)2

2m(h mk)
).  

Therefore, the function that gives us the area inside 
the triangle and under the line l  is a piecewise defined 
function defined by: 

A(m) =

h(b ma)2

2m(h mk ) for < m <
b
a 1

h
2

h( b+h+ma mk )2

2(h+m km )(h mk ) for b
a 1 m <

b
a

h(m ma+b)2

2m(h m(k 1)) for b
a m h b

k a

h
2 +

h(b ma)2

2m(h mk ) for h b
k a < m < .

 

Although A(m)  is not the prettiest of function we 

have to note that for each of our four pieces the 
singularities of the rational functions are not in the 
respective intervals, which mean that each of our piece 
is continuous on its own interval. Therefore, we only 
have to check the continuity at the points where our 
function changes its behavior.  

lim
m (

b

a 1
)

h(b ma)2

2m(h mk)
= lim

m (
b

a 1
)+

h

2

h( b + h +ma mk)2

2(h +m km)(h mk)

=
hb

ha h bk

 

lim
m (

b

a
)

h

2

h( b + h +ma mk)2

2(h +m km)(h mk)
= lim

m (
b

a
)+

h(m ma + b)2

2m(h m(k 1))

=
hb

2(ha + b bk)

 

lim
m (

h b

k a
)

h(m ma + b)2

2m(h m(k 1))
= lim

m (
h b

k a
)+

h

2
+
h(b ma)2

2m(h mk)
=
h

2
+
h(bk ha)

2(h b)
 

Therefore, our function A(m)  is a continuous 

function over the real numbers and by the Intermediate 

Value Theorem will take any value between ha2

2k  and 

h
2

ha2

2k .  We remark that h
4  which is half of the area of 

our triangle will always sit between these two values 
and that completes our proof. 

FINAL REMARKS AND CONJECTURE 

In summary, all of the shapes we have studied have 
shown to have a possible 50-50% split for any point 

(a,b) . We believe that this will be true for any convex 

region of the plane but we do not have a proof of this 
fact. 
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