Fourier Coefficients of a Class of Eta Quotients of Weight 14 with Level 12

Barış Kendirli*

Aydın University, Turkey

Abstract

Recently, Williams [1] and then Yao, Xia and Jin [2] discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of $\sigma(n), \sigma\left(\frac{n}{2}\right), \sigma\left(\frac{n}{3}\right)$ and $\sigma\left(\frac{n}{6}\right)$ and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of $\sigma_{3}(n), \sigma_{3}\left(\frac{n}{2}\right), \sigma_{3}\left(\frac{n}{3}\right)$ and $\sigma_{3}\left(\frac{n}{6}\right)$. Here, by using the method of proof of Williams, we will express the even Fourier coefficients of 196 eta quotients i.e., the Fourier coefficients of the sum, $\mathrm{f}(\mathrm{q})+\mathrm{f}(-\mathrm{q})$, of 196 eta quotients in terms of $\sigma_{13}(n), \sigma_{13}\left(\frac{n}{2}\right), \sigma_{13}\left(\frac{n}{3}\right), \sigma_{13}\left(\frac{n}{4}\right), \sigma_{13}\left(\frac{n}{6}\right)$ and $\sigma_{13}\left(\frac{n}{12}\right)$.

Keywords: Dedekind eta function, eta quotients, Fourier series.

1. INTRODUCTION

The divisor function $\sigma_{i}(n)$ is defined for a positive integer í by
$\sigma_{i}(n):=\sum_{d \text { positive }} d^{i}$, ifteger n is a positive integer, and
$\sigma_{i}(n):=0$ if n is not a positive integer.
The Dedekind eta function is defined by
$\eta(z):=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$,
where
$q:=e^{2 \pi i z}, z \in H=\{x+i y: y>0\}$
and an eta quotient of level n is defined by
$f(z):=\prod_{m \mid n} \eta(m z)^{a_{m}}, n, m \in \mathbb{N}$.
It is interesting and important to determine explicit formulas of the Fourier coefficients of eta quotients since they are the building blocks of modular forms of level n and weight k. The book of Köhler [3] (Chapter 3, pg. 39) describes such expansions by means of Hecke Theta series and develops algorithms for the determination of suitable eta quotients. One can find more information in [4-8]. We have determined the Fourier coefficients of the theta series associated to some quadratic forms, see [9-14].
*Address correspondence to this author at the Aydın University, Turkey; E-mail: baris.kendirl@gmail.com

Recently, Williams, see [1] discovered explicit formulas for the coefficients of Fourier series expansions of a class of 126 eta quotients in terms of $\sigma(n), \sigma\left(\frac{n}{2}\right), \sigma\left(\frac{n}{3}\right)$ and $\sigma\left(\frac{n}{6}\right)$. One example is as follows:
$\frac{\eta^{2}(2 z) \eta^{4}(4 z) \eta^{6}(6 z)}{\eta^{2}(z) \eta^{2}(3 z) \eta^{4}(12 z)}$
gives the expansion found by Williams.
Then Yao, Xia and Jin [2] expressed the even Fourier coefficients of 104 eta quotients in terms of $\sigma_{3}(n), \sigma_{3}\left(\frac{n}{2}\right), \sigma_{3}\left(\frac{n}{3}\right)$ and $\sigma_{3}\left(\frac{n}{6}\right)$ One example is as follows:

$$
\frac{\eta^{25}(2 z) \eta^{4}(3 z)}{\eta^{12}(z) \eta^{5}(4 z) \eta^{3}(6 z) \eta(12 z)^{\prime}}
$$

where the even coefficients are obtained. Motivated by these two results, we find that we can express the even Fourier coefficients of 196 eta quotients in terms of $\sigma_{13}(n), \sigma_{13}\left(\frac{n}{2}\right), \sigma_{13}\left(\frac{n}{3}\right), \sigma_{13}\left(\frac{n}{4}\right), \sigma_{13}\left(\frac{n}{6}\right)$ and $\sigma_{13}\left(\frac{n}{12}\right)$ see Table 3. One example is as follows:
$\frac{\eta^{6}(4 z) \eta^{14}(6 z) \eta^{14}(12 z)}{\eta^{6}(2 z)}$
where the even coefficients are obtained. We see that the odd Fourier coefficients of 263 eta quotients are zero and even coefficients can be expressed by simple formula.

Let
$f_{1}=\frac{\eta^{19}(4 z) \eta^{13}(6 z) \eta^{7}(12 z)}{\eta^{11}(2 z)}$,

Table 1:

$$
\begin{aligned}
& c_{1}:=-28 k_{0}+2 k_{1} \\
& c_{2}:=229824 k_{0}-16440 k_{1}+4 k_{2} \\
& c_{3}:=-\frac{28}{729} k_{0}+\frac{2}{27} k_{1}-\frac{104}{729} k_{2}+\frac{200}{729} k_{3}-\frac{128}{243} k_{4}+\frac{736}{729} k_{5} \\
& -\frac{1408}{729} k_{6}+\frac{896}{243} k_{7}-\frac{5120}{729} k_{8}+\frac{9728}{729} k_{9}-\frac{2048}{81} k_{10}+\frac{34816}{729} k_{11} \\
& -\frac{65536}{729} k_{12}+\frac{40960}{243} k_{13}-\frac{229376}{729} k_{14}+\frac{425984}{729} k_{15}-\frac{262144}{243} k_{16} \\
& +\frac{1441792}{729} k_{17}-\frac{2621440}{729} k_{18}+\frac{524288}{81} k_{19}-\frac{8388608}{729} k_{20} \\
& +\frac{14680064}{729} k_{21}-\frac{8388608}{243} k_{22}+\frac{41943040}{729} k_{23}-\frac{67108864}{729} k_{24} \\
& +\frac{33554432}{243} k_{25}-\frac{134217728}{729} k_{26}+\frac{134217728}{729} k_{27} \text {, } \\
& c_{4}:=-\frac{49551454820433920}{6973569531} k_{0}+\frac{6266429034102784}{6973569531} k_{1} \\
& -\frac{448223759630336}{6973569531} k_{2}-\frac{4397938884608}{6973569531} k_{3}+\frac{2198951723008}{6973569531} k_{4} \\
& -\frac{1099475664896}{6973569531} k_{5}+\frac{549755944960}{6973569531} k_{6}-\frac{274913607680}{6973569531} k_{7} \\
& +\frac{137510748160}{6973569531} k_{8}-\frac{68826841088}{6973569531} k_{9}+\frac{34503196672}{6973569531} k_{10} \\
& -\frac{17358897152}{6973569531} k_{11}+\frac{8805056512}{6973569531} k_{12}-\frac{4545658880}{6973569531} k_{13} \\
& +\frac{2434269184}{6973569531} k_{14}-\frac{1396097024}{6973569531} k_{15}+\frac{895320064}{6973569531} k_{16} \\
& -\frac{662454272}{6973569531} k_{17}+\frac{564330496}{6973569531} k_{18}-\frac{532791296}{6973569531} k_{19} \\
& +\frac{535330816}{6973569531} k_{20}-\frac{554123264}{6973569531} k_{21}+\frac{581828608}{6973569531} k_{22} \\
& -\frac{613203968}{6973569531} k_{23}+\frac{647200768}{6973569531} k_{24}-\frac{681721856}{6973569531} k_{25} \\
& +\frac{717291520}{6973569531} k_{26}-\frac{788430848}{6973569531} k_{27}+\frac{1576861696}{6973569531} k_{28} \text {, } \\
& c_{6}:=-\frac{27643868972579776}{38082663208791} k_{0}-\frac{18265031719974544}{38082663208791} k_{1} \\
& +\frac{44363961777336764}{38082663208791} k_{2}-\frac{85773378305765560}{38082663208791} k_{3} \\
& +\frac{164466964470793856}{38082663208791} k_{4}-\frac{315064929780258592}{38082663208791} k_{5} \\
& +\frac{602622844994339456}{38082663208791} k_{6}-\frac{1150404280197361024}{38082663208791} k_{7} \\
& +\frac{2191240614215330816}{38082663208791} k_{8}-\frac{4163402772772616704}{38082663208791} k_{9} \\
& +\frac{7888648788848556032}{38082663208791} k_{10}-\frac{14900927014148896768}{38082663208791} k_{11} \\
& +\frac{28048998684929294336}{38082663208791} k_{12}-\frac{52592115320057307136}{38082663208791} k_{13} \\
& +\frac{98172238040321589248}{38082663208791} k_{14}-\frac{182320205248569966592}{38082663208791} k_{15} \\
& +\frac{336591526070627926016}{38082663208791} k_{16}-\frac{617084883397193433088}{38082663208791} k_{17} \\
& +\frac{1121972972287157141504}{38082663208791} k_{18}-\frac{2019551841412983095296}{38082663208791} k_{19} \\
& +\frac{3590314905228818579456}{38082663208791} k_{20}-\frac{6283051626861316341760}{38082663208791} k_{21}
\end{aligned}
$$

(Table 1). Continued.

$$
\begin{aligned}
& +\frac{10770946201000465203200}{38082663208791} k_{22}-\frac{17951577553899585863680}{38082663208791} k_{23} \\
& +\frac{28722524611812001120256}{38082663208791} k_{24}-\frac{43083787374737709924352}{38082663208791} k_{25} \\
& +\frac{57445050137663419252736}{38082663208791} k_{26}-\frac{57445050023408491626496}{38082663208791} k_{27} \\
& -\frac{2513608401879040}{38082663208791} k_{28}, \\
& c_{12}:=\frac{261875982447426469888}{38082663208791} k_{0}-\frac{11192234642209079296}{12694221069597} k_{1} \\
& +\frac{2403239091828752384}{38082663208791} k_{2}+\frac{109780074636034048}{38082663208791} k_{3} \\
& -\frac{58818459942158336}{12694221069597} k_{4}+\frac{321030718045896704}{38082663208791} k_{5} \\
& -\frac{605551508862992384}{38082663208791} k_{6}+\frac{1579924778303488}{52239592879} k_{7} \\
& -\frac{2191724093695492096}{38082663208791} k_{8}+\frac{4163270449392271360}{38082663208791} k_{9} \\
& -\frac{2629291443543212032}{12694221069597} k_{10}+\frac{14899203037420568576}{38082663208791} k_{11} \\
& -\frac{28045623195383988224}{38082663208791} k_{12}+\frac{17528573647575826432}{12694221069597} k_{13} \\
& -\frac{98160268825009389568}{38082663208791} k_{14}+\frac{182297959641922846720}{37394494230273753088} k_{15} \\
& \begin{array}{r}
-\frac{37394494230273753088}{4231407023199} k_{16}+\frac{617009568387760013312}{38082663208791} k_{17} \\
-\frac{1121836032410609254400}{38082663208791} k_{18}+\frac{673101782332504752128}{12694221069597} k_{19}
\end{array} \\
& -\frac{3589876690685518643200}{38082663208791} k_{20}+\frac{6282284749320585822208}{38082663208791} k_{21} \\
& -\frac{3589877183925868888064}{12694221069597} k_{22}+\frac{17949386469914585120768}{38082663208791} k_{23} \\
& -\frac{28719018875612432334848}{38082663208791} k_{24}+\frac{4786503196539966078976}{4231407023199} k_{25} \\
& -\frac{57438038662112683884544}{38082663208791} k_{26}+\frac{57438038548246248128512}{38082663208791} k_{27} \\
& +\frac{834999053385728}{12694221069597} k_{28}, \\
& r_{1}:=\frac{603074757810297856}{2187} k_{0}-\frac{1595313830955520}{81} k_{1}-\frac{5319060719104}{2187} k_{2} \\
& +\frac{9821099051008}{2187} k_{3}-\frac{6259152849920}{729} k_{4}+\frac{35979728478464}{2187} k_{5} \\
& -\frac{68832883985408}{2187} k_{6}+\frac{43804286225408}{729} k_{7}-\frac{250316283854848}{2187} k_{8} \\
& +\frac{475608968495104}{2187} k_{9}-\frac{100129412071424}{243} k_{10}+\frac{1702214924705792}{2187} k_{11} \\
& -\frac{3204189765042176}{2187} k_{12}+\frac{2002627930759168}{729} k_{13}-\frac{11214754238021632}{2187} k_{14} \\
& +\frac{20827451243044864}{2187} k_{15}-\frac{12816915260735488}{729} k_{16} \\
& +\frac{70493120395206656}{2187} k_{17} \\
& -\frac{128169420405555200}{2187} k_{18}+\frac{25633899541274624}{243} k_{19} \\
& -\frac{410142564512432128}{2187} k_{20} \\
& +\frac{717749695611363328}{2187} k_{21}^{2187}-\frac{410142764638945280}{729} k_{22} \\
& +\frac{2050714099643064320}{2187} k_{23}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3281142853004263424}{2187} k_{24}+\frac{1640571518000144384}{729} k_{25} \\
& -\frac{6562286254996602880}{2187} k_{26}+\frac{6562286254996602880}{2187} k_{27}, \\
& r_{2}:=-\frac{498118393672297600}{2187} k_{0}+\frac{1317673389068992}{81} k_{1}+\frac{4178113615936}{2187} k_{2} \\
& -\frac{7650455291008}{2187} k_{3}+\frac{4872771276416}{729} k_{4}-\frac{28009307999648}{2187} k_{5} \\
& +\frac{53583642658304}{2187} k_{6}-\frac{34099440250880}{729} k_{7}+\frac{194857366070272}{2187} k_{8} \\
& -\frac{370234081569280}{2187} k_{9}+\frac{77944846942208}{243} k_{10}-\frac{1325073222729728}{2187} k_{11} \\
& +\frac{2494270956634112}{2187} k_{12}-\frac{1558926621147136}{729} k_{13}+\frac{8730019381903360}{2187} k_{14} \\
& -\frac{16212934574866432}{2187} k_{15}+\frac{9977209092308992}{729} k_{16}-\frac{54874723778428928}{2187} k_{17} \\
& +\frac{99772320966508544}{2187} k_{18}-\frac{19954477794590720}{243} k_{19} \\
& +\frac{319271797805547520}{2187} k_{20} \\
& -\frac{558725833217277952}{2187} k_{21}+\frac{319271978714267648}{729} k_{22} \\
& -\frac{1596360146806636544}{2187} k_{23} \\
& +\frac{2554176505433292800}{2187} k_{24}-\frac{1277088337340923904}{729} k_{25} \\
& +\frac{5108353518612250624}{2187} k_{26}-\frac{5108353518612250624}{2187} k_{27} \text {, } \\
& r_{3}:=-\frac{34649292590809088}{243} k_{0}+\frac{91637694595072}{9} k_{1}+\frac{1374934532096}{243} k_{2} \\
& -\frac{2615544774656}{243} k_{3}+\frac{1672004501504}{81} k_{4}-\frac{9613118144512}{243} k_{5} \\
& +\frac{18390648094720}{243} k_{6}-\frac{11703468818432}{81} k_{7}+\frac{66878587535360}{243} k_{8} \\
& -\frac{127071673253888}{243} k_{9}+\frac{26752291438592}{27} k_{10}-\frac{454793282584576}{243} k_{11} \\
& +\frac{856087134994432}{243} k_{12}-\frac{535056887971840}{81} k_{13}+\frac{2996327809286144}{243} k_{14} \\
& -\frac{5564620332204032}{243} k_{15}+\frac{3424386484535296}{81} k_{16}-\frac{18834142949146624}{243} k_{17} \\
& +\frac{34243916973998080}{243} k_{18}-\frac{6848786109169664}{27} k_{19} \\
& +\frac{109580606107811840}{243} k_{20} \\
& -\frac{191766093000998912}{243} k_{21}+\frac{109580636556886016}{81} k_{22} \\
& -\frac{547903221482782720}{243} k_{23} \\
& +\frac{876645193803366400}{243} k_{24}-\frac{438322608877469696}{81} k_{25} \\
& +\frac{1753290459461451776}{243} k_{26}-\frac{1753290459461451776}{243} k_{27} \text {, } \\
& r_{4}:=\frac{25339840443904}{729} k_{0}-\frac{67035237632}{27} k_{1}-\frac{11295232}{729} k_{2}+\frac{2032768}{729} k_{3} \\
& -\frac{91648}{243} k_{4}+\frac{13760}{729} k_{5}+\frac{18304}{729} k_{6}-\frac{11648}{243} k_{7}+\frac{66560}{729} k_{8}-\frac{126464}{729} k_{9} \\
& +\frac{26624}{81} k_{10}-\frac{452608}{729} k_{11}+\frac{851968}{729} k_{12}-\frac{532480}{243} k_{13}+\frac{2981888}{729} k_{14}
\end{aligned}
$$

(Table 1). Continued.

