A Removability Result for Holomorphic Functions of Several Complex Variables

Juhani Riihentaus ${ }^{1,2, *}$
${ }^{1}$ University of Oulu, Department of Mathematical Sciences, P.O. Box 3000, FI-90014 Oulun yliopisto, Finland
${ }^{2}$ University of Eastern Finland, Department of Physics and Mathematics, P.O. Box 111, FI-80101 Joensuu, Finland

Abstract

Suppose that Ω is a domain of $\mathbb{C}^{n}, n \geq 1, E \subset \Omega$ closed in Ω, the Hausdorff measure $\mathcal{H}^{2 n-1}(E)=0$, and f is holomorphic in $\Omega \backslash E$. It is a classical result of Besicovitch that if $n=1$ and f is bounded, then f has a unique holomorphic extension to Ω. Using an important result of Federer, Shiffman extended Besicovitch's result to the general case of arbitrary number of several complex variables, that is, for $n \geq 1$. Now we give a related result, replacing the boundedness condition of f by certain integrability conditions of f and of $\frac{\partial^{2} f}{\partial z_{j}^{2}}, j=1,2, \ldots, n$.

Keywords: Holomorphic function, subharmonic function, Hausdorff measure, exceptional sets.

1. INTRODUCTION

1.1. Previous Results

The following result of Besicovitch is well-known:
Theorem 1. ([1], Theorem 1, p. 2) Let D be a domain in \mathbb{C}. Let $E \subset D$ be closed in D and let $\mathcal{H}^{1}(E)=0$. If $f: D \backslash E \rightarrow \mathbb{C}$ is holomorphic and bounded, then f has a unique holomorphic extension to D.

Above and below \mathcal{H}^{α} is the α-dimensional Hausdorff (outer) measure in $\mathbb{R}^{k}, k \geq 2$.

Much later Shiffman gave the following general result:

Theorem 2. ([2], Lemma 3, p. 115) Let Ω be a domain in $\mathbb{C}^{n}, n \geq 1$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{2 n-1}(E)=0$. If $f: \Omega \backslash E \rightarrow \mathbb{C}$ is holomorphic and bounded, then f has a unique holomorphic extension to Ω.

Shiffman's proof was based on Besicovitch's result, Theorem 1 above, on coordinate rotation, on the use of Cauchy integral formula and on the following result of Federer:

[^0]Lemma 1. ([3], Theorem 2.10.25, p. 188, and [2], Corollary 4, Lemma 2, p. 114) Suppose that $E \subset \mathbb{R}^{k}$, $k \geq 2$, is such that $\mathcal{H}^{k-1}(E)=0$. Then for all j, $1 \leq j \leq k$, and for \mathcal{H}^{k-1}-almost all $X_{j} \in \mathbb{R}^{k-1}$ the set $E\left(X_{j}\right)$ is empty.

For slightly more general versions of Shiffman's result with different proofs, see [4], Theorem 3.1, p. 49, Corollary 3.2, p. 52, and [5], Theorem 3.1, p. 333, Corollary 3.3, p. 336.

1.2. Notation

Our notation is more or less standard, see [6-8]. However and for the convenience of the reader, we recall here the following. If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$ and $j \in \mathbb{N}, 1 \leq j \leq n$, then we write $x=\left(x_{j}, X_{j}\right)$, where $X_{j}=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$. Moreover, if $E \subset \mathbb{R}^{n}$, $1 \leq j \leq n$, and $x_{j}^{0} \in \mathbb{R}, X_{j}^{0} \in \mathbb{R}^{n-1}$, we write
$E\left(x_{j}^{0}\right)=\left\{X_{j} \in \mathbb{R}^{n-1}: x=\left(x_{j}^{0}, X_{j}\right) \in E\right\}$, $E\left(X_{j}^{0}\right)=\left\{x_{j} \in \mathbb{R}: x=\left(x_{j}, X_{j}^{0}\right) \in E\right\}$.

