
 Journal of Basic & Applied Sciences, 2016, 12, 293-300 293 

 
 ISSN: 1814-8085 / E-ISSN: 1927-5129/16  © 2016 Lifescience Global 

Generalized Higher Order ( ,  ,  ,  ,  ,  ,  m )-Invexities in 

Parametric Optimality Conditions for Discrete Minmax Fractional 
Programming 

Ram U. Verma*
 

Department of Mathematics, University of North Texas, Denton, TX 76201, USA 

Abstract: First several new classes of higher order ( ,  ,  ,  ,  ,  ,  m)-invexities are introduced, and then a set of 

higher-order parametric necessary optimality conditions and several sets of higher order sufficient optimality conditions 

for a discrete minmax fractional programming problem applying various higher order ( ,  ,  ,  ,  ,  ,  m)-invexity 

constraints are established. The obtained results are new and generalize a wide range of results in the literature.  

Keywords: Discrete minmax fractional programming, ( ,  ,  ,  ,  ,  ,  m)-invex functions, necessary optimality 

conditions, sufficient optimality conditions.  

1. INTRODUCTION 

 In this communication, first several new classes of 
generalized second-order ( ,  ,  ,  ,  ,  ,  m)-invex 

functions are introduced, and then these are applied to 
establish a set of second-order necessary optimality 
conditions leading to several sets of second-order 
sufficient optimality conditions and theorems for the 
following discrete minmax fractional programming 
problem:  

(P) Minimize max
1 i p

fi (x)

gi (x)
  

subject to Gj (x) 0, j q, Hk (x) = 0, k r, x X , where 

X  is an open convex subset of  
n  (n-dimensional 

Euclidean space), 
 
fi , gi , i p = {1, 2,…, p},Gj , j q , 

and Hk , k r , are real-valued functions defined on X , 

and for each i p, gi (x) > 0  for all x  satisfying the 

constraints of (P) . 

The first part of this presentation deals with several 
new notions of the generalized second order ( ,  ,  ,  

,  ,  ,  m)-invexities, which generalize/unify most of 

the existing generalized invexities and variants in the 
literature. Then some second-order optimality 
conditions for our principal problem (P)  are 

established. The obtained results can be generalized to 
its semiinfinite counterparts as well. Furthermore, our 
results can be applied to the new notion (developed in 
Chinchuluun and Pardalos [1], Pitea and Postalache [2-
4]) of multitime multiobjective variational problems. 
Zalmai [13-15] introduced and investigated some  
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significant results in a series of publications, while the 
results of Verma and Zalmai [11] and Verma [9] are 
significant to our problem on hand. For more details to 
this context, we refer the reader [5-16]. The results thus 
obtained here in this communication are new and 
application-oriented to context of results available in 
the literature.  

2. PRELIMINARIES 

Verma and Zalmai [11] introduced the notion of the 
generalized ( ,  ,  ,  ,  m)-invexities, and further 

applied to establish a class of second order parametric 
necessary optimality conditions as well as sufficient 
optimality conditions for a discrete minmax fractional 
programming problem using the general frameworks 
for the ( ,  ,  ,  ,  m)-invexities. In this section, we 

first generalize the notion of the generalized ( ,  ,  ,  

,  m)-invexities, and then recall some important 

auxiliary results for the problem (P)  on hand. 

Definition 2.1. Let f  be a differentiable real-valued 

function defined on n . Then f  is said to be -invex 

(invex with respect to ) at y  if there exists a function 

 
: n n n  such that for each x n ,  

f (x) f (y) f (y), (x, y) ,  

where 
 
f (y) = ( f (y) / y1, f (y) / y2 ,…, f (y) / yn )  is the 

gradient of f  at y , and a,b  denotes the inner 

product of the vectors a  and b ; f  is said to be -

invex on  
n  if the above inequality holds for all 

 
x, y n .   

Let f  be a twice differentiable real-valued function 

defined on  
n . Now we introduce the new classes of 

generalized second-order hybrid invex functions which 
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seem to be application-oriented to developing a new 
optimality-duality theory for nonlinear programming 
based on second-order necessary and sufficient 
optimality conditions. We shall abbreviate "second-
order invex" as sonvex.  Let f : X  be a twice 

differentiable function. 