$$
\begin{aligned}
& -\frac{5537792}{729} k_{15}+\frac{3407872}{243} k_{16}-\frac{18743296}{729} k_{17}+\frac{34078720}{729} k_{18}-\frac{6815744}{81} k_{19} \\
& +\frac{109051904}{729} k_{20}-\frac{190840832}{729} k_{21}+\frac{109051904}{243} k_{22}-\frac{545259520}{729} k_{23} \\
& +\frac{872415232}{729} k_{24}-\frac{436207616}{243} k_{25}+\frac{1744830464}{729} k_{26}-\frac{1744830464}{729} k_{27}, \\
& r_{5}:=\frac{629995847936}{243} k_{0}-\frac{2469574016}{9} k_{1}+\frac{43358962816}{243} k_{2} \\
& -\frac{83385070720}{243} k_{3}+\frac{53367831296}{81} k_{4}-\frac{306872041088}{243} k_{5} \\
& +\frac{587071295360}{243} k_{6}-\frac{373597325696}{81} k_{7}+\frac{2134874002432}{243} k_{8} \\
& -\frac{4056313100800}{243} k_{9}+\frac{853970087936}{27} k_{10}-\frac{14517627416576}{243} k_{11} \\
& +\frac{27327513755648}{243} k_{12}-\frac{17079808147456}{81} k_{13}+\frac{95647443877888}{243} k_{14} \\
& -\frac{177631754420224}{243} k_{15}+\frac{109312241041408}{81} k_{16}-\frac{601219052994560}{243} k_{17} \\
& +\frac{1093128037597184}{243} k_{18}-\frac{218625996750848}{27} k_{19}+\frac{3498020763074560}{243} k_{20} \\
& -\frac{6121542765248512}{243} k_{21}+\frac{3498027197136896}{81} k_{22}-\frac{17490146119122944}{243} k_{23} \\
& +\frac{27984245225947136}{243} k_{24}-\frac{13992126303961088}{81} k_{25} \\
& +\frac{55968512597819392}{243} k_{26}-\frac{55968512597819392}{243} k_{27} \text {, } \\
& r_{6}:=\frac{793976503953280}{243} k_{0}-\frac{2100466546496}{9} k_{1}+\frac{955585856}{243} k_{2} \\
& -\frac{2191567616}{243} k_{3}+\frac{1430112896}{81} k_{4}-\frac{8235186400}{243} k_{5} \\
& +\frac{15750961792}{243} k_{6}-\frac{10021676672}{81} k_{7}+\frac{57262991360}{243} k_{8} \\
& -\frac{108797692928}{243} k_{9}+\frac{22904754176}{27} k_{10}-\frac{389382369280}{243} k_{11} \\
& +\frac{732958326784}{243} k_{12}-\frac{458100613120}{81} k_{13}+\frac{2565370068992}{243} k_{14} \\
& -\frac{4764266946560}{243} k_{15}+\frac{2931859849216}{81} k_{16}-\frac{16125240451072}{243} k_{17} \\
& +\frac{29318631669760}{243} k_{18}-\frac{5863727882240}{27} k_{19}+\frac{93819661156352}{243} k_{20}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{750557448503296}{243} k_{24}-\frac{375278728896512}{81} k_{25} \\
& +\frac{1501114924875776}{243} k_{26}-\frac{1501114924875776}{243} k_{27} \text {, } \\
& r_{7}:=-\frac{32558191232}{27} k_{0}+87155648 k_{1}-\frac{55237312}{27} k_{2}+\frac{106230400}{27} k_{3} \\
& -\frac{67990400}{9} k_{4}+\frac{390960992}{27} k_{5}-\frac{747954944}{27} k_{6}+\frac{475989248}{9} k_{7} \\
& -\frac{2720035840}{27} k_{8}+\frac{5168243200}{27} k_{9}-\frac{1088086016}{3} k_{10}+\frac{18498019328}{27} k_{11} \\
& -\frac{34820784128}{27} k_{12}+\frac{21763563520}{9} k_{13}-\frac{121878937600}{27} k_{14} \\
& +\frac{226351710208}{27} k_{15}-\frac{139296243712}{9} k_{16}+\frac{766143758336}{27} k_{17} \\
& -\frac{1393012244480}{27} k_{18}+\frac{278606643200}{3} k_{19}-\frac{4457765011456}{27} k_{20}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
+\frac{7801176850432}{27} k_{21}-\frac{4457857286144}{9} k_{22}+\frac{22289454202880}{27} k_{23} \\
-\frac{35663328051200}{27} k_{24}+\frac{17831731134464}{9} k_{25} \\
-\frac{71327058755584}{27} k_{26}+\frac{71327058755584}{27} k_{27},
\end{array} \\
& r_{8}:=-\frac{8435766769024}{243} k_{0}+\frac{22316388416}{9} k_{1}+\frac{3739840}{243} k_{2}-\frac{675712}{243} k_{3} \\
& +\frac{30592}{81} k_{4}-\frac{4832}{243} k_{5}-\frac{5632}{243} k_{6}+\frac{3584}{81} k_{7}-\frac{20480}{243} k_{8}+\frac{38912}{243} k_{9} \\
& -\frac{8192}{27} k_{10}+\frac{139264}{243} k_{11}-\frac{262144}{243} k_{12}+\frac{163840}{81} k_{13}-\frac{917504}{243} k_{14} \\
& +\frac{1703936}{243} k_{15}-\frac{1048576}{81} k_{16}+\frac{5767168}{243} k_{17}-\frac{10485760}{243} k_{18} \\
& +\frac{2097152}{27} k_{19}-\frac{33554432}{243} k_{20}+\frac{58720256}{243} k_{21}-\frac{33554432}{81} k_{22} \\
& +\frac{167772160}{243} k_{23}-\frac{268435456}{243} k_{24}+\frac{134217728}{81} k_{25} \\
& -\frac{536870912}{243} k_{26}+\frac{536870912}{243} k_{27}, \\
& r_{9}:=\frac{22853743673344}{243} k_{0}-\frac{62410588160}{9} k_{1}+\frac{106261250048}{243} k_{2} \\
& -\frac{205166870528}{243} k_{3}+\frac{131529113600}{81} k_{4}-\frac{756837842944}{243} k_{5} \\
& +\frac{1448317222912}{243} k_{6}-\frac{921786712064}{81} k_{7}+\frac{5267709820928}{243} k_{8} \\
& -\frac{10009000607744}{243} k_{9}+\frac{2107199651840}{27} k_{10}-\frac{35822818754560}{243} k_{11} \\
& +\frac{67431689420800}{243} k_{12}-\frac{42145006944256}{81} k_{13}+\frac{236012768264192}{243} k_{14} \\
& -\frac{438310304940032}{243} k_{15}+\frac{269729767555072}{81} k_{16}-\frac{1483514955759616}{243} k_{17} \\
& +\frac{2697301354283008}{243} k_{18}-\frac{539460453466112}{27} k_{19}+\frac{8631369108094976}{243} k_{20} \\
& -\frac{15104897989541888}{243} k_{21}+\frac{8631371019124736}{81} k_{22}-\frac{43156857420709888}{243} k_{23} \\
& +\frac{69050974188666880}{243} k_{24}-\frac{34525487787081728}{81} k_{25} \\
& +\frac{138101952533823488}{243} k_{26}-\frac{138101952533823488}{243} k_{27}, \\
& r_{10}:=\frac{727936359783268352}{2187} k_{0}-\frac{1925742066532352}{81} k_{1}-\frac{243560480768}{2187} k_{2} \\
& +\frac{120676745216}{2187} k_{3}-\frac{19406946304}{729} k_{4}+\frac{25054314496}{2187} k_{5} \\
& -\frac{4772823040}{2187} k_{6}-\frac{4135485440}{729} k_{7}+\frac{34357411840}{2187} k_{8} \\
& -\frac{70623920128}{2187} k_{9}+\frac{15164014592}{243} k_{10}-\frac{259113844736}{2187} k_{11} \\
& +\frac{488403402752}{2187} k_{12}-\frac{305361485824}{729} k_{13}+\frac{1710187380736}{2187} k_{14} \\
& -\frac{3176143224832}{2187} k_{15}+\frac{1954563063808}{729} k_{16}-\frac{10750116724736}{2187} k_{17} \\
& +\frac{19545676611584}{2187} k_{18}-\frac{3909135859712}{243} k_{19}+\frac{62546176147456}{2187} k_{20} \\
& -\frac{109455809413120}{2187} k_{21}+\frac{62546176999424}{729} k_{22}-\frac{312730885259264}{2187} k_{23}
\end{aligned}
$$

(Table 1). Continued.

$$
\begin{aligned}
& +\frac{500369416552448}{2187} k_{24}-\frac{250184708292608}{729} k_{25} \\
& +\frac{1000738833203200}{2187} k_{26}-\frac{1000738833203200}{2187} k_{27} \text {, } \\
& r_{11}:=-\frac{228591632384}{243} k_{0}+\frac{626753536}{9} k_{1}-\frac{1175093248}{243} k_{2} \\
& +\frac{2246778880}{243} k_{3}-\frac{1434222592}{81} k_{4}+\frac{8237490176}{243} k_{5} \\
& -\frac{15751233536}{243} k_{6}+\frac{10021642240}{81} k_{7}-\frac{57262735360}{243} k_{8} \\
& +\frac{108797206528}{243} k_{9}-\frac{22904651776}{27} k_{10}+\frac{389380628480}{243} k_{11} \\
& -\frac{732955049984}{243} k_{12}+\frac{458098565120}{81} k_{13}-\frac{2565358600192}{243} k_{14} \\
& +\frac{4764245647360}{243} k_{15}-\frac{2931846742016}{81} k_{16}+\frac{16125168361472}{243} k_{17} \\
& -\frac{29318500597760}{243} k_{18}+\frac{5863701667840}{27} k_{19}-\frac{93819241725952}{243} k_{20} \\
& +\frac{164183688945664}{243} k_{21}-\frac{93819256324096}{81} k_{22}+\frac{469096298209280}{243} k_{23} \\
& -\frac{750554093060096}{243} k_{24}+\frac{375277051174912}{81} k_{25} \\
& -\frac{1501108213989376}{243} k_{26}+\frac{1501108213989376}{243} k_{27} \text {, } \\
& r_{12}:=\frac{1142958161920}{729} k_{0}-\frac{3131998208}{27} k_{1}+\frac{5827690496}{729} k_{2} \\
& -\frac{11190099968}{729} k_{3}+\frac{7157841920}{243} k_{4}-\frac{41151619072}{729} k_{5} \\
& +\frac{78724317184}{729} k_{6}-\frac{50098921472}{243} k_{7}+\frac{286289788928}{729} k_{8} \\
& -\frac{543966126080}{729} k_{9}+\frac{114521489408}{81} k_{10}-\frac{1946891198464}{729} k_{11} \\
& +\frac{3664767287296}{729} k_{12}-\frac{2290491498496}{729} k_{13}+\frac{12826793000960}{729} k_{14} \\
& -\frac{23821232218112}{729} k_{15}+\frac{14659236364288}{243} k_{16}-\frac{80625853751296}{729} k_{17} \\
& +\frac{146592518914048}{729} k_{18}-\frac{29318510551040}{81} k_{19}+\frac{469096232517632}{729} k_{20} \\
& -\frac{820918472597504}{729} k_{21}+\frac{469096292237312}{243} k_{22}-\frac{2345481526878208}{729} k_{23} \\
& +\frac{3752770505113600}{729} k_{24}-\frac{1876385270472704}{243} k_{25} \\
& +\frac{7505541117722624}{729} k_{26}-\frac{7505541117722624}{729} k_{27}, \\
& \begin{aligned}
& r_{13}:=\frac{65445517307314501184}{2324523177} k_{0}-\frac{8393952427404604960}{2324523177} k_{1} \\
&+\frac{607510207588656032}{2324523177} k_{2}
\end{aligned} \\
& +\frac{9576900154769312}{2324523177} k_{3}-\frac{5371838447097280}{2324523177} k_{4}+\frac{2902824593746784}{2324523177} k_{5} \\
& -\frac{1537487675124928}{2324523177} k_{6}+\frac{810570917187968}{2324523177} k_{7}-\frac{431764857706240}{2324523177} k_{8} \\
& +\frac{235417477283840}{2324523177} k_{9}-\frac{132235585650688}{2324523177} k_{10}+\frac{75931831402496}{2324523177} k_{11} \\
& -\frac{43069291823104}{2324523177} k_{12}+\frac{21925213601792}{2324523177} k_{13}-\frac{6642512035840}{2324523177} k_{14} \\
& -\frac{5711647178752}{2324523177} k_{15}+\frac{16599389241344}{2324523177} k_{16}-\frac{26756068704256}{2324523177} k_{17}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
+\frac{36545070891008}{2324523177} k_{18}-\frac{46152380416000}{2324523177} k_{19}+\frac{55666697633792}{2324523177} k_{20} \\
-\frac{65136664674304}{2324523177} k_{21}+\frac{74582310649856}{2324523177} k_{22}-\frac{84017942069248}{2324523177} k_{23}
\end{array} \\
& +\frac{93446420234240}{2324523177} k_{24}-\frac{102873467748352}{2324523177} k_{25}+\frac{112297653960704}{2324523177} k_{26} \\
& -\frac{131146026385408}{2324523177} k_{27}+\frac{262292052770816}{2324523177} k_{28}, \\
& r_{14}:=\frac{602980136368654566504393728}{12694221069597} k_{0}-\frac{77361672576969196649760256}{12694221069597} k_{1} \\
& +\frac{5636344053009507710199296}{12694221069597} k_{2}+\frac{55215036218874902041088}{12694221069597} k_{3} \\
& -\frac{27576484252083655779328}{12694221069597} k_{4}+\frac{13771802569275983058944}{12694221069597} k_{5} \\
& -\frac{6880059002977198133248}{12694221069597} k_{6}+\frac{3442116343477837758464}{12694221069597} k_{7} \\
& -\frac{1727561320263769391104}{12694221069597} k_{8}+\frac{869672666586216660992}{12694221069597} k_{9} \\
& -\frac{433471649910062055424}{12694221069597} k_{10}+\frac{199785287005158244352}{12694221069597} k_{11} \\
& -\frac{57382989330951700480}{12694221069597} k_{12}-\frac{51034154345422913536}{12694221069597} k_{13} \\
& +\frac{155759696565878128640}{12694221069597} k_{14}-\frac{273624030563958784000}{12694221069597} k_{15} \\
& +\frac{414686449881917161472}{12694221069597} k_{16}-\frac{585660218253467975680}{12694221069597} k_{17} \\
& +\frac{791546064470948446208}{12694221069597} k_{18}-\frac{1036527969893115756544}{12694221069597} k_{19} \\
& +\frac{1324342022124828360704}{12694221069597} k_{20}-\frac{1658539881931104059392}{12694221069597} k_{21} \\
& +\frac{2042541476619931615232}{12694221069597} k_{22}-\frac{2479740386807893983232}{12694221069597} k_{23} \\
& +\frac{2973477499728762503168}{12694221069597} k_{24}-\frac{3530434589850079854592}{12694221069597} k_{25} \\
& +\frac{4213831634372294868992}{12694221069597} k_{26}-\frac{5580625723416724897792}{12694221069597} k_{27} \\
& +\frac{11161251446833449795584}{12694221069597} k_{28}, \\
& r_{15}:=-\frac{4397259566486259601358879488}{12694221069597} k_{0} \\
& -\frac{41103040268493150606014848}{12694221069597} k_{2}-\frac{403079181663026647848064}{12694221069597} k_{3}+ \\
& \frac{201477705233071343724800}{12694221069597} k_{4}-\frac{100703605990263773410816}{12694221069597} k_{5} \\
& +\frac{50337794119818442339328}{12694221069597} k_{6}-\frac{25170293685103182217216}{12694221069597} k_{7} \\
& +\frac{12595004942189415366656}{12694221069597} k_{8}-\frac{6306904185021517398016}{12694221069597} k_{9} \\
& +\frac{3151342498111833374720}{12694221069597} k_{10}-\frac{1548147414785463549952}{12694221069597} k_{11} \\
& +\frac{704257211331910565888}{12694221069597} k_{12}-\frac{219461088492836356096}{12694221069597} k_{13} \\
& -\frac{110153772205992706048}{12694221069597} k_{14}+\frac{391055645876799930368}{12694221069597} k_{15} \\
& -\frac{681118017392778674176}{12694221069597} k_{16}+\frac{1014621423537649221632}{12694221069597} k_{17}
\end{aligned}
$$

(Table 1). Continued.

$$
\begin{aligned}
& -\frac{1414177408492370526208}{12694221069597} k_{18}+\frac{1897267467166562779136}{12694221069597} k_{19} \\
& -\frac{2478935551276151996416}{12694221069597} k_{20}+\frac{3173711287970259009536}{12694221069597} k_{21} \\
& -\frac{3995994623556577263616}{12694221069597} k_{22}+\frac{4960825110952128413696}{12694221069597} k_{23} \\
& -\frac{6084521516292590534656}{12694221069597} k_{24}+\frac{7399721371849319776256}{12694221069597} k_{25} \\
& -\frac{9097928127838583259136}{12694221069597} k_{26}+\frac{12494341639817110224896}{12694221069597} k_{27} \\
& -\frac{24988683279634220449792}{12694221069597} k_{28}, \\
& r_{16}:=\frac{3832660207407574711450031072}{12694221069597} k_{0} \\
& +\frac{35825281197010957761411824}{12694221069597} k_{2}+\frac{351501952907831900707472}{12694221069597} k_{3} \\
& -\frac{175741994711159939018656}{12694221069597} k_{4}+\frac{87866457712152362977184}{12694221069597} k_{5} \\
& -\frac{43932999897759052351552}{12694221069597} k_{6}+\frac{21969395683001323950464}{12694221069597} k_{7} \\
& -\frac{10989066542524404924160}{12694221069597} k_{8}+\frac{5497895048697407989760}{12694221069597} k_{9} \\
& -\frac{2748014822046977357824}{12694221069597} k_{10}+\frac{1364154705457278801920}{12694221069597} k_{11} \\
& -\frac{657267814097180667904}{12694221069597} k_{12}+\frac{280803787376069795840}{12694221069597} k_{13} \\
& -\frac{59318933767062077440}{12694221069597} k_{14}-\frac{97738231775011962880}{12694221069597} k_{15} \\
& +\frac{238637472275158728704}{12694221069597} k_{16}-\frac{391175397479655276544}{12694221069597} k_{17} \\
& +\frac{573076582196137558016}{12694221069597} k_{18}-\frac{797697612454331809792}{12694221069597} k_{19} \\
& +\frac{1076376263515850276864}{12694221069597} k_{20}-\frac{1420110217789893640192}{12694221069597} k_{21} \\
& +\frac{1839894862560766853120}{12694221069597} k_{22}-\frac{2347398885442910814208}{12694221069597} k_{23} \\
& +\frac{2955637574711038312448}{12694221069597} k_{24}-\frac{3690641506914574925824}{12694221069597} k_{25} \\
& +\frac{4679175924988929769472}{12694221069597} k_{26}-\frac{6656244761137639456768}{12694221069597} k_{27} \\
& +\frac{13312489522275278913536}{12694221069597} k_{28}, \\
& r_{17}:=-\frac{9555763511220197734352}{2324523177} k_{0}+\frac{1225993774005925561768}{2324523177} k_{1} \\
& -\frac{89321103404676868136}{2324523177} k_{2} \\
& -\frac{876466706267647352}{2324523177} k_{3}+\frac{438229821811153648}{2324523177} k_{4} \\
& -\frac{219114871646975456}{2324523177} k_{5} \\
& +\frac{109561045318986688}{2324523177} k_{6}-\frac{54787624104269696}{2324523177} k_{7}+\frac{27404562021428992}{2324523177} k_{8} \\
& -\frac{13716522470120960}{2324523177} k_{9}+\frac{6876150300654592}{2324523177} k_{10}-\frac{3459453869373440}{2324523177} k_{11} \\
& +\frac{1754749586599936}{2324523177} k_{12}-\frac{905879752024064}{2324523177} k_{13}+\frac{485074074320896}{2324523177} k_{14}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{278124155715584}{2324523177} k_{15}+\frac{178219662868480}{2324523177} k_{16}-\frac{131602790432768}{2324523177} k_{17} \\
& +\frac{111629728153600}{2324523177} k_{18}-\frac{104508385968128}{2324523177} k_{19}+\frac{103342718746624}{2324523177} k_{20} \\
& -\frac{103744333955072}{2324523177} k_{21}+\frac{102578665160704}{2324523177} k_{22}-\frac{95457319043072}{2324523177} k_{23} \\
& +\frac{75484248506368}{2324523177} k_{24}-\frac{28867359358976}{2324523177} k_{25}-\frac{71037167009792}{2324523177} k_{26} \\
& +\frac{270846219747328}{2324523177} k_{27}-\frac{541692439494656}{2324523177} k_{28}, \\
& r_{18}:=-\frac{11588078962737152}{6973569531} k_{0}+\frac{1166714887340032}{6973569531} k_{1} \\
& +\frac{230708949680128}{6973569531} k_{2} \\
& -\frac{315300633509888}{6973569531} k_{3}+\frac{286187145920512}{6973569531} k_{4}-\frac{257348536107008}{6973569531} k_{5} \\
& +\frac{228647365378048}{6973569531} k_{6}-\frac{200014913994752}{6973569531} k_{7}+\frac{171416822480896}{6973569531} k_{8} \\
& -\frac{142835910705152}{6973569531} k_{9}+\frac{114263588995072}{6973569531} k_{10}-\frac{85695562121216}{6973569531} k_{11} \\
& +\frac{57129682862080}{6973569531} k_{12}-\frac{28564877213696}{6973569531} k_{13}+\frac{608567296}{6973569531} k_{14} \\
& +\frac{28563391774720}{6973569531} k_{15}-\frac{57127257767936}{6973569531} k_{16}+\frac{85691056783360}{6973569531} k_{17} \\
& -\frac{114254822113280}{6973569531} k_{18}+\frac{142818570797056}{6973569531} k_{19}-\frac{171382310961152}{6973569531} k_{20} \\
& +\frac{199946047062016}{6973569531} k_{21}-\frac{228509780934656}{6973569531} k_{22}+\frac{257073513889792}{6973569531} k_{23} \\
& -\frac{285637246189568}{6973569531} k_{24}+\frac{314200978358272}{6973569531} k_{25}-\frac{342764710264832}{6973569531} k_{26} \\
& +\frac{399892174077952}{6973569531} k_{27}-\frac{799784348155904}{6973569531} k_{28} \text {, } \\
& r_{19}:=\frac{9393124352834789075319616912}{12694221069597} k_{0} \\
& -\frac{1205127353834611636881555080}{12694221069597} k_{1} \\
& +\frac{87800859553609266232556296}{12694221069597} k_{2}+\frac{861547678368538125520408}{12694221069597} k_{3} \\
& -\frac{430769937002844595723568}{12694221069597} k_{4}+\frac{215384598731625292508896}{12694221069597} k_{5} \\
& -\frac{107695527561807207575360}{12694221069597} k_{6}+\frac{53854292338791349673728}{12694221069597} k_{7} \\
& -\frac{26936898773352911576576}{12694221069597} k_{8}+\frac{13480906437520486389760}{12694221069597} k_{9} \\
& -\frac{6755195963867300956160}{12694221069597} k_{10}+\frac{3393586871841028630528}{12694221069597} k_{11} \\
& -\frac{1712833857242674221056}{12694221069597} k_{12}+\frac{870333574608036683776}{12694221069597} k_{13} \\
& -\frac{444136974672224043008}{12694221069597} k_{14}+\frac{221635685718737010688}{12694221069597} k_{15} \\
& -\frac{95039797683344408576}{12694221069597} k_{16}+\frac{7780758339885285376}{12694221069597} k_{17} \\
& +\frac{71159004378669383680}{12694221069597} k_{18}-\frac{161417106605792116736}{12694221069597} k_{19} \\
& +\frac{277208225465967345664}{12694221069597} k_{20}-\frac{431637801002964598784}{12694221069597} k_{21} \\
& +\frac{637729108115521208320}{12694221069597} k_{22}-\frac{910477400428707725312}{12694221069597} k_{23}
\end{aligned}
$$

