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Abstract: Suppose that  is a domain of  
n , n 1 , E  closed in , the Hausdorff measure 

 
H

2n 1 (E) = 0 , and f  

is holomorphic in \ E . It is a classical result of Besicovitch that if n = 1  and f  is bounded, then f  has a unique 

holomorphic extension to . Using an important result of Federer, Shiffman extended Besicovitch’s result to the general 

case of arbitrary number of several complex variables, that is, for n 1 . Now we give a related result, replacing the 

boundedness condition of f  by certain integrability conditions of f and of
2 f

z j
2 , j =1,2,…,n .  
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1. INTRODUCTION 

1.1. Previous Results 

The following result of Besicovitch is well-known: 

Theorem 1. ([1], Theorem 1, p. 2) Let D  be a 
domain in  . Let E D  be closed in D  and let 

 
H
1(E) = 0 . If 

 
f :D \ E  is holomorphic and 

bounded, then f  has a unique holomorphic extension 

to D . 

Above and below H is the dimensional  Haus-

dorff (outer) measure in k , k 2 .  

Much later Shiffman gave the following general 
result: 

Theorem 2. ([2], Lemma 3, p. 115) Let  be a 

domain in  
n , n 1 . Let E  be closed in  and let 

 
H

2n 1(E) = 0 . If 
 
f : \ E  is holomorphic and 

bounded, then f  has a unique holomorphic extension 

to . 

Shiffman’s proof was based on Besicovitch’s result, 

Theorem 1 above, on coordinate rotation, on the use of 

Cauchy integral formula and on the following result of 

Federer: 
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Lemma 1. ([3], Theorem 2.10.25, p. 188, and [2], 

Corollary 4, Lemma 2, p. 114) Suppose that E k , 

k 2 , is such that 
 
H

k 1(E) = 0 . Then for all j , 

1 j k , and for  H
k 1 -almost all 

 
Xj

k 1  the set 

E(Xj )  is empty. 

For slightly more general versions of Shiffman’s 
result with different proofs, see [4], Theorem 3.1, p. 49, 
Corollary 3.2, p. 52, and [5], Theorem 3.1, p. 333, 
Corollary 3.3, p. 336.  

1.2. Notation 

Our notation is more or less standard, see [6-8]. 
However and for the convenience of the reader, we 

recall here the following. If 
 
x = (x1,…, xn )

n ,n 2  and 

j , 1 j n , then we write x = (x j , Xj ) , where 

),,,,,(= 111 njjj xxxxX ……
+

. Moreover, if E n ,  

1 j n , and 
 
x j
0 , 

 
Xj
0 n 1 , we write  

 

E(x j
0 ) = {Xj

n 1:x = (x j
0 , Xj ) E},

E(Xj
0 ) = {x j :x = (x j , Xj

0 ) E}.
 

If n  and p > 0 , then 
 
Lloc
p ( ) , p > 0 , is the 

space of functions u  in  for which | u |p  is locally 

integrable on . We identify  
n , n 1 , with  

2n . We 
use the common convention 0 ± = 0 . 

For the definition and properties of subharmonic 
functions, see e.g. [9-12], for the definition of 
holomorphic functions see e.g. [13-15].  
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2. AN EXTENSION RESULT FOR HOLOMORPHIC 
FUNCTIONS 

2.1. Our result is related to Theorem 2 above, and 
reads as follows:  

Theorem 3. Suppose that  is a domain in  
n , 

n 1 . Let E  be closed in  and let 
 
H

2n 1(E) = 0 . 

Let 
 
f : \ E  be holomorphic and such that the 

following conditions are satisfied:  

(i) 
 
f Lloc

1 ( ) ,  

(ii) for each 

 

j,1 j 2n,
2 f

x j
2 Lloc

1 ( ).  

Then f  has a holomorphic extension to .  

2.2. The proof will be based, in addition to Federer’s 
cited Lemma 1 above, also on the following recent 
result:  

Lemma 2. ([8], Theorem, p. 568) Suppose that  is 

a domain in n , n 2 . Let E  be closed in  and 

let 
 
H

n 1(E) < + . Let u : [ ,+ ]  be such that the 

following conditions are satisfied:  

(i) u Lloc
1 ( ) ;  

(ii)  

(iii) for each j , 1 j n , 

2u

x j
2 Lloc

1 ( ) ;  

(iv) for each j , 1 j n , and for Hn 1 -almost all 

 
Xj

n 1  such that E(Xj )  is finite, the following 

condition holds: for each x j
0 E(Xj )  there exist 

sequences x j ,l
0,1, x j ,l

0,2 ( \ E)(Xj ) , 
 
l =1, 2,… , such 

that  

(iv(a) 
 
x j ,l
0,1 x j

0 ,
 
x j ,l
0,2 x j

0 , and  

 l +

limu(x j ,l
0,1, Xj ) =

l +

limu(x j ,1
0,2 , Xj ) ,  

(iv(b) < l +lim
u

x j
(x j ,l

0,1, Xj ) l +lim
u

x j
(x j ,l

0,2 , Xj ) < + ;  

(v) u  is subharmonic in \ E .  

 

Then u | ( \ E)  has a subharmonic extension to . 

Proof of Theorem 3. Write f = u + iv . It is sufficient 

to show that u  and v  have subharmonic extensions to 
. As a matter of fact, then f  will be locally bounded 

in , and thus the claim will follow from Theorem 2 or 
also from the already cited slightly more general results 
from [4, 5]. To see that u  and v  have indeed 
subharmonic extensions to , we use our Lemma 2 as 
follows. 

It is sufficient to show that the assumption (iv) of 
Lemma 2 is satisfied. For that purpose take j , 

1 j 2n , arbitrarily. By Federer’s result, Lemma 1 

above, we know that for H2n 1  almost all 
 
Xj

2n 1  the 

set E(Xj )  is empty. Thus for H2n 1  almost all 

Xj
2n 1  the functions u( , Xj ) : (Xj )  and 

 
v( , Xj ) : (Xj )  are  functions. Therefore, the 

assumption (iv) is satisfied both for u  and for v , 
concluding the proof.  
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