If $\Omega \subset \mathbb{R}^{n}$ and $p>0$, then $\mathcal{L}_{10 c}^{p}(\Omega), p>0$, is the space of functions u in Ω for which $|u|^{p}$ is locally integrable on Ω. We identify $\mathbb{C}^{n}, n \geq 1$, with $\mathbb{R}^{2 n}$. We use the common convention $0 \cdot \pm \infty=0$.

For the definition and properties of subharmonic functions, see e.g. [9-12], for the definition of holomorphic functions see e.g. [13-15].

2. AN EXTENSION RESULT FOR HOLOMORPHIC FUNCTIONS

2.1. Our result is related to Theorem 2 above, and reads as follows:

Theorem 3. Suppose that Ω is a domain in \mathbb{C}^{n}, $n \geq 1$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{2 n-1}(E)=0$. Let $f: \Omega \backslash E \rightarrow \mathbb{C}$ be holomorphic and such that the following conditions are satisfied:
(i) $f \in \mathcal{L}_{100}^{1}(\Omega)$,
for each $j, 1 \leq j \leq 2 n, \frac{\partial^{2} f}{\partial x_{j}^{2}} \in \mathcal{L}_{\text {loc }}^{1}(\Omega)$.
Then f has a holomorphic extension to Ω.
2.2. The proof will be based, in addition to Federer's cited Lemma 1 above, also on the following recent result:

Lemma 2. ([8], Theorem, p. 568) Suppose that Ω is a domain in $\mathbb{R}^{n}, n \geq 2$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{n-1}(E)<+\infty$. Let $u: \Omega \rightarrow[-\infty,+\infty]$ be such that the following conditions are satisfied:
(i) $u \in \mathcal{L}_{\text {loc }}^{1}(\Omega)$;
(ii) $\quad u \in \mathfrak{C}^{2}(\Omega \backslash E)$;
(iii) for each $j, 1 \leq j \leq n, \frac{\partial^{2} u}{\partial x_{j}^{2}} \in \mathcal{L}_{\text {loc }}^{1}(\Omega)$;
(iv) for each $j, 1 \leq j \leq n$, and for \mathcal{H}^{n-1}-almost all $X_{j} \in \mathbb{R}^{n-1}$ such that $E\left(X_{j}\right)$ is finite, the following condition holds: for each $x_{j}^{0} \in E\left(X_{j}\right)$ there exist sequences $x_{j, l}^{0,1}, x_{j, l}^{0,2} \in(\Omega \backslash E)\left(X_{j}\right), l=1,2, \ldots$, such that
(iv(a) $x_{j, l}^{0,1} \nearrow x_{j}^{0}, x_{j, l}^{0,2} \searrow x_{j}^{0}$, and

$$
\lim _{l \rightarrow+\infty} u\left(x_{j, l}^{0,1}, X_{j}\right)=\lim _{l \rightarrow+\infty} u\left(x_{j, 1}^{0,2}, X_{j}\right) \in \mathbb{R},
$$

(iv(b) $-\infty<\lim _{\iota \rightarrow+\infty} \frac{\partial u}{\partial x_{j}}\left(x_{j, l}^{0,1}, X_{j}\right) \leq \lim _{l \rightarrow+\infty} \frac{\partial u}{\partial x_{j}}\left(x_{j, t}^{0,2}, X_{j}\right)<+\infty$;
(v) u is subharmonic in $\Omega \backslash E$.

Then $u \mid(\Omega \backslash E)$ has a subharmonic extension to Ω.
Proof of Theorem 3. Write $f=u+i v$. It is sufficient to show that u and v have subharmonic extensions to Ω. As a matter of fact, then f will be locally bounded in Ω, and thus the claim will follow from Theorem 2 or also from the already cited slightly more general results from [4, 5]. To see that u and v have indeed subharmonic extensions to Ω, we use our Lemma 2 as follows.