(Table 1). Continued.

$$
\begin{aligned}
& +\frac{1268821889020261138432}{12694221069597} k_{24}-\frac{1750640996045655425024}{12694221069597} k_{25} \\
& +\frac{2479409339938731458560}{12694221069597} k_{26}-\frac{3936946027724883525632}{12694221069597} k_{27} \\
& +\frac{7873892055449767051264}{12694221069597} k_{28}, \\
& r_{20}:=-\frac{782760367982034627924675280}{1410469007733} k_{0} \\
& -\frac{7316738185452832876531240}{1410469007733} k_{2}-\frac{71795769688357015471672}{1410469007733} k_{3} \\
& +\frac{35897595034534416752624}{1410469007733} k_{4}-\frac{17948793361086205592896}{1410469007733} k_{5} \\
& +\frac{8974690663292817986048}{1410469007733} k_{6}-\frac{4487923979277156740224}{1410469007733} k_{7} \\
& +\frac{2244837002143469919488}{1410469007733} k_{8}-\frac{1123575013992080828416}{1410469007733} k_{9} \\
& +\frac{563234778019505567744}{1410469007733} k_{10}-\frac{283336300956870645760}{1410469007733} k_{11} \\
& +\frac{143660629105531105280}{1410469007733} k_{12}-\frac{74064745298089050112}{1410469007733} k_{13} \\
& +\frac{39489658385079468032}{1410469007733} k_{14}-\frac{22358531191172546560}{1410469007733} k_{15} \\
& +\frac{13873637278949212160}{1410469007733} k_{16}-\frac{9555231502973845504}{1410469007733} k_{17} \\
& +\frac{7104384631683940352}{1410469007733} k_{18}-\frac{5220138909669474304}{1410469007733} k_{19} \\
& +\frac{3097954623020761088}{1410469007733} k_{20}-\frac{63387793102323712}{1410469007733} k_{21} \\
& -\frac{4523769872821190656}{1410469007733} k_{22}+\frac{11461211080333180928}{1410469007733} k_{23} \\
& -\frac{21861597360713138176}{1410469007733} k_{24}+\frac{37950251776520044544}{1410469007733} k_{25} \\
& -\frac{65415442463180849152}{1410469007733} k_{26}+\frac{120345823836502458368}{1410469007733} k_{27} \\
& -\frac{240691647673004916736}{1410469007733} k_{28}, \\
& r_{21}:=\frac{24204370597605104}{6973569531} k_{0}-\frac{3122018638296760}{6973569531} k_{1}+\frac{229811561919416}{6973569531} k_{2} \\
& +\frac{3003224978408}{6973569531} k_{3}-\frac{2087374610512}{6973569531} k_{4}+\frac{1099475664896}{6973569531} k_{5} \\
& -\frac{549755944960}{6973569531} k_{6} \\
& +\frac{274913607680}{6973569531} k_{7}-\frac{137510748160}{6973569531} k_{8}+\frac{68826841088}{6973569531} k_{9}-\frac{34503196672}{6973569531} k_{10} \\
& +\frac{17358897152}{6973569531} k_{11}-\frac{8805056512}{6973569531} k_{12}+\frac{4545658880}{6973569531} k_{13}-\frac{2434269184}{6973569531} k_{14} \\
& +\frac{1396097024}{6973569531} k_{15}-\frac{895320064}{6973569531} k_{16}+\frac{662454272}{6973569531} k_{17}-\frac{564330496}{6973569531} k_{18} \\
& +\frac{532791296}{6973569531} k_{19}-\frac{535330816}{6973569531} k_{20}+\frac{554123264}{6973569531} k_{21}-\frac{581828608}{6973569531} k_{22} \\
& +\frac{613203968}{6973569531} k_{23}-\frac{647200768}{6973569531} k_{24}+\frac{681721856}{6973569531} k_{25}-\frac{717291520}{6973569531} k_{26} \\
& +\frac{788430848}{6973569531} k_{27}-\frac{1576861696}{6973569531} k_{28},
\end{aligned}
$$

$$
\begin{aligned}
& r_{22}:=\frac{1572472491474686836736}{6973569531} k_{0}-\frac{201787675412179320832}{6973569531} k_{1} \\
& +\frac{14737883466664116224}{6973569531} k_{2} \\
& +\frac{112069832550514688}{6973569531} k_{3}-\frac{46865374365614080}{6973569531} k_{4}+\frac{16805892869586944}{6973569531} k_{5} \\
& -\frac{3861905656643584}{6973569531} k_{6}-\frac{981380058972160}{6973569531} k_{7}+\frac{2231309087277056}{6973569531} k_{8} \\
& -\frac{2141605416140800}{6973569531} k \\
& { }_{9}+\frac{1839079456636928}{6973569531} k_{10}-\frac{1887187997163520}{6973569531} k_{11} \\
& +\frac{2567607849058304}{6973569531} k_{12} \\
& -\frac{4021229000851456}{6973569531} k_{13}+\frac{6318444863946752}{6973569531} k_{14}-\frac{9494503726907392}{6973569531} k_{15} \\
& +\frac{13566978151153664}{6973569531} k_{16}-\frac{18544706000257024}{6973569531} k_{17} \\
& +\frac{24432054623141888}{6973569531} k_{18} \\
& -\frac{31231259277131776}{6973569531} k_{19}+\frac{38943386008027136}{6973569531} k_{20} \\
& 47569019421589504 \\
& -\frac{6973569531}{6} k_{21} \\
& +\frac{57108400237838336}{6973569531} k_{22}-\frac{67561700399644672}{6973569531} k_{23} \\
& +\frac{78928954295582720}{6973569531} k_{24} \\
& -\frac{91210230702800896}{6973569531} k_{25}+\frac{105319552132579328}{6973569531} k_{26} \\
& -\frac{133538194992136192}{6973569531} k_{27} \\
& +\frac{267076389984272384}{6973569531} k_{28}, \\
& \begin{aligned}
& r_{23}:=-\frac{2724894103212472427152}{4231407023199} k_{0}+\frac{349350021851236899080}{4231407023199} \\
&-\frac{25556841757556983432}{4231407023199} k_{1}
\end{aligned} \\
& -\frac{93856138910854936}{4231407023199} k_{3}+\frac{12108953982278192}{4231407023199} k_{4}+\frac{1562054815526624}{4231407023199} k_{5} \\
& -\frac{2064278326732864}{4231407023199} k_{6}+\frac{1161348050665472}{4231407023199} k_{7}-\frac{571381906898944}{4231407023199} k_{8} \\
& +\frac{273299513655296}{4231407023199} k_{9}-\frac{121162336043008}{4231407023199} k_{10}+\frac{41994425876480}{4231407023199} k_{11} \\
& +\frac{685510197248}{4231407023199} k_{12}-\frac{25124799594496}{4231407023199} k_{13}+\frac{40440425283584}{4231407023199} k_{14} \\
& -\frac{51197559488512}{4231407023199} k_{15} \\
& +\frac{59672107581440}{4231407023199} k_{16}-\frac{67008702988288}{4231407023199} k_{17}+\frac{73772981682176}{4231407023199} k_{18} \\
& -\frac{80254442389504}{4231407023199} k_{19} \\
& +\frac{86591153733632}{4231407023199} k_{20}-\frac{92858830766080}{4231407023199} k_{21}+\frac{99088650272768}{4231407023199} k_{22} \\
& -\frac{105302881386496}{4231407023199} k_{23}+\frac{111505977933824}{4231407023199} k_{24}-\frac{117706847567872}{4231407023199} k_{25} \\
& +\frac{123903263375360}{4231407023199} k_{26}-\frac{136296094990336}{4231407023199} k_{27}+\frac{272592189980672}{4231407023199} k_{28} .
\end{aligned}
$$

$f_{2}=\frac{\eta^{14}(4 z) \eta^{18}(6 z) \eta^{6}(12 z)}{\eta^{10}(2 z)}$,
$f_{3}=\frac{\eta^{16}(4 z) \eta^{4}(6 z) \eta^{16}(12 z)}{\eta^{8}(2 z)}$,
$f_{4}=\frac{\eta^{12}(2 z) \eta^{12}(4 z) \eta^{8}(6 z)}{\eta^{4}(12 z)}$,
$f_{5}=\frac{\eta^{6}(4 z) \eta^{14}(6 z) \eta^{14}(12 z)}{\eta^{6}(2 z)}$,
$f_{6}=\frac{\eta^{18}(4 z) \eta^{14}(6 z) \eta^{2}(12 z)}{\eta^{6}(2 z)}$,
$f_{7}=\frac{\eta(4 z) \eta^{19}(6 z) \eta^{13}(12 z)}{\eta^{5}(2 z)}$,
$f_{8}=\frac{\eta^{13}(2 z) \eta^{7}(4 z) \eta^{13}(6 z)}{\eta^{5}(12 z)}$,
$f_{9}=\frac{\eta^{19}(4 z) \eta^{13}(6 z) \eta^{7}(12 z)}{\eta^{11}(2 z)}$,
$f_{10}=\frac{\eta^{20}(4 z) \eta^{12}(6 z) \eta^{12}(12 z)}{\eta^{16}(2 z)}$,
$f_{11}=\frac{\eta^{8}(2 z) \eta^{20}(4 z) \eta^{12}(12 z)}{\eta^{12}(6 z)}$,
$f_{12}=\frac{\eta^{12}(2 z) \eta^{12}(4 z) \eta^{20}(12 z)}{\eta^{16}(6 z)}$,
$f_{13}=\frac{\eta^{18}(4 z) \eta^{20}(6 z) \eta^{2}(12 z)}{\eta^{12}(2 z)}$,
$f_{14}=\frac{\eta^{20}(4 z) \eta^{6}(6 z) \eta^{12}(12 z)}{\eta^{10}(2 z)}$,
$f_{15}=\frac{\eta^{15}(4 z) \eta^{11}(6 z) \eta^{11}(12 z)}{\eta^{9}(2 z)}$,
$f_{16}=\frac{\eta^{10}(4 z) \eta^{16}(6 z) \eta^{10}(12 z)}{\eta^{8}(2 z)}$,
$f_{17}=\frac{\eta^{11}(2 z) \eta^{15}(6 z) \eta^{15}(12 z)}{\eta^{13}(4 z)}$,
$f_{18}=\frac{\eta^{10}(2 z) \eta^{16}(4 z) \eta^{16}(12 z)}{\eta^{14}(6 z)}$,

$$
\begin{gathered}
f_{19}=\frac{\eta^{2}(4 z) \eta^{12}(6 z) \eta^{18}(12 z)}{\eta^{4}(2 z)}, \\
f_{20}=\frac{\eta^{17}(6 z) \eta^{17}(12 z)}{\eta^{3}(2 z) \eta^{3}(4 z)}, \\
f_{21}=\frac{\eta^{5}(2 z) \eta^{7}(4 z) \eta^{19}(6 z)}{\eta^{5}(12 z)}, \\
f_{22}=\frac{\eta^{16}(4 z) \eta^{16}(12 z)}{\eta^{2}(2 z) \eta^{2}(6 z)}, \\
f_{23}=\eta^{18}(4 z) \eta^{8}(6 z) \eta^{2}(12 z) .
\end{gathered}
$$

Now we can state our main Theorem:
Theorem 1. Let $b_{1}, b_{2}, \cdots, b_{5}$ be non-negative integers satisfying
$b_{1}+b_{2}+\cdots+b_{5} \leq 28$.
Define the integers $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{12}$ by
$a_{1}:=-b_{1}+2 b_{2}-2 b_{3}-4 b_{4}-b_{5}+28$,
$a_{2}:=3 b_{1}+b_{2}+3 b_{3}+10 b_{4}+b_{5}-70$,
$a_{3}:=3 b_{1}+2 b_{2}+6 b_{3}+4 b_{4}+3 b_{5}-84$,
$a_{4}:=-2 b_{1}-b_{2}-b_{3}-4 b_{4}+2 b_{5}+28$,
$a_{6}:=-9 b_{1}-7 b_{2}-9 b_{3}-10 b_{4}-7 b_{5}+210$,
$a_{12}:=6 b_{1}+3 b_{2}+3 b_{3}+4 b_{4}+2 b_{5}-84$.
The functions defined before are functions of q by (3). Now define integers

$$
\begin{aligned}
& k_{0}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9}, k_{10}, k_{11} \\
& k_{12}, k_{13}, k_{14}, k_{15}, k_{16}, k_{17}, k_{18}, k_{19} \\
& k_{20}, k_{21}, k_{22}, k_{23}, k_{24}, k_{25}, k_{26}, k_{27} \text { and } k_{28}
\end{aligned}
$$

by

$$
\begin{align*}
& \frac{1}{2^{b_{1}+b_{5}}} x^{b_{1}}(1-x)^{b_{2}}(1+x)^{b_{3}}(1+2 x)^{b_{4}}(2+x)^{b_{5}} \tag{12}\\
& =k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x+k_{4} x^{4}+k_{5} x^{5}+k_{6} x^{6}+k_{7} x^{7}+k_{8} x^{8} \\
& \quad+k_{9} x^{9}+k_{10} x^{10}+k_{11} x^{11}+k_{12} x^{12}+k_{13} x^{13}+k_{14} x^{14} \tag{13}\\
& +k_{15} x^{15}
\end{align*}
$$

$$
\begin{equation*}
+k_{16} x^{16}+k_{17} x^{17}+k_{18} x^{18}+k_{19} x^{19}+k_{20} x^{20} \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
+k_{21} x^{21}+k_{22} x^{22}+k_{23} x^{23}+k_{24} x^{24}+k_{25} x^{25}+k_{26} x^{26} \tag{15}\\
+k_{27} x^{27}+k_{28} x^{28} .
\end{gather*}
$$

Define the rational numbers

$c_{1}, c_{2}, c_{3}, c_{4}, c_{6}, c_{12}, r_{1}, r_{2}, \ldots, r_{22}$
and r_{23} as in Table 1. Here $\left\{f_{1}, \ldots f_{23}\right\} \backslash$ $\left\{f_{10}, f_{11}, f_{12}, f_{17}, f_{18}\right\} \in S_{14}\left(\Gamma_{0}(12)\right), f_{10}, f_{11}$,
$f_{12}, f_{17}, f_{18} \in M_{14}\left(\Gamma_{0}(12)\right) \backslash S_{14}\left(\Gamma_{0}(12)\right)$ and
$\eta^{a_{1}}(z) \eta^{a_{2}}(2 z) \eta^{a_{3}}(3 z) \eta^{a_{4}}(4 z) \eta^{a_{6}}(6 z) \eta^{a_{12}}(12 z)=$ $\delta\left(b_{1}\right)+\sum_{n=1}^{\infty} c(n) q^{n}$,
where for $\mathrm{n} \in \mathbb{N}$,
$c(n)=-c_{1} \sigma_{13}(n)-c_{2} \sigma_{13}\left(\frac{n}{2}\right)-c_{3} \sigma_{13}\left(\frac{n}{3}\right)-$
$c_{4} \sigma_{13}\left(\frac{n}{4}\right)-c_{6} \sigma_{13}\left(\frac{n}{6}\right)-c_{12} \sigma_{13}\left(\frac{n}{12}\right)$
$+r_{1} f_{1}(n)+\cdots+r_{23} f_{23}(n)$.

In particular,
$c(2 n)=-c_{1} \sigma_{13}(2 n)-c_{2} \sigma_{13}(n)-c_{4} \sigma_{13}\left(\frac{n}{2}\right)-$
$\left(16385 c_{3}+c_{6}\right) \sigma_{13}\left(\frac{n}{3}\right)$
$-\left(c_{12}-16384 c_{3}\right) \sigma_{13}\left(\frac{n}{6}\right)+r_{1} f_{1}(2 n)+\cdots+r_{12} f_{12}(2 n)$,
$c(2 n-1)=-c_{1} \sigma_{13}(2 n-1)-c_{3} \sigma_{13}\left(\frac{2 n-1}{3}\right)$
$+r_{13} f_{13}(2 n-1)+\cdots+r_{23} f_{23}(2 n-1)$,
for $\mathrm{n} \in \mathbb{N}$.
Proof. It follows from (6-11) that

$$
\begin{gather*}
a_{1}+2 a_{2}+3 a_{3}+4 a_{4}+6 a_{6}+12 a_{12}=24 b_{1} \tag{16}\\
a_{1}+a_{2}+a_{3}+a_{4}+a_{6}+a_{12}=28 \\
-\frac{a_{1}}{6}-\frac{a_{2}}{3}-\frac{a_{3}}{6}-2 \frac{a_{4}}{3}-\frac{a_{6}}{3}-2 \frac{a_{12}}{3}=-b_{1}-b_{5} \tag{17}
\end{gather*}
$$

Now we will use p-k parametrization of Alaca, Alaca and Williams, see [15]:
$p(q):=\frac{\varphi^{2}(q)-\varphi^{2}\left(q^{3}\right)}{2 \varphi^{2}\left(q^{3}\right)}, \quad k(q):=\frac{\varphi^{3}\left(q^{3}\right)}{\varphi(q)}$,
where the theta function $\varphi(q)$ is defined by
$\varphi(q)=\sum_{-\infty}^{\infty} q^{n^{2}}$.

Setting $\mathrm{x}=\mathrm{p}$ in (12), and multiplying both sides by k^{14}, we obtain

$$
\begin{aligned}
& \frac{k^{14}}{2^{b_{1}+b_{5}}} p^{b_{1}}(1-p)^{b_{2}}(1+p)^{b_{3}}(1+2 p)^{b_{4}}(2+p)^{b_{5}} \\
& =\left(k_{0}+k_{1} p+k_{2} p^{2}+k_{3} p^{3}+k_{4} p^{4}+k_{5} p^{5}+k_{6} p^{6}+\right. \\
& k_{7} p^{7}+k_{8} p^{2}+k_{9} p^{9}+k_{10} p^{10}+k_{11} p^{11}++k_{12} p^{12}+ \\
& k_{13} p^{13}+k_{14} p^{14}+k_{15} p^{5}+k_{16} p^{16}+k_{17} p^{17}+k_{11} p^{18}+k_{19} p^{19} \\
& +k_{20} p^{20}+k_{21} p^{21}+k_{22} 2 p^{22}+k_{23} p^{23}+k_{24} p^{24}+k_{25} p^{25}+ \\
& \left.k_{26} p^{26}+k_{27} p^{27}+k_{28} p^{28}\right) k^{14} .
\end{aligned}
$$

Alaca, Alaca and Williams [16] have established the following representations in terms of p and k :

$$
E_{4}(q):=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}
$$

$$
=\left(1+124 p+964 p^{2}+2788 p^{3}+3910 p^{4}+2788 p^{5}\right.
$$

$$
\left.+964 p^{6}+124 p^{7}+p^{8}\right) k^{4}
$$

Therefore, since
$E_{14}(q)=E_{6}(q) E_{4}^{2}(q)$,
we immediately obtain:

$$
\begin{aligned}
& E_{14}(q)=\left(p^{28}+2 p^{27}-49236 p^{26}-5422686 p^{25}-\right. \\
& 163992237 p^{24}-2449687308 p^{23}-22413386328 p^{22}- \\
& 139906977036 p^{21}-634557236991 p^{20}- \\
& 2176932094146 p^{19}-5802918047148 p^{18}- \\
& 12242753380770 p^{17}-
\end{aligned}
$$

$$
\begin{align*}
& \eta(q)=2^{-1 / 6} p^{1 / 24}(1-p)^{1 / 2}(1+p)^{1 / 6}(1+2 p)^{1 / 8}(2 \\
& +p)^{1 / 8} k^{1 / 2} \text {, } \tag{19}\\
& \eta\left(q^{2}\right)=2^{-1 / 3} p^{1 / 12}(1-p)^{1 / 4}(1+p)^{1 / 12}(1+2 p)^{1 / 4}(2 \\
& +p)^{1 / 4} k^{1 / 2} \text {, } \tag{20}\\
& \begin{array}{c}
\eta\left(q^{3}\right)=2^{-1 / 6} p^{1 / 8}(1-p)^{1 / 6}(1+p)^{1 / 2}(1+2 p)^{1 / 24}(2 \\
+p)^{1 / 24} k^{1 / 2},
\end{array} \tag{21}\\
& \eta\left(q^{4}\right)=2^{-2 / 3} p^{1 / 6}(1-p)^{1 / 8}(1+p)^{1 / 24}(1+2 p)^{1 / 8}(2 \tag{22}\\
& +p)^{1 / 2} k^{1 / 2} \text {, } \\
& \eta\left(q^{6}\right)=2^{-1 / 3} p^{1 / 4}(1-p)^{1 / 12}(1+p)^{1 / 4}(1+2 p)^{1 / 12}(2 \tag{23}\\
& +p)^{1 / 12} k^{1 / 2} \text {, } \\
& \begin{array}{c}
\eta\left(q^{12}\right)=2^{-2 / 3} p^{1 / 2}(1-p)^{1 / 24}(1+p)^{1 / 8}(1+2 p)^{1 / 24}(2 \\
+p)^{1 / 6} k^{1 / 2}
\end{array} \tag{24}\\
& +p)^{1 / 6} k^{1 / 2} \text {, } \\
& =\left(1-246 p-5532 p^{2}-38614 p^{3}-135369 p^{4}-276084 p^{5}\right. \\
& -348024 p^{6}-276084 p^{7}-135369 p^{8}-38614 p^{9}-5532 p^{10} \\
& \left.-246 p^{11}+p^{12}\right) k^{6} \text {, }
\end{align*}
$$