Definition 2.2. The function f  is said to be (strictly) 

( ,  ,  ,  ,  ,  ,  m)-sonvex at x  if there exist 

functions : , : X X , and 

 
, , , : X X n , and a positive integer m  such 

that for each x X (x x )  and 
 z

n ,  

( f (x) f (x ) +
1

2
f (x ), (x, x* ) )(>) f (x )

+
1

2
2 f (x )z, (x, x* )

 

+
1

2
f (x ), (x, x* ) + (x, x ) (x, x )

m
.  

Definition 2.3. The function f  is said to be (strictly) 

( ,  ,  ,  ,  ,  ,  m)-pseudosonvex at x  if there 

exist functions 
 
: , : X X , and 

 
, , , : X X n , and a positive integer m  such 

that for each x X (x x )  and z n ,  

f (x ) +
1

2
2 f (x )z, (x, x* )  

+
1

2
f (x* ), (x, x* ) (x, x ) (x, x )

m
 

( f (x) f (x* ) +
1

2
f (x ), (x, x* ) )(>) 0.  

Definition 2.4. The function f  is said to be 

(prestrictly) ( ,  ,  ,  ,  ,  ,  m)-quasisonvex at x  

if there exist functions 
 
: , : X X , and 

 
, , , : X X n , and a positive integer m  such 

that for each x X  and 
 z

n ,  

( f (x) f (x ) +
1

2
f (x ), (x, x* ) )(<) 0  

f (x ) +
1

2
2 f (x )z, (x, x* ) +

1

2
f (x ), (x, x* )

(x, x ) (x, x )
m
.

 

Here we present some examples for our new 
notions of generalized invex functions. 

Example 1. The function f  is said to be (prestrictly) 

( ,  ,  ,  ,  ,  m)-quasisonvex at x  if there exist 

functions 
 
: ,  

 
: X X , and 

 
, , : X X n , and a positive integer m  such that 

for each x X  and 
 z

n ,  

( f (x) f (x ))(<) 0  

1

2
f (x ) + 2 f (x )z, (x, x* ) +

1

2
f (x ), (x, x* )

(x, x ) (x, x )
m
.

 

Example 2. The function f  is said to be (prestrictly) 

( ,  ,  ,  ,  m)-quasisonvex at x  if there exist 

functions 
 
: ,  

 
: X X , and 

 
, : X X n , and a positive integer m  such that 

for each x X  and 
 z

n ,  

( f (x) f (x ))(<) 0  

1

2
f (x ) + 2 f (x )z, z +

1

2
f (x ), (x, x* )

(x, x ) (x, x )
m
.

 

We recall the following results on the second order 
optimality conditions to the context of the main results 
to be established in the next section. 

Theorem 2.1. [11]  Let x  be an optimal solution of 

(P), let = 1 i pmax fi (x ) / gi (x ) , and assume that the 

functions fi , gi , i p,Gj , j q , and Hk , k r , are twice 

continuously differentiable at x , and that the second-

order Guignard constraint qualification holds at x . 

Then for each critical direction z , there exist 

 
u U, v

+

q , and  w
r  such that  

i=1

p

ui [ fi (x ) gi (x )]+

j=1

q

vj Gj (x ) +
k=1

r

wk Hk (x ) = 0,

      (2.1) 

z , {
i=1

p

ui [
2 fi (x )

2gi (x )]+

j=1

q

vj
2Gj (x ) +

k=1

r

wk
2Hk (x )}z 0,

     (2.2) 

ui [ fi (x ) gi (x )] = 0, i p,       (2.3) 

vjGj (x ) = 0, j q.        (2.4) 
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3. SUFFICIENT OPTIMALITY CONDITIONS 

In this section, we present several second-order 
sufficiency results in which various generalized ( ,  ,  

,  ,  ,  ,  m)-sonvexity assumptions are imposed 

on the individual as well as certain combinations of the 
problem functions. 

For the sake of the compactness, we shall use the 
following notations during the statements as well as the 
proofs of sufficiency theorems:  

C(x, v) =
j=1

q

vjGj (x),  

Dk (x,w) = wkHk (x),  

D(x,w) =
k=1

r

wkHk (x),  

i (x, ) = fi (x) gi (x),  

(x,u, ) =
i=1

p

ui[ fi (x) gi (x)],  

g(x, v,w) =
j=1

q

vjGj (x) +
k=1

r

wkHk (x),  

I
+
(u) = {i p :ui > 0}, J

+
(v) = { j q : vj > 0},

K (w) = {k r :wk 0}.
 

