A Removability Result for Holomorphic Functions of Several Complex Variables

Juhani Riihentaus^{1,2,*}

¹University of Oulu, Department of Mathematical Sciences, P.O. Box 3000, FI-90014 Oulun yliopisto, Finland ²University of Eastern Finland, Department of Physics and Mathematics, P.O. Box 111, FI-80101 Joensuu, Finland

Abstract: Suppose that Ω is a domain of \mathbb{C}^n , $n \ge 1$, $E \subset \Omega$ closed in Ω , the Hausdorff measure $\mathcal{H}^{2n-1}(E) = 0$, and f is holomorphic in $\Omega \setminus E$. It is a classical result of Besicovitch that if n = 1 and f is bounded, then f has a unique holomorphic extension to Ω . Using an important result of Federer, Shiffman extended Besicovitch's result to the general case of arbitrary number of several complex variables, that is, for $n \ge 1$. Now we give a related result, replacing the

boundedness condition of f by certain integrability conditions of f and of $\frac{\partial^2 f}{\partial \tau_{\perp}^2}$, j = 1, 2, ..., n.

Keywords: Holomorphic function, subharmonic function, Hausdorff measure, exceptional sets.

1. INTRODUCTION

1.1. Previous Results

The following result of Besicovitch is well-known:

Theorem 1. ([1], Theorem 1, p. 2) Let D be a domain in \mathbb{C} . Let $E \subset D$ be closed in D and let $\mathcal{H}^1(E) = 0$. If $f: D \setminus E \to \mathbb{C}$ is holomorphic and bounded, then f has a unique holomorphic extension to D.

Above and below \mathcal{H}^{α} is the α -dimensional Hausdorff (outer) measure in \mathbb{R}^k , $k \ge 2$.

Much later Shiffman gave the following general result:

Theorem 2. ([2], Lemma 3, p. 115) Let Ω be a domain in \mathbb{C}^n , $n \ge 1$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{2n-1}(E) = 0$. If $f: \Omega \setminus E \to \mathbb{C}$ is holomorphic and bounded, then f has a unique holomorphic extension to Ω .

Shiffman's proof was based on Besicovitch's result, Theorem 1 above, on coordinate rotation, on the use of Cauchy integral formula and on the following result of Federer: **Lemma 1.** ([3], Theorem 2.10.25, p. 188, and [2], Corollary 4, Lemma 2, p. 114) Suppose that $E \subset \mathbb{R}^k$, $k \ge 2$, is such that $\mathcal{H}^{k-1}(E) = 0$. Then for all j, $1 \le j \le k$, and for \mathcal{H}^{k-1} -almost all $X_j \in \mathbb{R}^{k-1}$ the set $E(X_j)$ is empty.

For slightly more general versions of Shiffman's result with different proofs, see [4], Theorem 3.1, p. 49, Corollary 3.2, p. 52, and [5], Theorem 3.1, p. 333, Corollary 3.3, p. 336.

1.2. Notation

Our notation is more or less standard, see [6-8]. However and for the convenience of the reader, we recall here the following. If $x = (x_1, ..., x_n) \in \mathbb{R}^n, n \ge 2$ and $j \in \mathbb{N}$, $1 \le j \le n$, then we write $x = (x_j, X_j)$, where $X_j = (x_1, ..., x_{j-1}, x_{j+1}, ..., x_n)$. Moreover, if $E \subset \mathbb{R}^n$, $1 \le j \le n$, and $x_j^0 \in \mathbb{R}$, $X_j^0 \in \mathbb{R}^{n-1}$, we write

$$\begin{split} E(x_j^0) &= \{X_j \in \mathbb{R}^{n-1} : x = (x_j^0, X_j) \in E\}, \\ E(X_j^0) &= \{x_j \in \mathbb{R} : x = (x_j, X_j^0) \in E\}. \end{split}$$

If $\Omega \subset \mathbb{R}^n$ and p > 0, then $\mathcal{L}^p_{\text{loc}}(\Omega)$, p > 0, is the space of functions u in Ω for which $|u|^p$ is locally integrable on Ω . We identify \mathbb{C}^n , $n \ge 1$, with \mathbb{R}^{2n} . We use the common convention $0 \cdot \pm \infty = 0$.