$20701138105941 p^{16}-28283559161640 p^{15}-$ $31368831795024 p^{14}-28283559161640 p^{13}-$ $20701138105941 p^{12}-12242753380770 p^{11}-$ $5802918047148 p^{10}-2176932094146 p^{9}-$ $634557236991 p^{8}-139906977036 p^{7}$ $-22413386328 p^{6}-2449687308 p^{5}-163992237 p^{4}-$ $\left.5422686 p^{3}-49236 p^{2}+2 p+1\right) k^{14}$,
$E_{14}\left(q^{2}\right)=\left(p^{28}+14 p^{27}+78 p^{26}+195 p^{25}-\frac{24495}{2} p^{24}-\right.$
$148530 p^{23}-1344144 p^{22}$
$-8539014 p^{21}-\frac{77628543}{2} p^{20}-132904545 p^{19}-$ $354052566 p^{18}-747152337 p^{17}-\frac{2527176021}{2} p^{16}-$
$1726344084 p^{15}-1914554280 p^{14}-1726344084 p^{13}-$ $\frac{2527176021}{2} p^{12}-747152337 p^{11}-354052566 p^{10}$ $-132904545 p^{9}-\frac{77628543}{2} p^{8}-8539014 p^{7}-1344144 p^{6}-$ $\left.148530 p^{5}-\frac{24495}{2} p^{4}+195 p^{3}+78 p^{2}+14 p+1\right) k^{14}$,
$E_{14}\left(q^{3}\right)=\left(p^{28}+14 p^{27}+84 p^{26}+270 p^{25}+435 p^{24}+\right.$ $12 p^{23}-4488 p^{22}-36468 p^{21}-155679 p^{20}-432942 p^{19}-$ $1081044 p^{18}-2584878 p^{17}-4682133 p^{16}-5908056 p^{15}-$ $6062064 p^{14}-5908056 p^{13}-4682133 p^{12}-2584878 p^{11}$ $-1081044 p^{10}-432942 p^{9}-155679 p^{8}-36468 p^{7}-$ $\left.4488 p^{6}+12 p^{5}+435 p^{4}+270 p^{3}+84 p^{2}+14 p+1\right) k^{14}$, $E_{14}\left(q^{4}\right)=\left(\frac{1}{16384} p^{28}+\frac{13}{8192} p^{27}-\frac{3057}{1024} p^{26}+\frac{1036281}{4096} p^{25}\right.$ $-\frac{22206081}{8192} p^{24}+\frac{1591125}{2048} p^{23}+\frac{50484903}{2048} p^{22}+\frac{42783}{32}$ $p^{21}-\frac{11056359}{128} p^{20}-44838 p^{19}+\frac{3658233}{32} p^{18}+\frac{454011}{8}$ $p^{17}-\frac{727467}{4} p^{16}-\frac{914361}{4} p^{15}-\frac{745761}{8} p^{14}-\frac{278211}{8}$ $p^{13}-\frac{4044255}{64} p^{12}-\frac{1981695}{32} p^{11}-\frac{224763}{8} p^{10}-\frac{104643}{16} p^{9}$ $-\frac{74613}{32} p^{8}-\frac{17193}{8} p^{7}-\frac{7635}{8} p^{6}+192 p^{5}+471 p^{4}+$ $\left.273 p^{3}+84 p^{2}+14 p+1\right) k^{14}$,
$E_{14}\left(q^{6}\right)=\left(p^{28}+14 p^{27}+84 p^{26}+273 p^{25}+\frac{945}{2} p^{24}+\right.$ $210 p^{23}-864 p^{22}-1914 p^{21}-\frac{2559}{2} p^{20}+1065 p^{19}+$ $2646 p^{18}+1641 p^{17}-\frac{1173}{2} p^{16}-1836 p^{15}-2040 p^{14}-$ $1836 p^{13}-\frac{1173}{2} p^{12}+1641 p^{11}+2646 p^{10}+1065 p^{9}-\frac{2559}{2} p^{8}$ $-1914 p^{7}-864 p^{6}+210 p^{5}+\frac{945}{2} p^{4}+273 p^{3}+84 p^{2}+$ $14 p+1) k^{14}$,
$E_{14}\left(q^{12}\right)=\left(\frac{1}{16384} p^{28}+\frac{7}{8192} p^{27}+\frac{21}{4096} p^{26}+\frac{69}{4096} p^{25}+\right.$ $\frac{255}{8192} p^{24}+\frac{51}{2048} p^{23}-\frac{423}{2048} p^{22}-\frac{273}{128} p^{21}-\frac{4863}{512} p^{20}-$
$\frac{2241}{128} p^{19}+\frac{2607}{128} p^{18}+\frac{1419}{8} p^{17}+\frac{5667}{16} p^{16}+105 p^{15}-$
$\frac{6681}{8} p^{14}-\frac{12645}{8} p^{13}-\frac{41919}{64} p^{12}+\frac{51891}{32} p^{11}+$
$\frac{43071}{16} p^{10}+\frac{17745}{16} p^{9}-\frac{40341}{32} p^{8}-\frac{15279}{8} p^{7}-\frac{6909}{8} p^{6}+$ $\left.210 p^{5}+\frac{945}{2} p^{4}+273 p^{3}+84 p^{2}+14 p+1\right) k^{14}$.

It is easy to check the following expressions by (1924)

$$
\begin{aligned}
& f_{1}:=\sum_{n=0}^{\infty} f_{1}(n)=\frac{\eta^{19}(4 z) \eta^{13}(6 z) \eta^{7}(12 z)}{\eta^{11}(2 z)} \\
& =\left(-\frac{1}{131072} p^{24}-\frac{43}{262144} p^{23}-\frac{421}{262144} p^{22}-\frac{619}{65536} p^{21}-\right. \\
& \frac{2425}{65536} p^{20}-\frac{26443}{262144} p^{19}-\frac{50501}{262144} p^{18}-\frac{32463}{131072} p^{17}- \\
& \frac{2925}{16384} p^{16}+\frac{17}{1024} p^{15}+\frac{1709}{8192} p^{14}+\frac{1075}{4096} p^{13}+\frac{187}{1024} p^{12}+ \\
& \left.\frac{79}{1024} p^{11}+\frac{19}{1024} p^{10}+\frac{1}{512} p^{9}\right) k^{14},
\end{aligned}
$$

$$
f_{2}:=\sum_{n=0}^{\infty} f_{2}(n)=\frac{\eta^{14}(4 z) \eta^{18}(6 z) \eta^{6}(12 z)}{\eta^{10}(2 z)}
$$

$$
=\left(-\frac{1}{32768} p^{23}-\frac{37}{65536} p^{22}-\frac{77}{16384} p^{21}-\frac{1517}{65536} p^{20}-\right.
$$

$$
\frac{1219}{16384} p^{19}-\frac{10571}{65536} p^{18}-\frac{3789}{16384} p^{17}-\frac{12519}{65536} p^{16}-\frac{513}{32768}
$$

$$
p^{15}+\frac{2933}{16384} p^{14}+\frac{2027}{8192} p^{13}+\frac{731}{4096} p^{12}+\frac{157}{2048} p^{11}+
$$

$$
\left.\frac{19}{1024} p^{10}+\frac{1}{512} p^{9}\right) k^{14}
$$

$$
f_{3}:=\sum_{n=0}^{\infty} f_{3}(n)=\frac{\eta^{16}(4 z) \eta^{4}(6 z) \eta^{16}(12 z)}{\eta^{8}(2 z)}
$$

$$
=\left(-\frac{1}{524288} p^{25}-\frac{41}{1048576} p^{24}-\frac{95}{262144} p^{23}-\frac{131}{65536} p^{22}\right.
$$

$$
-\frac{1901}{262144} p^{21}-\frac{18839}{1048576} p^{20}-\frac{15831}{524288} p^{19}-\frac{2079}{65536} p^{18}-
$$

$$
\frac{423}{32768} p^{17}+\frac{559}{32768} p^{16}+\frac{575}{16384} p^{15}+\frac{125}{4096} p^{14}+\frac{31}{2048} p^{13}
$$

$$
\left.+\frac{17}{4096} p^{12}+\frac{1}{2048} p^{11}\right) k^{14}
$$

$f_{4}:=\sum_{n=0}^{\infty} f_{4}(n)=\frac{\eta^{12}(2 z) \eta^{12}(4 z) \eta^{8}(6 z)}{\eta^{4}(12 z)}$
$=\left(-\frac{1}{128} p^{25}-\frac{37}{256} p^{24}-\frac{297}{256} p^{23}-\frac{2641}{512} p^{22}-\frac{26597}{2048} p^{21}-\right.$ $\frac{56529}{4096} p^{20}+\frac{18423}{1024} p^{19}+\frac{166545}{2048} p^{18}+\frac{191259}{2048} p^{17}-\frac{9071}{256}$ $p^{16}-\frac{427163}{2048} p^{15}-\frac{372501}{2048} p^{14}+\frac{70795}{1024} p^{13}+\frac{987377}{4096} p^{12}$ $+\frac{281673}{2048} p^{11}-\frac{15219}{256} p^{10}-\frac{14679}{128} p^{9}-\frac{5985}{128} p^{8}+\frac{727}{64}$ $\left.p^{7}+\frac{299}{16} p^{6}+\frac{63}{8} p^{5}+\frac{25}{16} p^{4}+\frac{1}{8} p^{3}\right) k^{14}$,

$$
\begin{aligned}
& f_{5}:=\sum_{n=0}^{\infty} f_{5}(n)=\frac{\eta^{6}(4 z) \eta^{14}(6 z) \eta^{14}(12 z)}{\eta^{6}(2 z)} \\
& =\left(-\frac{1}{32768} p^{23}-\frac{29}{65536} p^{22}-\frac{23}{8192} p^{21}-\frac{665}{65536} p^{20}-\frac{185}{8192} p^{19}\right. \\
& -\frac{1991}{65536} p^{18}-\frac{159}{8192} p^{17}+\frac{533}{65536} p^{16}+\frac{965}{32768} p^{15}+\frac{235}{8192} p^{14} \\
& \left.+\frac{61}{4096} p^{13}+\frac{17}{4096} p^{12}+\frac{1}{2048} p^{11}\right) k^{14} \text {, } \\
& f_{6}:=\sum_{n=0}^{\infty} f_{6}(n)=\frac{\eta^{18}(4 z) \eta^{14}(6 z) \eta^{2}(12 z)}{\eta^{6}(2 z)} \\
& =\left(\frac{1}{16384} p^{24}+\frac{21}{16384} p^{23}+\frac{797}{65536} p^{22}+\frac{561}{8192} p^{21}+\frac{16503}{65536} p^{20}\right. \\
& +\frac{20355}{32768} p^{19}+\frac{64859}{65536} p^{18}+\frac{13227}{16384} p^{17}-\frac{21827}{65536} p^{16}-\frac{60215}{32768} p^{15} \\
& -\frac{9489}{4096} p^{14}-\frac{2455}{2048} p^{13}+\frac{867}{2048} p^{12}+\frac{1191}{1024} p^{11}+\frac{57}{64} p^{10} \\
& \left.+\frac{47}{128} p^{9}+\frac{21}{256} p^{8}+\frac{1}{128} p^{7}\right) k^{14}, \\
& f_{7}:=\sum_{n=0}^{\infty} f_{7}(n)=\frac{\eta(4 z) \eta^{19}(6 z) \eta^{13}(12 z)}{\eta^{5}(2 z)} \\
& =\left(-\frac{1}{8192} p^{22}-\frac{23}{16384} p^{21}-\frac{113}{16384} p^{20}-\frac{305}{16384} p^{19}-\frac{473}{16384} p^{18}\right. \\
& -\frac{359}{16384} p^{17}+\frac{65}{16384} p^{16}+\frac{437}{16384} p^{15}+\frac{455}{16384} p^{14}+\frac{121}{8192} p^{13} \\
& \left.+\frac{17}{4096} p^{12}+\frac{1}{2048} p^{11}\right) k^{14}, \\
& f_{8}:=\sum_{n=0}^{\infty} f_{8}(n)=\frac{\eta^{13}(2 z) \eta^{7}(4 z) \eta^{13}(6 z)}{\eta^{5}(12 z)} \\
& =\left(-\frac{1}{32} p^{24}-\frac{31}{64} p^{23}-\frac{101}{32} p^{22}-\frac{1371}{128} p^{21}-\frac{8761}{512} p^{20}+\frac{4237}{1024} p^{19}\right. \\
& +\frac{70303}{1024} p^{18}+\frac{54311}{512} p^{17}-\frac{23}{256} p^{16}-\frac{98369}{512} p^{15}-\frac{106071}{512} p^{14} \\
& +\frac{1131}{32} p^{13}+\frac{120989}{512} p^{12}+\frac{157877}{1024} p^{11}-\frac{48697}{1024} p^{10}-\frac{58439}{512} p^{9} \\
& \left.-\frac{12733}{256} p^{8}+\frac{1249}{128} p^{7}+\frac{1173}{64} p^{6}+\frac{251}{32} p^{5}+\frac{25}{16} p^{4}+\frac{1}{8} p^{3}\right) k^{14}, \\
& f_{9}:=\sum_{n=0}^{\infty} f_{9}(n)=\frac{\eta^{20}(4 z) \eta^{12}(12 z)}{\eta^{4}(2 z)} \\
& =\left(\frac{1}{262144} p^{26}+\frac{23}{262144} p^{25}+\frac{961}{1048576} p^{24}+\frac{2999}{524288} p^{23}+\right. \\
& \frac{12343}{524288} p^{22}+\frac{8663}{131072} p^{21}+\frac{130417}{1048576} p^{20}+\frac{72523}{524288} p^{19}+ \\
& \frac{7183}{262144} p^{18}-\frac{24827}{131072} p^{17}-\frac{11011}{32768} p^{16}-\frac{4129}{16384} p^{15}-\frac{101}{8192} \\
& \left.p^{14}+\frac{637}{4096} p^{13}+\frac{629}{4096} p^{12}+\frac{151}{2048} p^{11}+\frac{19}{1024} p^{10}+\frac{1}{512} p^{9}\right) k^{14} \text {, } \\
& f_{10}:=\sum_{n=0}^{\infty} f_{10}(n)=\frac{\eta^{20}(4 z) \eta^{12}(6 z) \eta^{12}(12 z)}{\eta^{16}(2 z)} \\
& \begin{array}{l}
=\left(\frac{1}{1048576} p^{24}+\frac{11}{524288} p^{23}+\frac{111}{524288} p^{22}+\frac{85}{65536} p^{21}+\right. \\
\frac{5641}{1048576} p^{20}+\frac{8361}{524288} p^{19}+\frac{2277}{65536} p^{18}+\frac{1845}{32768} p^{17}+
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2223}{32768} p^{16}+\frac{983}{16384} p^{15}+\frac{155}{4096} p^{14}+\frac{33}{2048} p^{13}+\frac{17}{4096} \\
& \left.p^{12}+\frac{1}{2048} p^{11}\right) k^{14} \text {, } \\
& f_{11}:=\sum_{n=0}^{\infty} f_{11}(n)=\frac{\eta^{8}(2 z) \eta^{20}(4 z) \eta^{12}(12 z)}{\eta^{12}(6 z)} \\
& =\left(\frac{1}{65536} p^{28}+\frac{3}{8192} p^{27}+\frac{519}{131072} p^{26}+\frac{3307}{131072} p^{25}+\right. \\
& \frac{108369}{1048576} p^{24}+\frac{143523}{524288} p^{23}+\frac{219543}{524288} p^{22}+\frac{3879}{32768} p^{21}- \\
& \frac{1023255}{1048576} p^{20}-\frac{1120483}{524288} p^{19}-\frac{200733}{131072} p^{18}+\frac{88959}{65536} p^{17}+ \\
& \frac{245843}{65536} p^{16}+\frac{83799}{32768} p^{15}-\frac{3897}{4096} p^{14}-\frac{5523}{2048} p^{13}-\frac{6273}{4096} p^{12} \\
& \left.+\frac{315}{2048} p^{11}+\frac{323}{512} p^{10}+\frac{87}{256} p^{9}+\frac{21}{256} p^{8}+\frac{1}{128} p^{7}\right) k^{14}, \\
& f_{12}:=\sum_{n=0}^{\infty} f_{12}(n)=\frac{\eta^{12}(2 z) \eta^{12}(4 z) \eta^{20}(12 z)}{\eta^{16}(6 z)} \\
& =\left(\frac{1}{65536} p^{28}+\frac{5}{16384} p^{27}+\frac{351}{131072} p^{26}+\frac{1743}{131072} p^{25}+\right. \\
& \frac{41361}{1048576} p^{24}+\frac{32913}{523288} p^{23}+\frac{5169}{524288} p^{22}-\frac{11283}{65536} p^{21}- \\
& \frac{342495}{1048576} p^{20}-\frac{74437}{524288} p^{19}+\frac{89903}{262144} p^{18}+\frac{72549}{131072} p^{17}+ \\
& \frac{5421}{32768} p^{16}-\frac{5217}{16384} p^{15}-\frac{2781}{8192} p^{14}-\frac{267}{4096} p^{13}+\frac{357}{4096} p^{12} \\
& \left.+\frac{135}{2048} p^{11}+\frac{19}{1024} p^{10}+\frac{1}{512} p^{9}\right) k^{14} \text {, } \\
& f_{13}:=\sum_{n=0}^{\infty} f_{13}(n)=\frac{\eta^{18}(4 z) \eta^{20}(6 z) \eta^{2}(12 z)}{\eta^{12}(2 z)} \\
& =\left(-\frac{1}{32768} p^{23}-\frac{41}{65536} p^{22}-\frac{191}{32768} p^{21}-\frac{2133}{65536} p^{20}-\frac{3955}{32768} p^{19}\right. \\
& -\frac{20323}{65536} p^{18}-\frac{18149}{32768} p^{17}-\frac{42831}{65536} p^{16}-\frac{1629}{4096} p^{15}+ \\
& \frac{605}{4096} p^{14}+\frac{155}{256} p^{13}+\frac{1379}{2048} p^{12}+\frac{111}{256} p^{11} \\
& \left.+\frac{11}{64} p^{10}+\frac{5}{128} p^{9}+\frac{1}{256} p^{8}\right) k^{14}, \\
& f_{14}:=\sum_{n=0}^{\infty} f_{14}(n)=\frac{\eta^{20}(4 z) \eta^{6}(6 z) \eta^{12}(12 z)}{\eta^{10}(2 z)} \\
& =\left(-\frac{1}{524288} p^{25}-\frac{45}{1048576} p^{24}-\frac{231}{524288} p^{23}-\frac{357}{131072} p^{22}\right. \\
& -\frac{2949}{262144} p^{21}-\frac{34047}{1048576} p^{20}-\frac{17335}{262144} p^{19}-\frac{24147}{262144} p^{18}- \\
& \frac{1251}{16384} p^{17}-\frac{287}{32768} p^{16}+\frac{567}{8192} p^{15}+\frac{825}{8192} p^{14}+\frac{39}{512} p^{13}+ \\
& \left.\frac{131}{4096} p^{12}+\frac{9}{1024} p^{11}+\frac{1}{1024} p^{10}\right) k^{14}, \\
& f_{15}:=\sum_{n=0}^{\infty} f_{15}(n)=\frac{\eta^{15}(4 z) \eta^{11}(6 z) \eta^{11}(12 z)}{\eta^{9}(2 z)} \\
& =\left(-\frac{1}{131072} p^{24}-\frac{39}{262144} p^{23}-\frac{343}{262144} p^{22}-\frac{895}{131072} p^{21}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{765}{32768} p^{20}-\frac{14203}{262144} p^{19}-\frac{22095}{262144} p^{18}-\frac{81}{1024} p^{17}- \\
& \frac{333}{16384} p^{16}+\frac{469}{8192} p^{15}+\frac{771}{8192} p^{14}+\frac{19}{256} p^{13}+\frac{35}{1024} p^{12}+ \\
& \left.\frac{9}{1024} p^{11}+\frac{1}{1024} p^{10}\right) k^{14} \text {, } \\
& f_{16}:=\sum_{n=0}^{\infty} f_{16}(n)=\frac{\eta^{10}(4 z) \eta^{16}(6 z) \eta^{10}(12 z)}{\eta^{8}(2 z)} \\
& =\left(-\frac{1}{32768} p^{23}-\frac{33}{65536} p^{22}-\frac{121}{32768} p^{21}-\frac{1033}{65536} p^{20}-\right. \\
& \frac{1405}{32768} p^{19}-\frac{4951}{65536} p^{18}-\frac{2627}{32768} p^{17}-\frac{2011}{65536} p^{16}+\frac{749}{16384} \\
& p^{15}+\frac{1435}{16384} p^{14}+\frac{37}{512} p^{13}+\frac{139}{4096} p^{12}+\frac{9}{1024} p^{11} \\
& \left.+\frac{1}{1024} p^{10}\right) k^{14} \text {, } \\
& f_{17}:=\sum_{n=0}^{\infty} f_{17}(n)=\frac{\eta^{11}(2 z) \eta^{15}(6 z) \eta^{15}(12 z)}{\eta^{13}(4 z)} \\
& =\left(-\frac{1}{128} p^{22}-\frac{9}{256} p^{21}-\frac{21}{512} p^{20}+\frac{45}{1024} p^{19}+\frac{141}{1024} p^{18}+\right. \\
& \frac{9}{128} p^{17}-\frac{23}{256} p^{16}-\frac{63}{512} p^{15}-\frac{15}{512} p^{14}+\frac{9}{256} p^{13}+ \\
& \left.\frac{15}{512} p^{12}+\frac{9}{1024} p^{11}+\frac{1}{1024} p^{10}\right) k^{14}, \\
& f_{18}:=\sum_{n=0}^{\infty} f_{18}(n)=\frac{\eta^{10}(2 z) \eta^{16}(4 z) \eta^{16}(12 z)}{\eta^{14}(6 z)} \\
& =\left(\frac{1}{65536} p^{28}+\frac{11}{32768} p^{27}+\frac{431}{131072} p^{26}+\frac{2445}{131072} p^{25}+\right. \\
& \frac{69249}{1048576} p^{24}+\frac{37137}{262144} p^{23}+\frac{70995}{524288} p^{22}-\frac{39963}{262144} p^{21}- \\
& \frac{703551}{1048576} p^{20}-\frac{104233}{131072} p^{19}+\frac{7733}{131072} p^{18}+\frac{40613}{32768} p^{17} \\
& +\frac{83391}{65536} p^{16}+\frac{51}{4096} p^{15}-\frac{3999}{4096} p^{14}-\frac{381}{512} p^{13}-\frac{177}{4096} p^{12}+ \\
& \left.\frac{123}{512} p^{11}+\frac{77}{512} p^{10}+\frac{5}{128} p^{9}+\frac{1}{256} p^{8}\right) k^{14}, \\
& f_{19}:=\sum_{n=0}^{\infty} f_{19}(n)=\frac{\eta^{2}(4 z) \eta^{12}(6 z) \eta^{18}(12 z)}{\eta^{4}(2 z)} \\
& =\left(-\frac{1}{32768} p^{23}-\frac{25}{65536} p^{22}-\frac{67}{32768} p^{21}-\frac{397}{65536} p^{20}-\right. \\
& \frac{343}{32768} p^{19}-\frac{619}{65536} p^{18}-\frac{17}{32768} p^{17}+\frac{601}{65536} p^{16}+\frac{91}{8192} p^{15} \\
& \left.\frac{53}{8192} p^{14}+\frac{1}{512} p^{13}+\frac{1}{4096} p^{12}\right) k^{14}, \\
& f_{20}:=\sum_{n=0}^{\infty} f_{11}(n)=\frac{\eta^{17}(6 z) \eta^{17}(12 z)}{\eta^{3}(2 z) \eta^{3}(4 z)} \\
& =\left(-\frac{1}{8192} p^{22}-\frac{19}{16384} p^{21}-\frac{75}{16384} p^{20}-\frac{155}{16384} p^{19}-\right. \\
& \frac{163}{16384} p^{18}-\frac{33}{16384} p^{17}+\frac{131}{16384} p^{16}+\frac{175}{16384} p^{15}+ \\
& \left.\frac{105}{16384} p^{14}+\frac{1}{512} p^{13}+\frac{1}{4096} p^{12}\right) k^{14},
\end{aligned}
$$