During the course of proofs for our sufficiency 
theorems, we shall use the following auxiliary result 
which provides an alternative expression for the 
objective function of (P) . 

Lemma 3.1. [11]  For each x X ,  

(x) =
1 i p
max

fi (x)

gi (x)
=

u U
max i=1

p

ui fi (x)

i=1

p

uigi (x)
.  

Theorem 3.1. Let  x* F , = (x ) 0 , the 

functions fi ,gi ,i p,Gj , j q , and Hk ,k r , be twice 

differentiable at .x  Assume that for each critical 

direction z , there exist 
 
u U, v

+

q , and  w
r  

such that  

i=1

p

ui [ fi (x ) gi (x )]+
j=1

q

vj Gj (x ) +

k=1

r

wk Hk (x ) = 0,

     (3.1) 

z , {
i=1

p

ui [
2 fi (x )

2gi (x )]+
j=1

q

vj
2Gj (x ) +

k=1

r

wk
2Hk (x )}z 0,

    (3.2) 

ui [ fi (x ) gi (x )]
1

2
(x, x* ), fi (x

* )

gi (x
* ) 0, i p,

     (3.3) 

vjGj (x )
1

2
(x, x* ), vj

* Gj (x
* ) 0, j q,     (3.4) 

wkHk (x )
1

2
(x, x* ),wk

* Hk (x
* ) 0, k r,     (3.5) 

where  F  (assumed to be nonempty) is the feasible set 
of (P) , defined by  

F = {x X :Gj (x) 0, j q,Hk (x) = 0,k r}.  

In addition, assume that any one of the following six 
sets of conditions holds:  

(a) (i) for each i I
+

I
+
(u ), fi  is ( ,  ,  ,  ,  i ,  

,m)-sonvex and gi  is ( ,  ,  ,  ,  
 i ,  ,  m)-

sonvex at x ,  is superlinear, and (a) 0 a 0 ; 

(ii) for each j J
+

J
+
(v ),Gj  is ( ˆ j ,  ,  ,  ,  ˆ j ,  

,  m)-quasisonvex at x , ˆ j  is increasing, and 

ˆ
j (0) = 0 ; 

(iii) for each k K K (w ), Dk ( ,w )  is ( k ,  

,  ,  ,  
 k ,  ,  m)-quasisonvex at x  and 

 k (0) = 0 ; 

(iv) 
 

(x, x ) +
j J

+

vj ˆ j (x, x ) + k K k (x, x ) 0  for 

all  x F , where 

 

(x, x ) =
i I

+

ui [ i (x, x ) + i (x, x )] ;  

(b) (i) for each i I
+
, fi  is ( ,  ,  ,  ,  i ,  ,  m)-

sonvex and gi  is ( ,  ,  ,  ,  
 i ,  ,  m)-sonvex at 

x ,  is superlinear, and (a) 0 a 0 ; 

(ii) C( , v )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-quasisonvex at 

x , ˆ  is increasing, and ˆ(0) = 0 ; 

(iii) for each k K , Dk ( ,w )  is (
 k ,  ,  ,  ,  

 k ,  ,  m)-quasisonvex at x  and 
 k (0) = 0 ;  

(iv) 
 

(x, x ) + ˆ(x, x ) +
k K k (x, x ) 0  for all 

 x F ;  
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(c) (i) for each i I
+
, fi  is ( ,  ,  ,  ,  i ,  ,  m)-

sonvex and gi  is ( ,  ,  ,  ,  
 i ,  ,  m)-sonvex at 

x ,  is superlinear, and (a) 0 a 0 ; 

(ii) for each j J
+
,Gj  is ( ˆ j ,  ,  ,  ,  ˆ j ,  ,  m)-

quasisonvex at x , ˆ j  is increasing, and ˆ j (0) = 0 ; 

(iii) D( ,w )  is (
 
,  ,  ,  ,  

 
,  ,  m)-

quasisonvex at x  and 
 
(0) = 0 ;  

(iv) 
 

(x, x ) +
j J

+

vj ˆ j (x, x ) + (x, x ) 0  for all 

x F ;  