For the definition and properties of subharmonic functions, see e.g. [9-12], for the definition of holomorphic functions see e.g. [13-15].

^{*}Address correspondence to this author at the University of Oulu, Department of Mathematical Sciences, P.O. Box 3000, FI-90014 Oulun yliopisto, Finland; E-mail: riihentaus@member.ams.org, juhani.riihentaus@uef.fi

²⁰⁰⁰ Mathematics Subject Classification. 31B05, 31B25, 32U05, 32D20.

2. AN EXTENSION RESULT FOR HOLOMORPHIC FUNCTIONS

2.1. Our result is related to Theorem 2 above, and reads as follows:

Theorem 3. Suppose that Ω is a domain in \mathbb{C}^n , $n \ge 1$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{2n-1}(E) = 0$. Let $f: \Omega \setminus E \to \mathbb{C}$ be holomorphic and such that the following conditions are satisfied:

(i) $f \in \mathcal{L}^{1}_{loc}(\Omega)$,

(ii) for each
$$j, 1 \le j \le 2n, \frac{\partial^2 f}{\partial x_j^2} \in \mathcal{L}_{loc}^{l}(\Omega)$$

Then *f* has a holomorphic extension to Ω .

2.2. The proof will be based, in addition to Federer's cited Lemma 1 above, also on the following recent result:

Lemma 2. ([8], Theorem, p. 568) Suppose that Ω is a domain in \mathbb{R}^n , $n \ge 2$. Let $E \subset \Omega$ be closed in Ω and let $\mathcal{H}^{n-1}(E) < +\infty$. Let $u : \Omega \to [-\infty, +\infty]$ be such that the following conditions are satisfied:

(i)
$$u \in \mathcal{L}^{1}_{loc}(\Omega);$$

(ii) $u \in \mathcal{C}^2(\Omega \setminus E);$

(iii) for each
$$j$$
, $1 \le j \le n$, $\frac{\partial^2 u}{\partial x_j^2} \in \mathcal{L}^{\mathsf{l}}_{\mathsf{loc}}(\Omega)$;

(iv) for each j, $1 \le j \le n$, and for \mathcal{H}^{n-1} -almost all $X_j \in \mathbb{R}^{n-1}$ such that $E(X_j)$ is finite, the following condition holds: for each $x_j^0 \in E(X_j)$ there exist sequences $x_{j,l}^{0,1}, x_{j,l}^{0,2} \in (\Omega \setminus E)(X_j)$, l = 1, 2, ..., such that

(iv(a)
$$x_{j,l}^{0,1} \nearrow x_j^0$$
, $x_{j,l}^{0,2} \searrow x_j^0$, and

$$\lim_{l \to +\infty} u(x_{j,l}^{0,1}, X_j) = \lim_{l \to +\infty} u(x_{j,l}^{0,2}, X_j) \in \mathbb{R},$$

(iv(b)
$$-\infty < \lim_{l \to +\infty} \frac{\partial u}{\partial x_j}(x_{j,l}^{0,1}, X_j) \le \lim_{l \to +\infty} \frac{\partial u}{\partial x_j}(x_{j,l}^{0,2}, X_j) < +\infty;$$

(v) u is subharmonic in $\Omega \setminus E$.

Then $u \mid (\Omega \setminus E)$ has a subharmonic extension to Ω .

Proof of Theorem 3. Write f = u + iv. It is sufficient to show that u and v have subharmonic extensions to Ω . As a matter of fact, then f will be locally bounded in Ω , and thus the claim will follow from Theorem 2 or also from the already cited slightly more general results from [4, 5]. To see that u and v have indeed subharmonic extensions to Ω , we use our Lemma 2 as follows.