$$
\begin{aligned}
& f_{21}:=\sum_{n=0}^{\infty} f_{21}(n)=\frac{\eta^{7}(2 z) \eta^{7}(4 z) \eta^{19}(6 z)}{\eta^{5}(12 z)} \\
& =\left(\frac{1}{64} p^{23}+\frac{15}{64} p^{22}+\frac{191}{128} p^{21}+\frac{81}{16} p^{20}+\frac{9001}{1024} p^{19}+\right. \\
& \frac{2445}{1024} p^{18}-\frac{5563}{256} p^{17}-\frac{5427}{128} p^{16}-\frac{10037}{512} p^{15}+\frac{20575}{512} p^{14} \\
& \frac{17297}{256} p^{13}+\frac{6461}{256} p^{12}-\frac{32919}{1024} p^{11}-\frac{42595}{1024} p^{10}-\frac{1779}{128} p^{9} \\
& \left.+\frac{1831}{256} p^{8}+\frac{561}{64} p^{7}+\frac{235}{64} p^{6}+\frac{3}{4} p^{5}+\frac{1}{16} p^{4}\right) k^{14}, \\
& f_{22}:=\sum_{n=0}^{\infty} f_{22}(n)=\frac{\eta^{16}(4 z) \eta^{16}(12 z)}{\eta^{2}(2 z) \eta^{2}(6 z)} \\
& =\left(\frac{1}{262144} p^{26}+\frac{21}{262144} p^{25}+\frac{793}{1048576} p^{24}+\frac{1103}{262144} p^{23}+\right. \\
& \frac{7931}{524288} p^{22}+\frac{9395}{262144} p^{21}+\frac{55257}{1048576} p^{20}+\frac{8633}{262144} p^{19}- \\
& \frac{10083}{262144} p^{18}-\frac{1843}{16384} p^{17}-\frac{3639}{32768} p^{16}-\frac{245}{8192} p^{15}+ \\
& \left.\frac{389}{8192} p^{14}+\frac{31}{512} p^{13}+\frac{133}{4096} p^{12}+\frac{9}{1024} p^{11}+\frac{1}{1024} p^{10}\right) k^{14}, \\
& f_{23}:=\sum_{n=0}^{\infty} f_{23}(n)=\eta^{18}(4 z) \eta^{8}(6 z) \eta^{2}(12 z) \\
& =\left(-\frac{1}{8192} p^{25}-\frac{43}{16384} p^{24}-\frac{831}{32768} p^{23}-\frac{9445}{65536} p^{22}-\right. \\
& \frac{17233}{32768} p^{21}-\frac{81405}{65536} p^{20}-\frac{55979}{32768} p^{19}-\frac{33299}{65536} p^{18}+ \\
& \frac{97113}{32768} p^{17}+\frac{400557}{65536} p^{16}+\frac{76179}{16384} p^{15}-\frac{24267}{16384} p^{14}- \\
& \frac{1637}{256} p^{13}-\frac{11123}{2048} p^{12}-\frac{495}{512} p^{11}+\frac{971}{512} p^{10}+\frac{235}{128} p^{9}+ \\
& \left.\frac{201}{256} p^{8}+\frac{11}{64} p^{7}+\frac{1}{64} p^{6}\right) k^{14} . \\
& \hline
\end{aligned}
$$

Obviously, $f_{1}, \ldots f_{22}$ and f_{23} are functions of q, see (3), (18). We see that
$\left\{f_{10}, f_{11}, f_{12}, f_{17}, f_{18}\right\} \in S_{14}\left(\Gamma_{0}(12)\right), f_{10}, f_{11}, f_{12}, f_{17}$,
$f_{18} \in M_{14}\left(\Gamma_{0}(12)\right) \backslash S_{14}\left(\Gamma_{0}(12)\right)$ and $\operatorname{ord}_{1 / 1} f_{10}=\operatorname{ord}_{1 / 2} f_{10}$
$=\operatorname{ord}_{1 / 3} f_{11}=\operatorname{ord}_{1 / 6} f_{11}=\operatorname{ord}_{1 / 3} f_{12}=\operatorname{ord}_{1 / 6} f_{12}$
$=\operatorname{ord}_{1 / 4} f_{17}=\operatorname{ord}_{1 / 3} f_{18}=0$

by [17]. Now

$$
\begin{aligned}
& \eta^{a_{1}}(z) \eta_{\infty}^{a_{2}}(2 z) \eta^{a_{3}}(3 z) \eta^{a_{4}}(4 z) \eta^{a_{6}}(6 z) \eta^{a_{12}}(12 z) \\
& =q^{b_{1}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{a_{1}}\left(1-q^{2 n}\right)^{a_{2}}\left(1-q^{3 n}\right)^{a_{3}}\left(1-q^{4 n}\right) \\
& a_{4}\left(1-q^{6 n}\right)^{a_{6}}\left(1-q^{12 n}\right)^{a_{12}} \\
& =2^{-\frac{a_{1}}{6}-\frac{a_{2}}{3}-\frac{a_{3}}{6}-2 \frac{a_{4}}{3}-\frac{a_{6}}{3}-2 \frac{a_{12}}{3}} p^{\frac{a_{1}}{24}+\frac{a_{2}}{12}+\frac{a_{3}}{8}+\frac{a_{4}}{6}+\frac{a_{6}}{4}+\frac{a_{12}}{2}} \\
& (1-p)^{\frac{a_{1}}{2}}+\frac{a_{2}}{4}+\frac{a_{3}}{6}+\frac{a_{4}}{8}+\frac{a_{6}}{12}+\frac{a_{12}}{24}(1+p)^{\frac{a_{1}}{6}}+\frac{a_{2}}{12}+\frac{a_{3}}{2}+\frac{a_{4}}{24}+\frac{a_{6}}{4}+\frac{a_{12}}{8}
\end{aligned}
$$

Table 2:

$$
\begin{aligned}
& f_{1}=\frac{233}{1020395520} \Delta_{2,14,1}(z)-\frac{233}{15943680} \Delta_{2,14,1}(2 z)-\frac{136449}{113377280} \Delta_{2,14,1}(3 z) \\
& +\frac{136449}{1771520} \Delta_{2,14,1}(6 z)-\frac{179}{583925760} \Delta_{2,14,2}(z)-\frac{179}{9123840} \Delta_{2,14,2}(2 z) \\
& -\frac{7773}{7208960} \Delta_{2,14,2}(3 z)-\frac{7773}{112640} \Delta_{2,14,2}(6 z)-\frac{61}{119439360} \Delta_{3,14,1}(z) \\
& -\frac{61}{9953280} \Delta_{3,14,1}(2 z)-\frac{61}{14580} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{705528299520}(49 t+362724) \Delta_{3,14,2}(z) \\
& +\frac{1}{117588049920}(-60013 t-138768) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{86124060}(49 t+362724) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{705528299520}(-49 t+360078) \Delta_{3,14,3}(z) \\
& +\frac{1}{117588049920}(60013 t+3101934) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{86124060}(-49 t+360078) \Delta_{3,14,3}(4 z) \\
& -\frac{29}{235634688} \Delta_{4,14}(z)+\frac{44277}{26181632} \Delta_{4,14}(3 z)-\frac{25}{57397248} \Delta_{6,14}(z) \\
& +\frac{25}{896832} \Delta_{6.14}(2 z) \\
& -\frac{215}{203046912} \Delta_{12,14,1}(z)+\frac{1327}{1122729984} \Delta_{12,14,2}(z), \\
& f_{2}=\frac{89}{446423040} \Delta_{2,14,1}(z)-\frac{89}{6975360} \Delta_{2,14,1}(2 z)-\frac{1611}{1550080} \Delta_{2,14,1}(3 z) \\
& +\frac{1611}{24220} \Delta_{2,14,1}(6 z) \\
& -\frac{1}{3649536} \Delta_{2,14,2}(z)-\frac{1}{57024} \Delta_{2,14,2}(2 z)-\frac{89}{90112} \Delta_{2,14,2}(3 z)-\frac{89}{1408} \Delta_{2,14,2}(6 z) \\
& -\frac{35}{76142592} \Delta_{3,14,1}(z)-\frac{35}{6345216} \Delta_{3,14,1}(2 z)-\frac{140}{37179} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{7408047144960}(223 t+3389658) \Delta_{3,14,2}(z) \\
& +\frac{1}{154334315520}(-7036 t-78942) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{904302630}(223 t+3389658) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{7408047144960}(-223 t+3377616) \Delta_{3,14,3}(z) \\
& +\frac{1}{154334315520}(70367 t+3720876) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{904302630}(-223 t+3377616) \Delta_{3,14,3}(4 z) \\
& -\frac{7}{58908672} \Delta_{4,14}(z)+\frac{9861}{6545408} \Delta_{4,14}(3 z)-\frac{185}{487876608} \Delta_{6,14}(z) \\
& +\frac{185}{7623072} \Delta_{6,14}(2 z) \\
& -\frac{95}{101523456} \Delta_{12,14,1}(z)+\frac{37}{35085312} \Delta_{12,14,2}(z), \\
& f_{3}=\frac{37}{1190461440} \Delta_{2,14,1}(z)-\frac{37}{18600960} \Delta_{2,14,1}(2 z)-\frac{150021}{793640960} \Delta_{2,14,1}(3 z) \\
& +\frac{150021}{12400640} \Delta_{2,14,1}(6 z)-\frac{1}{26542080} \Delta_{2,14,2}(z)-\frac{1}{414720} \Delta_{2,14,2}(2 z) \\
& -\frac{69}{655360} \Delta_{2,14,2}(3 z)-\frac{69}{10240} \Delta_{2,14,2}(6 z)-\frac{53}{1015234560} \Delta_{3,14,1}(z)
\end{aligned}
$$

(Table 2). Continued.

$$
\begin{aligned}
& -\frac{53}{84602880} \Delta_{3,14,1}(2 z)-\frac{53}{123930} \Delta_{3,14,1}(4 z)+\frac{1}{1234674524160}(74 t \\
& +78789) \Delta_{3,14,2}(z) \\
& +\frac{1}{411558174720}(-24931 t-419136) \Delta_{3,14,2}(2 z)+\frac{1}{150717105}(74 t \\
& +78789) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{1234674524160}(-74 t+74793) \Delta_{3,14,3}(z)+\frac{1}{411558174720}(24931 t \\
& +927138) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{150717105}(-74 t+74793) \Delta_{3,14,3}(4 z)-\frac{1}{353452032} \Delta_{4,14}(z) \\
& +\frac{5619}{26181632} \Delta_{4,14}(3 z), \\
& -\frac{1}{15246144} \Delta_{6,14}(z)+\frac{1}{238221} \Delta_{6,14}(2 z)-\frac{7}{50761728} \Delta_{12,14,1}(z) \\
& +\frac{79}{561364992} \Delta_{12,14,2}(z), \\
& f_{4}=\frac{683}{9300480} \Delta_{2,14,1}(z)-\frac{683}{145320} \Delta_{2,14,1}(2 z)+\frac{1121931}{6200320} \Delta_{2,14,1}(3 z) \\
& -\frac{1121931}{96880} \Delta_{2,14,1}(6 z) \\
& -\frac{19}{253440} \Delta_{2,14,2}(z)-\frac{19}{3960} \Delta_{2,14,2}(2 z)+\frac{6561}{56320} \Delta_{2,14,2}(3 z)+\frac{65651}{880} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{48960} \Delta_{3,14,1}(z)+\frac{1}{4080} \Delta_{3,14,1}(2 z)+\frac{128}{765} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{952680960}(-257 t+25818) \Delta_{3,14,2}(z)+\frac{1}{19847520}(-827 t+90978) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{1860705}(-4112 t+413088) \Delta_{3,14,2}(4 z)+\frac{1}{952680960}(257 t+39696) \Delta_{3,14,3}(z) \\
& +\frac{1}{19847520}(827 t+135636) \Delta_{3,14,3}(2 z)+\frac{1}{1860705}(4112 t+635136) \Delta_{3,14,3}(4 z) \\
& -\frac{13}{613632} \Delta_{4,14}(z)+\frac{59049}{204544} \Delta_{4,14}(3 z)-\frac{33}{376448} \Delta_{6,14}(z)+\frac{33}{5882} \Delta_{6,14}(2 z) \\
& +\frac{1}{13056} \Delta_{12,14,1}(z)-\frac{1}{18048} \Delta_{12,14,2}(z), \\
& f_{5}=\frac{1}{37201920} \Delta_{2,14,1}(z)-\frac{1}{581280} \Delta_{2,14,1}(2 z)-\frac{7291}{49602560} \Delta_{2,14,1}(3 z) \\
& +\frac{7291}{775040} \Delta_{2,14,1}(6 z) \\
& -\frac{1}{36495360} \Delta_{2,14,2}(z)-\frac{1}{570240} \Delta_{2,14,2}(2 z)-\frac{53}{675840} \Delta_{2,14,2}(3 z) \\
& -\frac{53}{10560} \Delta_{2,14,2}(6 z) \\
& -\frac{19}{380712960} \Delta_{3,14,1}(z)-\frac{19}{31726080} \Delta_{3,14,1}(2 z)-\frac{76}{185895} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{7408047144960}(139 t+365154) \Delta_{3,14,2}(z)+\frac{1}{154334315520}(-7451 t \\
& -49206) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{904302630}(139 t+365154) \Delta_{3,14,2}(4 z)+\frac{1}{7408047144960}(-139 t \\
& +357648) \Delta_{3,14,3}(z) \\
& +\frac{1}{154334315520}(7451 t+353148) \Delta_{3,14,3}(2 z)+\frac{1}{904302630}(-139 t \\
& +357648) \Delta_{3,14,3}(4 z) \\
& -\frac{1}{176726016} \Delta_{4,14}(z)+\frac{3235}{19636224} \Delta_{4,14}(3 z)-\frac{23}{487876608} \Delta_{6,14}(z) \\
& +\frac{23}{7623072} \Delta_{6,14}(2 z) \\
& -\frac{11}{101523456} \Delta_{12,14,1}(z)+\frac{1}{8771328} \Delta_{12,14,2}(z),
\end{aligned}
$$