It is sufficient to show that the assumption (iv) of Lemma 2 is satisfied. For that purpose take j, $1 \leq j \leq 2 n$, arbitrarily. By Federer's result, Lemma 1 above, we know that for $\mathcal{H}^{2 n-1}$ almost all $X_{j} \in \mathbb{R}^{2 n-1}$ the set $E\left(X_{j}\right)$ is empty. Thus for $\mathcal{H}^{2 n-1}$ almost all $X_{j} \in \mathbb{R}^{2 n-1} \quad$ the functions $u\left(\cdot X_{j}\right): \Omega\left(X_{j}\right) \rightarrow \mathbb{R} \quad$ and $v\left(\cdot, X_{j}\right): \Omega\left(X_{j}\right) \rightarrow \mathbb{R}$ are \mathcal{C}^{∞} functions. Therefore, the assumption (iv) is satisfied both for u and for v, concluding the proof.

REFERENCES

[1] Besicovitch AS. On sufficient conditions for a function to be analytic, and on behavior of analytic functions in the neighborhood of non-isolated singular point. Proc London Math Soc (2) 1931; 32: 1-9.
[2] Shiffman B. On the removal of singularities of analytic sets. Michigan Math J 1968; 15: 111-120. http://dx.doi.org/10.1307/mmj/1028999912
[3] Federer H. Geometric measure theory. Berlin: Springer 1969.
[4] Riihentaus J. Removable singularities of analytic functions of several complex variables. Math Z 1978; 158: 45-54. http://dx.doi.org/10.1007/BF01214564
[5] Riihentaus J. Removable singularities of analytic and meromorphic functions of several complex variables. Colloquium on Complex Analysis, Joensuu, Finland, August 24-27, 1978 (Complex Analysis, Joensuu 1978). In: Proceedings (eds. Ilpo Laine, Olli Lehto, Tuomas Sorvali), Lecture Notes in Mathematics 747; 1978: 329-342, SpringerVerlag, Berlin 1979.
[6] Riihentaus J. Subharmonic functions, mean value inequality, boundary behavior, nonintegrability and exceptional sets. Workshop on Potential Theory and Free Boundary Flows; August 19-27, 2003: Kiev, Ukraine. In: Transactions of the Institute of Mathematics of the National Academy of Sciences of Ukraine; 2004: Kiev; 1 (no. 3): 169-91.
[7] Riihentaus J. An inequality type condition for quasinearly subharmonic functions and applications. Positivity VII, Leiden, July 22-26, 2013, Zaanen Centennial Conference. In: Trends in Mathematical Series, Birkhäuser, to appear.
[8] Riihentaus J. Exceptional sets for subharmonic functions. J. Basic \& Applied Sciences 2015; 11: 567-571. http://dx.doi.org/10.6000/1927-5129.2015.11.75
[9] Helms LL. Introduction to potential theory. New York: WileyInterscience 1969.
[10] Hervé M. Analytic and plurisubharmonic functions in finite and infinite dimensional spaces. Lecture Notes in Mathematics 198. Berlin: Springer 1971.
[11] Lelong P. Plurisubharmonic functions and positive differential forms. New York: Gordon and Breach 1969.
[12] Rado T. Subharmonic functions. Berlin: Springer 1937.
[13] Chirka, EM. Complex Analytic Sets. Dordrecht: Kluwer Academic Publisher 1989.
[14] Jarnicki M., Pflug P. Extension of Holomorphic Functions. Berlin: Walter de Gruyter 2000.
[15] Jarnicki M., Pflug P. Separately Analytic Functions. Zürich: European Mathematical Society 2011.

Received on 04-12-2015
Published on 03-02-2016
http://dx.doi.org/10.6000/1927-5129.2016.12.07
© 2016 Juhani Riihentaus; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to this author at the University of Oulu, Department of Mathematical Sciences, P.O. Box 3000, FI-90014 Oulun yliopisto, Finland; E-mail: riihentaus@member.ams.org, juhani.riihentaus@uef.fi
 2000 Mathematics Subject Classification. 31B05, 31B25, 32U05, 32D20.