It is sufficient to show that the assumption (iv) of Lemma 2 is satisfied. For that purpose take j, $1 \le j \le 2n$, arbitrarily. By Federer's result, Lemma 1 above, we know that for \mathcal{H}^{2n-1} almost all $X_j \in \mathbb{R}^{2n-1}$ the set $E(X_j)$ is empty. Thus for \mathcal{H}^{2n-1} almost all $X_j \in \mathbb{R}^{2n-1}$ the functions $u(\cdot, X_j) : \Omega(X_j) \to \mathbb{R}$ and $v(\cdot, X_j) : \Omega(X_j) \to \mathbb{R}$ are \mathcal{C}^{∞} functions. Therefore, the assumption (iv) is satisfied both for u and for v, concluding the proof.

REFERENCES

- Besicovitch AS. On sufficient conditions for a function to be analytic, and on behavior of analytic functions in the neighborhood of non-isolated singular point. Proc London Math Soc (2) 1931; 32: 1-9.
- [2] Shiffman B. On the removal of singularities of analytic sets. Michigan Math J 1968; 15: 111-120. <u>http://dx.doi.org/10.1307/mmj/1028999912</u>
- [3] Federer H. Geometric measure theory. Berlin: Springer 1969.
- [4] Riihentaus J. Removable singularities of analytic functions of several complex variables. Math Z 1978; 158: 45-54. <u>http://dx.doi.org/10.1007/BF01214564</u>
- [5] Riihentaus J. Removable singularities of analytic and meromorphic functions of several complex variables. Colloquium on Complex Analysis, Joensuu, Finland, August 24-27, 1978 (Complex Analysis, Joensuu 1978). In: Proceedings (eds. Ilpo Laine, Olli Lehto, Tuomas Sorvali), Lecture Notes in Mathematics 747; 1978: 329-342, Springer-Verlag, Berlin 1979.
- [6] Riihentaus J. Subharmonic functions, mean value inequality, boundary behavior, nonintegrability and exceptional sets. Workshop on Potential Theory and Free Boundary Flows; August 19-27, 2003: Kiev, Ukraine. In: Transactions of the Institute of Mathematics of the National Academy of Sciences of Ukraine; 2004: Kiev; 1 (no. 3): 169-91.
- [7] Riihentaus J. An inequality type condition for quasinearly subharmonic functions and applications. Positivity VII, Leiden, July 22-26, 2013, Zaanen Centennial Conference. In: Trends in Mathematical Series, Birkhäuser, to appear.
- [8] Riihentaus J. Exceptional sets for subharmonic functions. J. Basic & Applied Sciences 2015; 11: 567-571. <u>http://dx.doi.org/10.6000/1927-5129.2015.11.75</u>
- [9] Helms LL. Introduction to potential theory. New York: Wiley-Interscience 1969.
- [10] Hervé M. Analytic and plurisubharmonic functions in finite and infinite dimensional spaces. Lecture Notes in Mathematics 198. Berlin: Springer 1971.

- [11] Lelong P. Plurisubharmonic functions and positive differential forms. New York: Gordon and Breach 1969.
- [12] Rado T. Subharmonic functions. Berlin: Springer 1937.
- [13] Chirka, EM. Complex Analytic Sets. Dordrecht: Kluwer Academic Publisher 1989.

Received on 04-12-2015

http://dx.doi.org/10.6000/1927-5129.2016.12.07

© 2016 Juhani Riihentaus; Licensee Lifescience Global.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (<u>http://creativecommons.org/licenses/by-nc/3.0/</u>) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- [14] Jarnicki M., Pflug P. Extension of Holomorphic Functions. Berlin: Walter de Gruyter 2000.
- [15] Jarnicki M., Pflug P. Separately Analytic Functions. Zürich: European Mathematical Society 2011.

Accepted on 15-01-2016

Published on 03-02-2016