$$
\begin{aligned}
& f_{6}=-\frac{7}{42516480} \Delta_{2,14,1}(z)+\frac{7}{664320} \Delta_{2,14,1}(2 z)+\frac{22923}{14172160} \Delta_{2,14,1}(3 z) \\
& -\frac{22923}{221440} \Delta_{2,14,1}(6 z) \\
& -\frac{17}{24330240} \Delta_{2,14,2}(z)-\frac{17}{380160} \Delta_{2,14,2}(2 z)-\frac{2187}{901120} \Delta_{2,14,2}(3 z) \\
& -\frac{2187}{14080} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{9400320} \Delta_{3,14,1}(z)+\frac{1}{783360} \Delta_{3,14,1}(2 z)+\frac{2}{2295} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{13065338880}(-71 t-306) \Delta_{3,14,2}(z)+\frac{1}{181463040}(-49 t+16756) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{1594890}(-71 t-306) \Delta_{3,14,2}(4 z)+\frac{1}{13065338880}(71 t+3528) \Delta_{3,14,3}(z) \\
& +\frac{1}{181463040}(49 t+19402) \Delta_{3,14,3}(2 z)+\frac{1}{1594890}(71 t+3528) \Delta_{3,14,3}(4 z) \\
& -\frac{1}{6545408} \Delta_{4,14}(z)+\frac{351}{6545408} \Delta_{4,14}(3 z)+\frac{83}{162625536} \Delta_{6,14}(z) \\
& -\frac{83}{2541024} \Delta_{6,14}(2 z) \\
& +\frac{1}{11280384} \Delta_{12,14,1}(z)+\frac{1}{15593472} \Delta_{12,14,2}(z), \\
& f_{7}=-\frac{11}{573972480} \Delta_{2,14,1}(z)-\frac{11}{8968320} \Delta_{2,14,1}(2 z)-\frac{25889}{191324160} \Delta_{2,14,1}(3 z) \\
& +\frac{25889}{2989440} \Delta_{2,14,1}(6 z)-\frac{1}{36495360} \Delta_{2,14,2}(z)-\frac{1}{570240} \Delta_{2,14,2}(2 z) \\
& -\frac{263}{4055040} \Delta_{2,14,2}(3 z)-\frac{263}{63360} \Delta_{2,14,2}(6 z)-\frac{13}{285534720} \Delta_{3,14,1}(z) \\
& -\frac{13}{23794560} \Delta_{3,14,1}(2 z)-\frac{208}{557685} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{1793719336960}(t+36006) \Delta_{3,14,2}(z)+\frac{1}{16535819520}(-749 t-354) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{193779135}(2 t+72012) \Delta_{3,14,2}(4 z)+\frac{1}{793719336960}(-t+35952) \Delta_{3,14,3}(z) \\
& +\frac{1}{16535819520}(749 t+40092) \Delta_{3,14,3}(2 z)+\frac{1}{193779135}(-2 t+71904) \Delta_{3,14,3}(4 z) \\
& -\frac{5}{397633536} \Delta_{4,14}(z)+\frac{6587}{44181504} \Delta_{4,14}(3 z)-\frac{1}{27104256} \Delta_{6,14}(z) \\
& +\frac{1}{423504} \Delta_{6,14}(2 z)-\frac{7}{76142592} \Delta_{12,14,1}(z)+\frac{11}{105255936} \Delta_{12,14,2}(z), \\
& f_{8}=-\frac{4931}{55802880} \Delta_{2,14,1}(z)-\frac{4931}{871920} \Delta_{2,14,1}(2 z)+\frac{1030077}{6200320} \Delta_{2,14,1}(3 z) \\
& -\frac{1030077}{96880} \Delta_{2,14,1}(6 z) \\
& -\frac{11}{138240} \Delta_{2,14,2}(z)-\frac{11}{2160} \Delta_{2,14,2}(2 z)+\frac{729}{5120} \Delta_{2,14,2}(3 z)+\frac{729}{80} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{73440} \Delta_{3,14,1}(z)+\frac{1}{6120} \Delta_{3,14,1}(2 z)+\frac{256}{2295} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{178627680}(-67 t+4098) \Delta_{3,14,2}(z)+\frac{1}{14885640}(-643 t+94872) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{5582115}(-17152 t+1049088) \Delta_{3,14,2}(4 z)+\frac{1}{178627680}(67 t+7716) \Delta_{3,14,3}(z) \\
& +\frac{1}{14885640}(643 t+129594) \Delta_{3,14,3}(2 z)+\frac{1}{5582115}(17152 t \\
& +1975296) \Delta_{3,14,3}(4 z) \\
& -\frac{13}{690336} \Delta_{4,14}(z)+\frac{6561}{25568} \Delta_{4,14}(3 z)-\frac{25}{282336} \Delta_{6,14}(z)+\frac{50}{8823} \Delta_{6,14}(2 z) \\
& +\frac{1}{14688} \Delta_{12,14,1}(z)-\frac{1}{20304} \Delta_{12,14,2}(z),
\end{aligned}
$$

(Table 2). Continued.

$$
\begin{aligned}
& f_{9}=\frac{43}{1428553728} \Delta_{2,14,1}(z)-\frac{43}{22321152} \Delta_{2,14,1}(2 z)+\frac{6561}{19841024} \Delta_{2,14,1}(3 z) \\
& -\frac{6561}{310016} \Delta_{2,14,1}(6 z)-\frac{1}{21626880} \Delta_{2,14,2}(z)-\frac{1}{337920} \Delta_{2,14,2}(2 z) \\
& -\frac{243}{901120} \Delta_{2,14,2}(3 z)-\frac{243}{14080} \Delta_{2,14,2}(6 z)-\frac{7}{50135040} \Delta_{3,14,1}(z) \\
& -\frac{7}{4177920} \Delta_{3,14,1}(2 z)-\frac{7}{6120} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{16259088384}(-5 t+44) \Delta_{3,14,2}(z)+\frac{1}{8129544192}(-157 t+42480) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{1984752}(-5 t+44) \Delta_{3,14,2}(4 z)+\frac{1}{16259088384}(5 t+314) \Delta_{3,14,3}(z) \\
& +\frac{1}{8129544192}(157 t+50958) \Delta_{3,14,3}(2 z)+\frac{1}{1984752}(5 t+314) \Delta_{3,14,3}(4 z) \\
& -\frac{83}{706904064} \Delta_{4,14}(z)-\frac{729}{6545408} \Delta_{4,14}(3 z)+\frac{29}{216834048} \Delta_{6,14}(z) \\
& -\frac{29}{3388032} \Delta_{6,14}(2 z)+\frac{1}{30081024} \Delta_{12,14,1}(z)+\frac{7}{83165184} \Delta_{12,14,2}(z) \text {, } \\
& f_{10}=-\frac{457}{12599050240} \Delta_{2,14,1}(z)+\frac{457}{196860160} \Delta_{2,14,1}(2 z) \\
& +\frac{18883857}{100792401920} \Delta_{2,14,1}(3 z) \\
& -\frac{18883857}{1574881280} \Delta_{2,14,1}(6 z)+\frac{89}{1569300480} \Delta_{2,14,2}(z)+\frac{89}{24520320} \Delta_{2,14,2}(2 z) \\
& +\frac{61663}{309985280} \Delta_{2,14,2}(3 z)+\frac{61663}{4843520} \Delta_{2,14,2}(6 z)+\frac{563033}{6663999651840} \Delta_{3,14,1}(z) \\
& +\frac{563033}{555333304320} \Delta_{3,14,1}(2 z)+\frac{563033}{813476520} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{64775964235530240}(2024959 t-5551099716) \Delta_{3,14,2}(z) \\
& +\frac{1}{10795994039255040}(943407917 t-5734683888) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{7907222196720}(2024959 t-5551099716) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{64775964235530240}(-2024959 t-5660447502) \Delta_{3,14,3}(z) \\
& +\frac{1}{10795994039255040}(-943407917 t-56678711406) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{7907222196720}(-2024959 t-5660447502) \Delta_{3,14,3}(4 z) \\
& +\frac{5}{235634688} \Delta_{4,14}(z)-\frac{3693}{13090816} \Delta_{4,14}(3 z)+\frac{133}{1951506432} \Delta_{6,14}(z) \\
& -\frac{133}{30492288} \Delta_{6,14}(2 z)+\frac{143}{812187648} \Delta_{12,14,1}(z)-\frac{443}{2245459968} \Delta_{12,14,2}(z) \\
& -\frac{3}{855893221310464} E_{14}(z)+\frac{24579}{855893221310464} E_{14}(2 z) \\
& +\frac{3}{855893221310464} E_{14}(3 z)-\frac{3}{104479152992} E_{14}(4 z) \\
& -\frac{24579}{855893221310464} E_{14}(6 z)+\frac{3}{104479152992} E_{14}(12 z) \text {, } \\
& f_{11}=\frac{5905559}{151188602880} \Delta_{2,14,1}(z)-\frac{5905559}{2362321920} \Delta_{2,14,1}(2 z) \\
& -\frac{3495287457}{100792401920} \Delta_{2,14,1}(3 z) \\
& +\frac{3495287457}{1574881280} \Delta_{2,14,1}(6 z)+\frac{14957}{464977920} \Delta_{2,14,2}(z)+\frac{14957}{7265280} \Delta_{2,14,2}(2 z) \\
& +\frac{14703201}{309985280} \Delta_{2,14,2}(3 z)+\frac{14703201}{4843520} \Delta_{2,14,2}(6 z)+\frac{100363}{304096320} \Delta_{3,14,1}(z) \\
& +\frac{301089}{761774080} \Delta_{3,14,1}(2 z)+\frac{100363}{371960} \Delta_{3,14,1}(4 z)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{29618639339520}(58213 t+10238162) \Delta_{3,14,2}(z) \\
& +\frac{1}{4936439889920}(-170112121 t-1648592) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{3615556560}(58213 t+10238162) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{29618639339520}(-58213 t+10206727) \Delta_{3,14,3}(z) \\
& +\frac{1}{4936439889920}(170112121 t+90211953) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{3615556560}(-58213 t+10206727) \Delta_{3,14,3}(4 z)-\frac{4073}{78544896} \Delta_{4,14}(z) \\
& +\frac{177147}{13090816} \Delta_{4,14}(3 z)+\frac{729}{24092672} \Delta_{6,14}(z)-\frac{729}{376448} \Delta_{6,14}(2 z) \\
& -\frac{81}{1114112} \Delta_{12,14,1}(z)-\frac{243}{3080192} \Delta_{12,14,2}(z)+\frac{1}{2567679663931392} E_{14}(z) \\
& -\frac{2731}{855893221310464} E_{14}(2 z)-\frac{1594323}{855893221310464} E_{14}(3 z) \\
& +\frac{1}{313437458976} E_{14}(4 z)+\frac{13062288339}{855893221310464} E_{14}(6 z) \\
& -\frac{1594323}{104479152992} E_{14}(12 z) \text {, } \\
& f_{12}=\frac{6294619}{302377205760} \Delta_{2,14,1}(z)-\frac{6294619}{4724643840} \Delta_{2,14,1}(2 z) \\
& -\frac{242868537}{12599050240} \Delta_{2,14,1}(3 z) \\
& +\frac{242868537}{196860160} \Delta_{2,14,1}(6 z)+\frac{61663}{2789867520} \Delta_{2,14,2}(z)+\frac{61663}{43591680} \Delta_{2,14,2}(2 z) \\
& +\frac{583929}{19374080} \Delta_{2,14,2}(3 z) \\
& +\frac{583929}{302720} \Delta_{2,14,2}(6 z)+\frac{563033}{27423866880} \Delta_{3,14,1}(z)+\frac{563033}{2285322240} \Delta_{3,14,1}(2 z) \\
& +\frac{563033}{3347640} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{266567754055680}(-2024959 t+5551099716) \Delta_{3,14,2}(z) \\
& +\frac{1}{44427959009280}(-943407917 t+5734683888) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{32540009040}(-2024959 t+5551099716) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{266567754055680}(2024959 t+5660447502) \Delta_{3,14,3}(z) \\
& +\frac{1}{44427959009280}(943407917 t+56678711406) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{32540009040}(2024959 t+5660447502) \Delta_{3,14,3}(4 z)-\frac{1231}{39272448} \Delta_{4,14}(z) \\
& +\frac{295245}{26181632} \Delta_{4,14}(3 z)+\frac{399}{24092672} \Delta_{6,14}(z)-\frac{399}{376448} \Delta_{6,14}(2 z) \\
& -\frac{143}{3342336} \Delta_{12,14,1}(z)-\frac{443}{9240576} \Delta_{12,14,2}(z)+\frac{1}{2567679663931392} E_{14}(z) \\
& -\frac{2731}{8558893221310464} E_{14}(2 z)-\frac{1594323}{855893221310464} E_{14}(3 z) \\
& +\frac{1}{313437458976} E_{14}(4 z)+\frac{13062288339}{855893221310464} E_{14}(6 z) \\
& -\frac{1594323}{104479152992} E_{14}(12 z) \text {, } \\
& f_{13}=-\frac{33}{310016} \Delta_{2,14,1}(2 z)+\frac{161379}{310016} \Delta_{2,14,1}(6 z)-\frac{73}{380160} \Delta_{2,14,2}(2 z) \\
& -\frac{9663}{14080} \Delta_{2,14,2}(6 z)
\end{aligned}
$$

(Table 2). Continued.

$$
\begin{aligned}
& -\frac{1}{123930} \Delta_{3,14,1}(2 z)-\frac{2044}{61965} \Delta_{3,14,1}(4 z)+\frac{1}{241147368}(-347 t+4056) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{60286842}(-1825 t+2028378) \Delta_{3,14,2}(4 z)+\frac{1}{241147368}(347 t \\
& +22794) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{60286842}(1825 t+2126928) \Delta_{3,14,3}(4 z)+\frac{31}{158814} \Delta_{6,14}(2 z), \\
& f_{14}=-\frac{31}{2657280} \Delta_{2,14,1}(2 z)+\frac{61479}{885760} \Delta_{2,14,1}(6 z)-\frac{47}{1520640} \Delta_{2,14,2}(2 z) \\
& -\frac{5697}{56320} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{220320} \Delta_{3,14,1}(2 z)-\frac{253}{55080} \Delta_{3,14,1}(4 z)+\frac{1}{76554720}(-17 t+78) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{38277360}(-257 t+186918) \Delta_{3,14,2}(4 z)+\frac{1}{76554720}(17 t+996) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{38277360}(257 t+200796) \Delta_{3,14,3}(4 z)+\frac{61}{2541024} \Delta_{6,14}(2 z), \\
& f_{15}=-\frac{69}{6200320} \Delta_{2,14,1}(2 z)+\frac{390933}{6200320} \Delta_{2,14,1}(6 z)-\frac{41}{1520640} \Delta_{2,14,2}(2 z) \\
& -\frac{5061}{56320} \Delta_{2,14,2}(6 z) \\
& +\frac{7}{1982880} \Delta_{3,14,1}(2 z)-\frac{1013}{247860} \Delta_{3,14,1}(4 z)+\frac{1}{2411473680}(-463 t \\
& +3072) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{602868420}(-3629 t+2580036) \Delta_{3,14,2}(4 z)+\frac{1}{2411473680}(463 t \\
& +28074) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{602868420}(3629 t+2776002) \Delta_{3,14,3}(4 z)+\frac{55}{2541024} \Delta_{6,14}(2 z) \text {, } \\
& f_{16}=-\frac{149}{13950720} \Delta_{2,14,1}(2 z)+\frac{88007}{1550080} \Delta_{2,14,1}(6 z)-\frac{1}{42240} \Delta_{2,14,2}(2 z) \\
& -\frac{1119}{14080} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{371790} \Delta_{3,14,1}(2 z)-\frac{676}{185895} \Delta_{3,14,1}(4 z)+\frac{1}{28937684160}(-4831 t \\
& +43014) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{904302630}(-4931 t+3401934) \Delta_{3,14,2}(4 z)+\frac{1}{28937684160}(4831 t \\
& +303888) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{904302630}(4931 t+3668208) \Delta_{3,14,3}(4 z)+\frac{25}{1270512} \Delta_{6,14}(2 z), \\
& f_{17}=\frac{16673}{110733840} \Delta_{2,14,1}(2 z)-\frac{9504049}{12303760} \Delta_{2,14,1}(6 z)-\frac{61}{204336} \Delta_{2,14,2}(2 z) \\
& -\frac{20629}{54231768} \Delta_{3,14,1}(2 z)+\frac{15616}{20336913} \Delta_{3,14,1}(4 z)-\frac{23347}{22704} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{1317870366120}(-589433 t+514791132) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{1494201387295}(-137324416 t+1544427264) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{1317870366120}(589433 t+546620514) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{494201387295}(1373244165 t+8959945728) \Delta_{3,14,3}(4 z)-\frac{22}{79407} \Delta_{6,14}(2 z) \\
& -\frac{1}{235078094232} E_{14}(2 z) \frac{2048}{29384761779} E_{14}(4 z)+\frac{1}{235078094232} E_{14}(6 z) \\
& -\frac{2048}{29384761779} E_{14}(12 z) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& f_{18}=\frac{1413709}{295290240} \Delta_{2,14,1}(2 z)-\frac{1696536819}{393720320} \Delta_{2,14,1}(6 z)-\frac{391}{60544} \Delta_{2,14,2}(2 z) \\
& -\frac{2184813}{242176} \Delta_{2,14,2}(6 z)+\frac{137}{892704} \Delta_{3,14,1}(2 z)-\frac{18551}{27897} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{21693339360}(653003 t-6366912) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{5423334840}(4258754 t-3730667721) \Delta_{3,14,3}(z) \\
& +\frac{1}{5423334840}(-4258754 t-3960640437) \Delta_{3,14,3}(4 z) \\
& \frac{351}{94112} \Delta_{6,14}(2 z)-\frac{1}{313437458976} E_{14}(2 z)+\frac{1}{313437458976} E_{14}(4 z) \\
& +\frac{1594323}{104479152992} E_{14}(6 z)-\frac{1594323}{104479152992} E_{14}(12 z), \\
& f_{19}=-\frac{1}{2790144} \Delta_{2,14,1}(2 z)+\frac{5153}{930048} \Delta_{2,14,1}(6 z)-\frac{1}{380160} \Delta_{2,14,2}(2 z) \\
& -\frac{373}{42240} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{1487160} \Delta_{3,14,1}(2 z)-\frac{28}{61965} \Delta_{3,14,1}(4 z)+\frac{1}{1446884208}(-29 t-246) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{60286842}(-25 t+27786) \Delta_{3,14,2}(4 z)+\frac{1}{1446884208}(29 t+1320) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{60286842}(25 t+29136) \Delta_{3,14,3}(4 z)+\frac{1}{635256} \Delta_{6,14}(2 z), \\
& f_{20}=-\frac{23}{15694560} \Delta_{2,14,1}(2 z)+\frac{55547}{5231520} \Delta_{2,14,1}(6 z)+\frac{1}{297432} \Delta_{3,14,1}(2 z) \\
& -\frac{16}{37179} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{28937684160}(-389 t-87294) \Delta_{3,14,2}(2 z)+\frac{1}{452151315}(778 t \\
& +174588) \Delta_{3,14,2}(4 z) \\
& +\frac{1}{28937684160}(389 t-66288) \Delta_{3,14,3}(2 z)+\frac{1}{452151315}(-778 t \\
& +132576) \Delta_{3,14,3}(4 z) \\
& +\frac{13}{3811536} \Delta_{6,14}(2 z), \\
& f_{21}=\frac{241}{290640} \Delta_{2,14,1}(2 z)-\frac{328779}{96880} \Delta_{2,14,1}(6 z)-\frac{23}{23760} \Delta_{2,14,2}(2 z) \\
& -\frac{3483}{880} \Delta_{2,14,2}(6 z) \\
& +\frac{1}{6120} \Delta_{3,14,1}(2 z)+\frac{256}{765} \Delta_{3,14,1}(4 z)+\frac{1}{44656920}(389 t-25476) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{5582115}(6656 t+454656) \Delta_{3,14,2}(4 z)+\frac{1}{44656920}(157 t+50958) \Delta_{3,14,3}(2 z) \\
& +\frac{1}{5582115}(-6656 t+95232) \Delta_{3,14,3}(4 z)+\frac{14}{8823} \Delta_{6,14}(2 z), \\
& f_{22}=\frac{233}{1020395520} \Delta_{2,14,1}(z)-\frac{233}{15943680} \Delta_{2,14,1}(2 z)-\frac{136449}{113377280} \Delta_{2,14,1}(3 z) \\
& +\frac{136449}{1771520} \Delta_{2,14,1}(6 z) \\
& -\frac{179}{583925760} \Delta_{2,14,2}(z)-\frac{179}{9123840} \Delta_{2,14,2}(2 z)-\frac{7773}{7208960} \Delta_{2,14,2}(3 z) \\
& -\frac{7773}{112640} \Delta_{2,14,2}(6 z) \\
& -\frac{61}{119439360} \Delta_{3,14,1}(z)-\frac{61}{9953280} \Delta_{3,14,1}(2 z)-\frac{61}{14580} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{705528299520}(49 t+362724) \Delta_{3,14,2}(z)+\frac{1}{117588049920}(-60013 t \\
& -138768) \Delta_{3,14,2}(2 z)
\end{aligned}
$$

(Table 2). Continued.

$$
\begin{array}{ll}
(1+2 p)^{\frac{a_{1}}{8}}+\frac{a_{2}}{4}+\frac{a_{3}}{24}+\frac{a_{4}}{8}+\frac{a_{6}}{12}+\frac{a_{12}}{24}(2+p)^{\frac{a_{1}}{8}+\frac{a_{2}}{4}+\frac{a_{3}}{24}+\frac{a_{4}}{2}+\frac{a_{6}}{12}+\frac{a_{12}}{6}} \\
k^{\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{6}+a_{12}}{2}}=\frac{k^{14}}{2^{b_{1}+b_{5}}} p^{b_{1}}(1-p)^{b_{2}}(1+p)^{b_{3}}
\end{array} \quad+\frac{c_{5}}{24}\left(1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{6 n}\right)+\frac{c_{6}}{24}\left(1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{12 n}\right)
$$

$$
(1+2 p)^{b_{4}}(2+p)^{b_{5}}
$$

$$
=k^{14}\left(k_{0}+k_{1} p+k_{2} p^{2}+k_{3} p^{3}+k_{4} p^{4}+k_{5} p^{5}+k_{6} p^{6}\right.
$$

$$
+r_{1} q^{9} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{19}\left(1-q^{6 n}\right)^{13}\left(1-q^{12 n}\right)^{7}}{\left(1-q^{2 n}\right)^{11}}
$$

$$
+k_{7} p^{7}+k_{8} p^{8}+k_{9} p^{9}+k_{10} p^{10}+k_{11} p^{11}
$$

$$
+k_{12} p^{12}+k_{13} p^{13}+k_{14} p^{14}+k_{15} p^{15}+k_{16} p^{16}
$$

$$
k_{17} p^{17}+k_{18} p^{18}+k_{19} p^{19}+k_{20} p^{20}+k_{21} p^{21}+k_{22} p^{22}
$$

$$
+r_{2} q^{9} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{14}\left(1-q^{6 n}\right)^{18}\left(1-q^{12 n}\right)^{6}}{\left(1-q^{2 n}\right)^{10}}
$$

$$
\left.+k_{23} p^{23}+k_{24} p^{24}+k_{25} p^{25}+k_{26} p^{26}+k_{27} p^{27}+k_{28} p^{28}\right)
$$

$$
+r_{3} q^{11} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{16}\left(1-q^{6 n}\right)^{4}\left(1-q^{12 n}\right)^{16}}{\left(1-q^{2 n}\right)^{8}}
$$

$$
=\frac{c_{1}}{24}\left(1-24 \sum_{\substack{n=1 \\ \infty}}^{\infty} \sigma_{13}(n) q^{n}\right)+\frac{c_{2}}{24}\left(1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{2 n}\right)
$$

$$
+r_{4} q^{3} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}\left(1-q^{4 n}\right)^{12}\left(1-q^{6 n}\right)^{8}}{\left(1-q^{12 n}\right)^{4}}
$$

$$
+\frac{c_{3}}{24}\left(1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{3 n}\right)+\frac{c_{4}}{24}\left(1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{4 n}\right)
$$

$$
+r_{5} \cdot q^{11} \prod_{n=1}^{n=1} \frac{\left(\left(1-q^{4 n}\right)^{6} 1-q^{6 n}\right)^{14}\left(1-q^{12 n}\right)^{14}}{\left(1-q^{2 n}\right)^{6}}
$$

$$
\begin{aligned}
& +\frac{1}{86124060}(49 t+362724) \Delta_{3,14,2}(4 z)+\frac{1}{705528299520}(-49 t \\
& +360078) \Delta_{3,14,3}(z) \\
& +\frac{1}{117588049920}(60013 t+3101934) \Delta_{3,14,3}(2 z)+\frac{1}{86124060}(-49 t \\
& +360078) \Delta_{3,14,3}(4 z) \\
& -\frac{29}{235634688} \Delta_{4,14}(z)+\frac{44277}{26181632} \Delta_{4,14}(3 z)-\frac{25}{57397248} \Delta_{6,14}(z) \\
& +\frac{25}{896832} \Delta_{6,14}(2 z) \\
& -\frac{215}{203046912} \Delta_{12,14,1}(z)+\frac{1327}{1122729984} \Delta_{12,14,2}(z), \\
& f_{23}=\frac{233}{1020395520} \Delta_{2,14,1}(z)-\frac{233}{15943680} \Delta_{2,14,1}(2 z)-\frac{136449}{113377280} \Delta_{2,14,1}(3 z) \\
& +\frac{136449}{1771520} \Delta_{2,14,1}(6 z) \\
& -\frac{179}{583925760} \Delta_{2,14,2}(z)-\frac{179}{9123840} \Delta_{2,14,2}(2 z)-\frac{7773}{7208960} \Delta_{2,14,2}(3 z) \\
& -\frac{7773}{112640} \Delta_{2,14,2}(6 z) \\
& -\frac{61}{119439360} \Delta_{3,14,1}(z)-\frac{61}{9953280} \Delta_{3,14,1}(2 z)-\frac{61}{14580} \Delta_{3,14,1}(4 z) \\
& +\frac{1}{705528299520}(49 t+362724) \Delta_{3,14,2}(z)+\frac{1}{117588049920}(-60013 t \\
& -138768) \Delta_{3,14,2}(2 z) \\
& +\frac{1}{86124060}(49 t+362724) \Delta_{3,14,2}(4 z)+\frac{1}{705528299520}(-49 t \\
& +360078) \Delta_{3,14,3}(z) \\
& +\frac{1}{117588049920}(60013 t+3101934) \Delta_{3,14,3}(2 z)+\frac{1}{86124060}(-49 t \\
& +360078) \Delta_{3,14,3}(4 z) \\
& -\frac{29}{235634688} \Delta_{4,14}(z)+\frac{44277}{26181632} \Delta_{4,14}(3 z)-\frac{25}{57397248} \Delta_{6,14}(z) \\
& +\frac{25}{896832} \Delta_{6,14}(2 z) \\
& -\frac{215}{203046912} \Delta_{12,14,1}(z)+\frac{1327}{1122729984} \Delta_{12,14,2}(z) .
\end{aligned}
$$

Table 3:

No	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	a_{2}	a_{4}	a_{6}		a_{12}	c_{1}	c_{2}	c_{3}		c_{4}	c_{6}		c_{12}
1	1	0	0	0	27	7 -40	80	12		-24	1	-8193	0		8192	0		0
2	1	0	1	0	25	$5-39$	75	17		-25	"	"	"		"	"		"
3	1	0	2	0	23	$3-38$	70	22		-26	"	"	"		"	"		"
4	1	0	3	0	21	$1-37$	65	27		-27	"	"	"		"	"		"
5	1	0	4	0	19	9 -36	60	32		-28	"	"	"		"	"		"
6	1	0	5	0	17	7 -35	55	37		-29	"	"	"		"	"		"
7	1	0	6	0	15	$5-34$	50	42		-30	"	"	"		"	"		"
8	1	0	7	0	13	$3-33$	45	47		-31	"	"	"		"	"		"
9	1	0	8	0	11	$1-32$	40	52		-32	"	"	"		"	"		"
10	1	0	9	0	9	-31	35	57		-33	"	"	"		"	"		"
11	1	0	10	0	7	-30	30	62		-34	"	"	"		"	"		"
12	1	0	11	0	5	-29	25	67		-35	"	"	"		"	"		"
13	1	0	12	0	3	-28	20	72		-36	"	"	"		"	"		"
14	1	0	13	0	1	-27	15	77		-37	"	"	"		"	"		"
15	1	1	0	1	25	5 -31	71	9		-21	"	"	"		"	"		"
16	1	1	1	1	23	$3-30$	66	14		-22	"	"	"		"	"		"
17	1	1	2	1	21	$1-29$	61	19		-23	"	"	"		"	"		"
18	1	1	3	1	19	9 -28	56	24		-24	"	"	"		"	"		"
19	1	1	4	1	17	7 -27	51	29		-25	"	"	"		"	"		"
20	1	1	5	1	15	$5-26$	46	34		-26	"	"	"		"	"		"
21	1	1	6	1	13	$3-25$	41	39		-27	"	"	"		"	"		"
22	1	1	7	1	11	$1-24$	36	44		-28	"	"	"		"	"		"
23	1	1	8	1	9	-23	31	49		-29	"	"	"		"	"		"
24	1	1	9	1	7	-22	26	54		-30	"	"	"		"	"		"
25	1	1	10	1	5	-21	21	59		-31	"	"	"		"	"		"
26	1	1	11	1	3	-20	16	64		-32	"	"	"		"			
27	1	1	12	1	1	-19	11	69		-33	1	-8193	$-\frac{1}{81}$		8192	$\frac{2731}{27}$		$-\frac{8192}{81}$
28	1	2	0	2	23	$3-22$	62	6		-18	1	-8193	0		8192			
29	1	2	1	2	21	$1-21$	57	11		-19	"	"	"		"	"		
30	1	2	2	2	19	9 -20	52	16		-20	"	"	"		"	"		"
31	1	2	3	2	17	7 -19	47	21		-21	"	"	"		"	"		"
32	1	2	4	2	15	$5-18$	42	26		-22	"	"	"		"	"		"
33	1	2	5	2	13	$3-17$	37	31		-23	"	"	"		"	"		"
34	1	2	6	2	11	$1-16$	32	36		-24	"	"	"		"	"		"
35	1	2	7	2	9	-15	27	41		-25	"	"	"		"	"		"
36	1	2	8	2	7	-14	22	46		-26	"	"	"		"	"		"
37	1	2	9	2	5	-13	17	51		-27	"	"	"		"	"		"
38	1	2	10	2	3	-12	12	56		-28	"	"	"		"	"		"
39	1	2	11	2	1	-11	7	61		-29	1	-8193	$-\frac{1}{9}$		8192	$\frac{2731}{3}$		$-\frac{8192}{9}$
40	1	3	0	3	21	$1-13$	53	3		-15	1	-8193	0		8192	0		0
41	1	3	1	3	19	9 -12	48	8		-16	"	"	"		"	"		"
42	1	3	2	3	17	$7-11$	43	13		-17	"	"	"		,	"		"
43	1	3	3	3	15	$5-10$	38	18		-18	"	"	"		"	"		"
44	1	3	4	3	13	$3-9$	33	23		-19	"	"	,		"	"		"
45	1	3	5	3	11	$1-8$	28	28		-20	"	"	"		"	"		"
46	1	3	6	3	9	-7	23	33		-21	"	"	"		"	"		"
47	,	3	7	3	7	-6	18	38		-22	"	"	"		"	"		"
48	1	3	8	3	5	-5	13	43	-23		"	"		"	"		"	
49	1	3	9	3	3	-4	8	48	-24	"	"	"		"	"		"	
50	1	3	10	3	1	-3	3	53	-25	1		-8193 -1		8192	8193		-8192	
51	1	4	0	4	19	-4	44	0	-12	1		-8193 0		8192	0		0	
52	1	4	1	4	17	-3	39	5	-13	"	"	"		"	"		"	
53	1	4	2	4	15	-2	34	10	-14	"	"	"		"	"		"	
54	1	4	3	4	13	-1	29	15	-15	"	"	"		"	"		"	
55	1	4	4	4	11	0	24	20	-16	"	"	"		"	"		"	
56	1	4	5	4	9	1	19	25	-17	"	"	"		"	"		"	
57	1	4	6	4	7	2	14	30	-18	"	"	"		"	"		"	
58	1	4	7	4	5	3	9	35	-9	"	"	"		"	"		"	
59	1	4	8	4	3	4	4	40	-20	"	"	" "		"	"		"	

(Table 3). Continued.

60	1	4	9	4	1	5	-1	45	-21	1	-8193	$3-9$		8192	73737	-73728
61	1	5	0	5	17	5	35	-3	-9	1	-8193	30		8192	0	0
62	1	5	1	5	15	6	30	2	-10	"	"	"		"	"	"
63	1	5	2	5	13	7	25	7	-11	"	"	"		"	"	"
64	1	5	3	5	11	8	20	12	-12	"	"	"		"	"	"
65	1	5	4	5	9	9	15	17	-13	"	"	"		"	"	"
66	1	5	5	5	7	10	10	22	-14	"	"	"		"	"	"
67	1	5	6	5	5	11	5	27	-15	"	"	"		"	"	"
68	1	5	7	5	3	12	0	32	-16	"	"	"		"	"	"
69	1	5	8	5	1	13	-5	37	-17	1	-8193	$3-81$		8192	663633	-663552
70	1	6	0	6	15	14	26	-6	-6	1	-8193	30		8192	0	0
71	1	6	1	6	13	15	21	-1	-7	"	"	"		"	"	"
72	1	6	2	6	11	16	16	4	-8	"	"	"		"	"	"
73	1	6	3	6	9	17	11	9	-9	"	"	"		"	"	"
74	1	6	4	6	7	18	6	14	-10	"	"	"		"	"	"
75	1	6	5	6	5	19	1	19	-11	"	"	"		"	"	"
76	1	6	6	6	3	20	-4	24	-12	"	"	"		"	"	"
77	1	6	7	6	1	21	-9	29	-13	1	-8193	$3-729$		8192	5972697	-5971968
78	1	7	0	7	13	23	17	-9	-3	1	-8193	3		8192	0	0
79	1	7	1	7	11	24	12	-4	-4	"	"	"		"	"	"
80	1	7	2	7	9	25	7	1	-5	"	"	"		"	"	"
81	1	7	3	7	7	26	2	6	-6	"	"	"		"	"	"
82	1	7	4	7	5	27	-3	11	-7	"	"	"		"	"	"
83	1	7	5	7	3	28	-8	16	-8	"	"	"		"	"	"
84	1	7	6	7	1	29	-13	21	-9	1	-8193	$3-6561$		8192	53754273	-53747712
85	1	8	0	8	11	32	8	-12	0	1	-8193	3		8192	0	0
86	1	8	1	8	9	33	3	-7	-1	"	"	"		"	"	"
87	1	8	2	8	7	34	-2	-2	-2	"	"	"		"	"	"
88	1	8	3	8	5	35	-7	3	-3	"	"	"		"	"	"
89	1	8	4	8	3	36	-12	8	-4	"	"	"		"	"	"
90	1	8	5	8	1	37	-17	13	-5	1	-8193	$3-59049$		8192	483788457	-483729408
91	1	9	0	9	9	41	-1	-15	- 3	1	-8193	3		8192	0	0
92	1	9	1	9	7	42	-6	-10) 2	"	"	"		"	"	"
93	1	9	2	9	5	43	-11	-5	1	"	"	"		"	"	"
94	1	9	3	9	3	44	-16	0	0	"	"	"		"	"	"
95	1	9	4	9	1	45	-21	5	-1	1	-8193	$3-531441$		8192	4354096113	-4353564672
96	1	10	0	10	7	50	-10	-18	- 6	1	-8193	30		8192	0	0
97	1	10	1	10	5	51	-15	-13	5	"	"	"		"	"	"
98	1	10	2	10	3	52	-20	-8	4	"	"	"		"	"	"
99	1	10	3	10	1	53	-25	-3	31		-8193	-4782969	8192		6865017	-39182082048
100	1	11	0	11	5	59	-19	-21	91		-8193	0	8192	0		0
101	1	11	1	11	3	60	-24	-16	8		" "	"	"	"		"
102	1	11	2	11	1	61	-29	-11	$7 \quad 1$		-8193	-43046721	8192	352	81785153	-352638738432
103	1	12	0	12	3	68	-28	-24	$12 \quad 1$		-8193	0	8192	0		0
104	1	12	1	12	1	69	-33	-19	11		-8193	-387420489	8192	317	136066377	-3173748645888
105	1	13	0	13	1	77	-37	-27	15		-8193	-3486784401	8192		7224597393	-28563737812992
106	3	0	12	0	1	-24	12	68	-28 0		0	$\frac{1}{729}$	0	$-\frac{27}{2}$		$\frac{8192}{729}$
107	3	1	11	1	1	-16	8	60	-24 0		0	$\frac{1}{81}$	0	$-\frac{27}{27}$		$\frac{8192}{81}$
108	3	2	10	2	1	-8	4	52	$-20 \quad 0$		0	$\frac{1}{9}$	0	-		$\frac{8192}{9}$
109	3	3	9	3	1	0	0	44	-16 0		0	1	0	-81		8192
110	3	4	8	4	1	8	-4	36	-12 0		0	9	0	-73		73728
111	3	5	7	5	1	16	-8	28	-80		0	81	0		3633	663552
112	3	6	6	6	1	24	-12	20	$-4 \quad 0$		$0 \quad 7$	729	0	-59	72697	5971968
113	3	7	5	7	1	32	-16	12	00		$0 \quad 6$	6561	0	-53	754273	53747712
114	3	8	4	8	1	40	-20	4	40		0 5	59049	0	-48	3788457	483729408
115	3	9	3	9	1	48	-24	-4	80		0 5	531441	0	-435	54096113	43535646672
116	3	10	2	10	1	56	-28	-12	120		0	4782969	0	-39	186865017	39182082048
117	3	11	1	11	1	64	-32	-20	160		0	43046721	0	-35	2681785153	352638738432
118	3	12	0	12	1	72	-36	-28	$20 \quad 0$		$0 \quad 3$	387420489	0	-31	74136066377	3173748645888
119	5	0	11	0	1	-21	9	59	-19 0		0	$-\frac{1}{729}$	0	$\frac{2731}{243}$		$-\frac{8192}{729}$
120	5	1	10	1	1	-13	5	51	-15 0		0	$-\frac{1}{81}$	0	$\frac{2731}{27}$		$-\frac{8192}{81}$
121	5	2	9	2	1	-5	1	43	-11 0		0	$-\frac{1}{9}$	0	$\frac{2731}{3}$		$-\frac{8192}{9}$
122	5	3	8	3	1	3	-3	35	$-7 \quad 0$		0	-1	0	819		-8192
123	5	4	7	4	1	11	-7	27	-30		0	-9	0	737		-73728

124	5	5	6	5	1	19	-11	19	1	0	0	-81	0		663633	-663552
125	5	6	5	6	1	27	-15	11	5	0	0	-729	0		5972697	-5971968
126	5	7	4	7	1	35	-19	3	9	0	0	-6561	0		53754273	-53747712
127	5	8	3	8	1	43	-23	-5	13	0	0	-59049	0		483788457	-483729408
128	5	9	2	9	1	51	-27	-13	17	0	0	-531441	0		4354096113	-4353564672
129	5	10	1	10	1	59	-31	-21	21	0	0	-4782969	0		39186865017	-39182082048
130	5	11	0	11	1	67	-35	-29	25	0	0	-43046721	0		352681785153	-352638738432
131	7	0	10	0	1	-18	6	50	-10	0	0	$\frac{1}{729}$	0		$-\frac{2731}{243}$	$\frac{8192}{729}$
132	7	1	9	1	1	-10	2	42	-6	0	0	$\frac{1}{81}$	0		$-\frac{2731}{27}$	- $\frac{8192}{819}$
133	7	2	8	2	1	-2	-2	34	-2	0	0	${ }_{1}{ }^{1}$	0		$-\frac{2731}{3}$	$\frac{8192}{9}$
134	7	3	7	3	1	6	-6	26	2	0	0	1	0		-8193	8192
135	7	4	6	4	1	14	-10	18	6	0	0	9	0		-73737	73728
136	7	5	5	5	1	22	-14	10	10	0	0	81	0		-663633	663552
137	7	6	4	6	1	30	-18	2	14	0	0	729	0		-5972697	5971968
138	7	7	3	7	1	38	-22	-6	18	0	0	6561	0		-53754273	53747712
139	7	8	2	8	1	46	-26	-14	22	0	0	59049	0		-483788457	483729408
140	7	9	1	9	1	54	-30	-22	26	0	0	531441	0		-4354096113	4353564672
141	7	10	0	10	1	62	-34	-30	30	0	0	4782969	0		-39186865017	39182082048
142	9	0	9	0	1	-15	3	41	-1	0	0	$-\frac{1}{729}$	0		$\frac{2731}{243}$	$-\frac{8192}{720}$
143	9	1	8	1	1	-7	-1	33	3	0	0	$-\frac{1}{81}$	0		${ }_{2}{ }^{2731}$	- $-\frac{8192}{8129}$
144	9	2	7	2	1	1	-5	25	7	0	0	$-\frac{1}{9}$	0		$\frac{2731}{3}$	$-\frac{8192}{9}$
145	9	3	6	3	1	9	-9	17	11	0	0	-1	0		8193	-8192
146	9	4	5	4	1	17	-13	9	15	0	0	-9	0		73737	-73728
147	9	5	4	5	1	25	-17	1	19	0	0	-81	0		663633	-663552
148	9	6	3	6	1	33	-21	-7	23	0	0	-729	0		5972697	-5971968
149	9	7	2	7	1	41	-25	-15	27	0	0	-6561	0		53754273	-53747712
150	9	8	1	8	1	49	-29	-23	31	0	0	-59049		0	483788457	-483729408
151	9	9	0	9	1	57	-33	-31	35	0	0	-531441		0	4354096113	-4353564672
152	11	0	8	0	1	-12	0	32	8	0	0	$\frac{1}{729}$		0	$-\frac{2731}{243}$	$\frac{8192}{729}$
153	11	1	7	1	1	-4	-4	24	12	0	0	$\frac{1}{81}$		0	$-\frac{2731}{27}$	$\frac{8192}{81}$
154	11	2	6	2	1	4	-8	16	16	0	0	$\frac{1}{9}$		0	$-\frac{2731}{3}$	$\frac{8192}{9}$
155	11	3	5	3	1	12	-12	8	20	0	0	1		0	-8193	8192
156	11	4	4	4	1	20	-16	0	24	0	0	9		0	-73737	73728
157	11	5	3	5	1	28	-20	-8	28	0	0	81		0	-663633	663552
158	11	6	2	6	1	36	-24	-16	32	0	0	729		0	-5972697	5971968
159	11	7	1	7	1	44	-28	-24	36	0	0	6561		0	-53754273	53747712
160	11	8	0	8	1	52	-32	-32	40	0	0	59049		0	-483788457	483729408
161	13	0	7	0	1	-9	-3	23	17	0	0	$-\frac{1}{729}$		0	$\frac{2731}{243}$	$-\frac{8192}{790}$
162	13	1	6	1	1	-1	-7	15	21	0	0	$-\frac{1}{81}$		0	$\frac{2731}{27}$	$-\frac{8192}{81}$
163	13	2	5	2	1	7	-11	7	25	0	0	- ${ }^{\frac{1}{9}}$		0	$\frac{2731}{3}$	$-\frac{8119}{9}$
164	13	3	4	3	1	15	-15	-1	29	0	0	-1		0	8193	-8192
165	13	4	3	4	1	23	-19	-9	33	0	0	-9		0	73737	-73728
166	13	5	2	5	1	31	-23	-17	37	0	0	-81		0	663633	-663552
167	13	6	1	6	1	39	-27	-25	41	0	0	-729		0	5972697	-5971968
168	13	7	0	7	1	47	-31	-33	45	0	0	-6561		0	53754273	-53747712
169	15	0	6	0	1	-6	-6	14	26	0	0	$\frac{1}{729}$		0	$-\frac{2731}{243}$	$\frac{8192}{729}$
170	15	1	5	1	1	2	-10	6	30	0	0	$\frac{1}{81}$		0	$-\frac{2731}{27}$	$\frac{8192}{81}$
171	15	2	4	2	1	10	-14	-2	34	0	0	$\frac{1}{9}$		0	$-\frac{2731}{3}$	$\frac{8192}{9}$
172	15	3	3	3	1	18	-18	-10	38	0	0	1		0	-8193	8192
173	15	4	2	4	1	26	-22	-18	42	0	0	9		0	-73737	73728
174	15	5	1	5	1	34	-26	-26	46	0	0	81		0	-663633	663552
175	15	6	0	6	1	42	-30	-34	50	0	0	729		0	-5972697	5971968
176	17	0	5	0	1	-3	-9	5	35	0	0	$-\frac{1}{729}$		0	$\frac{2731}{243}$	$-\frac{8192}{729}$
177	17	1	4	1	1	5	-13	-3	39	0	0	$-\frac{1}{81}$		0	$\frac{2731}{27}$	$-\frac{8192}{81}$
178	17	2	3	2	1	13	-17	-11	43	0	0	$-\frac{1}{9}$		0	$\frac{2731}{3}$	$-\frac{8192}{9}$
179	17	3	2	3	1	21	-21	-19	47	0	0	-1		0	8193	-8192
180	17	4	1	4	1	29	-25	-27	51	0	0	-9		0	73737	-73728
181	17	5	0	5	1	37	-29	-35	55	0	0	-81		0	663633	-663552
182	19	0	4	0	1	0	-12	-4	44	0	0	$\frac{1}{729}$		0	$-\frac{2731}{241}$	$\frac{8192}{729}$
183	19	1	3	1	1	8	-16	-12	48	0	0	$\frac{1}{81}$		0	$-\frac{2731}{27}$	- $\frac{8192}{81}$
184	19	2	2	2	1	16	-20	-20	52	0	0	$\frac{1}{9}$		0	$-\frac{2731}{3}$	$\frac{8192}{9}$
185	19	3	1	3	1	24	-24	-28	56	0	0	1		0	-8193	8192
186	19	4	0	4	1	32	-28	-36	60	0	0	9		0	-73737	73728
187	21	0	3	0	1	3	-15	-13	53	0	0	$-\frac{1}{729}$		0	$\frac{2731}{243}$	$-\frac{8192}{790}$
188	21	1	2	1	1	11	-19	-21	57	0	0	$-\frac{1}{81}$		0	$\frac{2431}{27}$	$-\frac{8192}{81}$

(Table 3). Continued.

189	21	2	1	2	1	19	-23	-29	61	0	0
190	21	3	0	3	1	27	-27	-37	65	0	0
191	23	0	2	0	1	6	-18	-22	62	0	0
192	23	1	1	1	1	14	-22	-30	66	0	0
193	23	2	0	2	1	22	-26	-38	70	0	0
194	25	0	1	0	1	9	-21	-31	71	0	0
195	25	1	0	1	1	17	-25	-39	75	0	0
196	27	0	0	0	1	12	-24	-40	80	0	0

$$
+r_{6} q^{7} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{18}\left(1-q^{6 n}\right)^{14}\left(1-q^{12 n}\right)^{2}}{\left(1-q^{2 n}\right)^{6}}
$$

$$
+r_{7} q^{11} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)\left(1-q^{6 n}\right)^{19}\left(1-q^{12 n}\right)^{13}}{\left(1-q^{2 n}\right)^{5}}
$$

$$
+r_{8} q^{3} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{13}\left(1-q^{4 n}\right)^{7}\left(1-q^{6 n}\right)^{13}}{\left(1-q^{12 n}\right)^{5}}
$$

$$
+r_{9} q^{9} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{20}\left(1-q^{12 n}\right)^{12}}{\left(1-q^{2 n}\right)^{4}}
$$

$$
+r_{10} q^{11} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{20}\left(1-q^{6 n}\right)^{12}\left(1-q^{12 n}\right)^{12}}{\left(1-q^{2 n}\right)^{16}}
$$

$$
+r_{11} q^{7} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{8}\left(1-q^{4 n}\right)^{20}\left(1-q^{12 n}\right)^{12}}{\left(1-q^{6 n}\right)^{12}}
$$

$$
+r_{12} q^{9} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{12}\left(1-q^{4 n}\right)^{12}\left(1-q^{12 n}\right)^{20}}{\left(1-q^{6 n}\right)^{16}}
$$

$$
+r_{13} q^{8} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{18}\left(1-q^{6 n}\right)^{20}\left(1-q^{12 n}\right)^{2}}{\left(1-q^{2 n}\right)^{12}}
$$

$$
+r_{14} q^{10} \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)^{20}\left(1-q^{6 n}\right)^{6}\left(1-q^{12 n}\right)^{12}}{\left(1-q^{2 n}\right)^{10}}
$$

$$
+r_{15} q^{10} \prod_{n=1}^{n=1} \frac{\left(1-q^{4 n}\right)^{5}\left(1-q^{6 n}\right)^{11}\left(1-q^{12 n}\right)^{11}}{\left(1-q^{2 n}\right)^{9}}
$$

$$
+r_{16} q^{10} \prod_{n=1}^{n=1} \frac{\left(1-q^{4 n}\right)^{10}\left(1-q^{6 n}\right)^{16}\left(1-q^{12 n}\right)^{10}}{\left(1-q^{2 n}\right)^{8}}
$$

$$
+r_{17} q^{10} \prod_{n=1}^{n=1} \frac{\left(1-q^{2 n}\right)^{11}\left(1-q^{6 n}\right)^{15}\left(1-q^{12 n}\right)^{15}}{\left(1-q^{4 n}\right)^{13}}
$$

$$
+r_{18} q^{8} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{10}\left(1-q^{4 n}\right)^{16}\left(1-q^{12 n}\right)^{16}}{\left(1-q^{6 n}\right)^{14}}
$$

$$
+r_{19} q^{12} \prod_{n=1}^{n=1} \frac{\left(1-q^{4 n}\right)^{2}\left(1-q^{6 n}\right)^{12}\left(1-q^{12 n}\right)^{18}}{\left(1-q^{2 n}\right)^{4}}
$$

$$
+r_{20} q^{12} \prod_{\substack{n=1}}^{\infty} \frac{\left(1-q^{6 n}\right)^{17}\left(1-q^{12 n}\right)^{17}}{\left(1-q^{2 n}\right)^{3}\left(1-q^{4 n}\right)^{3}}
$$

$$
+r_{21} q^{4} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{5}\left(1-q^{4 n}\right)^{7}\left(1-q^{6 n}\right)^{19}}{\left(1-q^{12 n}\right)^{5}}
$$

$$
+r_{22} q^{10} \prod_{\substack{n=1 \\ \infty}}^{n=1} \frac{\left(1-q^{4 n}\right)^{16}\left(1-q^{12 n}\right)^{16}}{\left(1-q^{2 n}\right)^{2}\left(1-q^{6 n}\right)^{2}}
$$

$$
+r_{23} q^{6} \prod_{n=1}^{\infty}\left(1-q^{4 n}\right)^{18}\left(1-q^{6 n}\right)^{8}\left(1-q^{12 n}\right)^{2}
$$

$$
\begin{aligned}
& \begin{array}{lll}
-\frac{1}{9} & 0 & \frac{2731}{3} \\
-1 & 0 & 8193 \\
\frac{1}{729} & 0 & -\frac{2731}{243} \\
\frac{1}{81} & 0 & -\frac{2731}{2} \\
\frac{1}{9} & 0 & -\frac{2731}{3} \\
-\frac{1}{729} & 0 & \frac{2731}{243} \\
-\frac{1}{81} & 0 & \frac{2731}{2} \\
\frac{1}{729} & 0 & -\frac{2731}{243}
\end{array} \\
& \begin{array}{l}
-\frac{8192}{9} \\
-8192 \\
\frac{8192}{729} \\
\frac{8192}{81} \\
\frac{8192}{9} \\
-\frac{8192}{729} \\
-\frac{8192}{81} \\
\frac{8192}{729}
\end{array} \\
& =\delta\left(b_{1}\right)-\sum_{n=1}^{\infty}\left(c_{1} \sigma_{13}(n)+c_{2} \sigma_{13}\left(\frac{n}{2}\right)+c_{3} \sigma_{13}\left(\frac{n}{3}\right)+\right. \\
& \left.c_{4} \sigma_{13}\left(\frac{n}{4}\right)+c_{6} \sigma_{13}\left(\frac{n}{6}\right)+c_{12} \sigma_{13}\left(\frac{n}{12}\right)\right) q^{n} \\
& +r_{1} f_{1}(n)+\ldots .+r_{23} f_{23}(n) \text {, }
\end{aligned}
$$

where
$\delta\left(b_{1}\right)=\left\{\begin{array}{l}0 \text { if } b_{1} \neq 0 \\ 1 \text { if } b_{1}=0\end{array}\right.$.

So

$c(2 n)=-c_{1} \sigma_{13}(2 n)-c_{2} \sigma_{13}(n)-c_{4} \sigma_{13}\left(\frac{n}{2}\right)-$ $\left(16385 c_{3}+c_{6}\right) \sigma_{13}\left(\frac{n}{3}\right)$
$-\left(c_{12}-16384 c_{3}\right) \sigma_{13}\left(\frac{n}{6}\right)+r_{13} f_{13}(2 n)+\cdots+r_{23} f_{23}(2 n)$,
Therefore, for $n=1,2, \ldots$,

$$
\begin{aligned}
& c(2 n)=-c_{1} \sigma_{13}(2 n)-c_{2} \sigma_{13}(n)-c_{4} \sigma_{13}\left(\frac{n}{2}\right)- \\
& \left(16385 c_{3}+c_{6}\right) \sigma_{13}\left(\frac{n}{3}\right) \\
& -\left(c_{12}-16384 c_{3}\right) \sigma_{13}\left(\frac{n}{6}\right)+r_{13} f_{13}(2 n)+\cdots+r_{23} f_{23}(2 n) \\
& c(2 n-1)=-c_{1} \sigma_{13}(2 n-1)-c_{3} \sigma_{13}\left(\frac{2 n-1}{3}\right) \\
& +r_{1} f_{1}(2 n-1)+\cdots+r_{12} f_{12}(2 n-1)
\end{aligned}
$$

since it is easy to see that
$\sigma_{k}\left(\frac{2 n}{3}\right)=\left(2^{k}+1\right) \sigma_{k}\left(\frac{n}{3}\right)-2^{k} \sigma_{k}\left(\frac{n}{6}\right)$
hence,
$\sigma_{13}\left(\frac{2 n}{3}\right)=16385 \sigma_{13}\left(\frac{n}{3}\right)-16384 \sigma_{13}\left(\frac{n}{6}\right)$,
and, for $n=1,2, \ldots$,
$f_{1}(2 n)=\cdots=f_{12}(2 n)=0$,
$f_{13}(2 n-1)=\cdots=f_{23}(2 n-1)=0$.

Remark 1. We have found 196 eta quotients, see Table 3, such that, for $n=1,2, \ldots$,

$$
\begin{aligned}
& c(2 n)=-c_{1} \sigma_{13}(2 n)-c_{2} \sigma_{13}(n)-c_{4} \sigma_{13}\left(\frac{n}{2}\right)- \\
& \left(16385 c_{3}+c_{6}\right) \sigma_{13}\left(\frac{n}{3}\right)-\left(c_{12}-16384 c_{3}\right) \sigma_{13}\left(\frac{n}{6}\right) \\
& c(2 n-1)=-c_{1} \sigma_{13}(2 n-1)-c_{3} \sigma_{13}\left(\frac{2 n-1}{3}\right)+ \\
& r_{1} f_{1}(2 n-1)+\cdots+r_{12} f_{12}(2 n-1) .
\end{aligned}
$$

and 459 eta quotients, such that for $n=1,2, \ldots$,
$c(2 n)=-c_{1} \sigma_{13}(2 n)-c_{2} \sigma_{13}(n)-c_{4} \sigma_{13}\left(\frac{n}{2}\right)-c_{6} \sigma_{13}\left(\frac{n}{3}\right)$
$-c_{12} \sigma_{13}\left(\frac{n}{6}\right)+r_{13} f_{13}(2 n)+\cdots+r_{23} f_{23}(2 n)$,
$c(2 n-1)=0$.
Remark 2. If f is an eta quotient, then $f(-q)$ is also an eta quotient, so the coefficients of $\frac{1}{2}(f(q)+f(-q))$ are exactly the even coefficients of f . In particular, it means that we have obtained all coefficients of some sum of 196 eta quotients.

Remark 3. $S_{14}\left(\Gamma_{0}(12)\right)$ is 23 dimensional, $M_{14}\left(\Gamma_{0}(12)\right)$ is 29 dimensional, see [18] (Chapter 3, pg. 87 and Chapter 5, pg.197), and generated by
$\Delta_{2,14,1}, \Delta_{2,14,1}(2 z), \Delta_{2,14,1}(3 z), \Delta_{2,14,1}(6 z)$,
$\Delta_{2,14,2}, \Delta_{2,14,2}(2 z), \Delta_{2,14,2}(3 z), \Delta_{2,14,2}(6 z)$,
$\Delta_{3,14,1}(z), \Delta_{3,14,1}(2 z), \Delta_{3,14,1}(4 z), \Delta_{3,14,2}, \Delta_{3,14,2}(2 z)$,
$\Delta_{3,14,2}(4 z), \Delta_{3,14,3}(z), \Delta_{3,14,3}(2 z), \Delta_{3,14,3}(4 z)$
$\Delta_{4,14}, \Delta_{4,14}(3 z), \Delta_{6,14}, \Delta_{6,14}(2 z), \Delta_{12,14,1}, \Delta_{12,14,2}$,
where $\Delta_{2,14,1}, \Delta_{2,14,2}$ are the unique newforms in $S_{14}\left(\Gamma_{0}(2)\right), \Delta_{3,14,1}, \Delta_{3,14,2}, \Delta_{3,14,3}$ are the newforms in $S_{14}\left(\Gamma_{0}(3)\right), \Delta_{4,14}$, is the unique newform in $S_{14}\left(\Gamma_{0}(4)\right)$ and $\Delta_{6,14}$ is the unique newform in $S_{14}\left(\Gamma_{0}(6)\right), \Delta_{12,14,1}, \Delta_{12,14,2}$ are the unique newforms in $S_{14}\left(\Gamma_{0}(12)\right)$. By taking t as a root of $x^{2}+54 x-16992$, we express $f_{1}, \ldots f_{23}$ in Table 2 as linear combinations of them.

REFERENCES

[1] Williams KS. Fourier series of a class of eta quotients. Int J Number Theory 2012; 8: 993-1004.
http://dx.doi.org/10.1142/S1793042112500595
[2] Yao OXM, Xia EXW, Jin J. Explicit Formulas for the Fourier coefficients of a class of eta quotients. Int J Number Theory 2013; 9(2): 487-503. http://dx.doi.org/10.1142/S179304211250145X
[3] Köhler G. Eta Products and Theta Series Identities (SpringerVerlag, Berlin, 2011). http://dx.doi.org/10.1007/978-3-642-16152-0
[4] Gordon B. Some identities in combinatorial analysis. Quart J Math Oxford Ser 1961; 12: 285-290.
[5] Kac VG. Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula. Adv Math 1978; 30: 85-136. http://dx.doi.org/10.1016/0001-8708(78)90033-6
[6] Macdonald IG. Affine root systems and Dedekind's η-function. Invent Math 1972; 15: 91-143. http://dx.doi.org/10.1007/BF01418931
[7] Zucker IJ. A systematic way of converting infinite series into infinite products. J Phys A 1987; 20: L13-L17. http://dx.doi.org/10.1088/0305-4470/20/1/003
[8] Zucker IJ. Further relations amongst infinite series and products: II. The evaluation of three-dimensional lattice sums. J Phys A 1990; 23: 117-132. http://dx.doi.org/10.1088/0305-4470/23/2/009
[9] Kendirli B. Evaluation of Some Convolution Sums by Quasimodular Forms. Eur J Pure Appl Math 2015; 8(1): 81110.
[10] Kendirli B. Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of Discriminant 135. Br J Math Comp Sci 2015; 6(6): 494-531.
[11] Kendirli B. Evaluation of Some Convolution Sums andthe Representation numbers. Ars Combinatorica CXVI: July, pp. 65-91.
[12] Kendirli B. Cusp Forms in $S_{4}\left(\Gamma_{0}(79)\right)$ and the number of representations of positive integers by some direct sum of binary quadratic forms with discriminant-79. Bull Korean Math Soc 2012; 49(3). http://dx.doi.org/10.4134/BKMS.2012.49.3.529
[13] Kendirli B. Cusp Forms in $S_{4}\left(\Gamma_{0}(47)\right)$ and the number of representations of positive integers by some direct sum of binary quadratic forms with discriminant -47, Hindawi. Int J Math Math Sci 2012; 30349210 pages.
[14] Kendirli B. The Bases of $M_{4}\left(\Gamma_{0}(71)\right), M_{6}\left(\Gamma_{0}(71)\right)$ and the Number of Representations of Integers, Hindawi. Math Probl Eng 2013; 695265, 34 pages.
[15] Alaca A, Alaca S, Williams KS. On the two-dimensional theta functions of Borweins. Acta Arith 2006; 124: 177-195. http://dx.doi.org/10.4064/aa124-2-4
[16] Alaca A, Alaca S, Williams KS. Evaluation of the convolution sums $\Sigma_{\mid+12 m=n} \sigma(l) \sigma(m)$ and $\Sigma_{3 \mid+4 m=n} \sigma(l) \sigma(m)$. Adv Theor Appl Math 2006; 1: 27-48.
[17] Gordon B, Robins S. Lacunarity of Dedekind η-products. Glasgow Math J 1995; 37: 1-14. http://dx.doi.org/10.1017/S0017089500030329
[18] Diamond F, Shurman J. A First Course in Modular Forms. Springer Graduate Texts in Mathematics 228.
http://dx.doi.org/10.6000/1927-5129.2015.11.64
© 2015 Barış Kendirli; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