(d) (i) for each i I
+
, fi  is ( ,  ,  ,  ,  i ,  ,  m)-

sonvex and gi  is hybrid ( ,  ,  ,  ,  
 i ,  ,  m)-

sonvex at x ,  is superlinear, and (a) 0 a 0 ;  

(ii) C( , v )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ; 

(iii) D( ,w )  is (
 
,  ,  ,  ,  

 
,  ,  m)-

quasisonvex at x  and 
 
(0) = 0 ;  

(iv) (x, x ) + ˆ(x, x ) + (x, x ) 0  for all  x F ;  

(e) (i) for each i I
+
, fi  is ( ,  ,  ,  ,  i ,  ,  m)-

sonvex and gi  is ( ,  ,  ,  ,  
 i ,  ,  m)-sonvex at 

x ,  is superlinear, and (a) 0 a 0 ;  

(ii) g( , v ,w )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ;  

(iv) (x, x ) + ˆ(x, x ) 0  for all  x F ;  

(f) the Lagrangian-type function  

L( ,u , v ,w , ) =
i=1

p

ui [ fi ( ) gi ( )]+

j=1

q

vjGj ( ) +
k=1

r

wkHk ( )

 

is ( ,  ,  ,  ,  ,  ,  m)-pseudosonvex at 

x , (x, x ) 0  for all  x F , (a) 0 a 0 , and  

(L(x ,u , v ,w , )
1

2
L(x ,u , v ,w , ), (x, x* ) ) 0.  

 Then x  is an optimal solution of (P).  

Proof. Let x  be an arbitrary feasible solution of (P) .  

(a): Using the hypotheses specified in (i), we have 

for each i I
+

,  

( fi (x) fi (x ) +
1

2
fi (x ), (x, x* ) )  

fi (x ) +
1

2
2 fi (x )z , (x, x

* ) +
1

2
fi (x ), (x, x

* )  

+ i (x, x ) (x, x )
m

 

and  

( gi (x) + gi (x )
1

2
gi (x ), (x, x* ) )  

gi (x ) +
1

2
2gi (x )z , (x, x

* )
1

2
gi (x ), (x, x

* )  

 
+ i (x, x ) (x, x )

m
.  

As 0, u 0,
i=1

p
ui =1 , and  is superlinear, 

we deduce from the above inequalities that  

(
i=1

p

ui [ fi (x) gi (x)]
i=1

p

ui [ fi (x ) gi (x )]  

+
1

2 i=1

p

ui [ fi (x ) gi (x )], (x, x* ) )  

1

2 i=1

p

ui [
2 fi (x )

2gi (x )]z , (x, x
* )  

+

i=1

p

ui [ fi (x ) gi (x )], (x, x
* )  

+
1

2 i=1

p

ui [ fi (x ) gi (x )], (x, x
* )  

 

+

i I
+

ui [ i (x, x ) + i (x, x )] (x, x )
m
.      (3.6) 

Since  x F  and (3.4) holds, it follows from the 

properties of the functions ˆ j  that for each j J
+
,  

(vj
*Gj (x) 0 vjGj (x )

1

2
(x, x* ), vj

* Gj (x
* ) ,  which 

implies 

ˆ
j (vj

*Gj (x) vjGj (x ) +
1

2
(x, x* ), vj

* Gj (x
* ) ) 0  
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which in view of (ii) implies that  

Gj (x ) +
1

2
2Gj (x )z , (x, x

* ) +
1

2
Gj (x ),

(x, x* ) ˆ
j (x, x ) (x, x )

m
.

 

As vj 0  for each j q  and vj = 0  for each 

j q \ J
+

 (complement of J
+

 relative to q ), the above 

inequalities yield  

j=1

q

vj Gj (x ) +
1

2 j=1

q

vj
2Gj (x )z , (x, x

* )  

+
1

2 j=1

q

vj Gj (x ), (x, x
* )  

j J
+

vj ˆ j (x, x ) (x, x )
m
.       (3.7) 

In a similar manner, we can show that (iii) leads to 
the following inequality:  

k=1

r

wk Hk (x ) +
1

2 k=1

r

wk
2Hk (x )z , (x, x

* )  

+
1

2 k=1

r

wk Hk (x ), (x, x
* )  

 
k K

k (x, x ) (x, x )
m
.       (3.8) 

Now, using (3.1), (3.2), and (3.6) - (3.8), we find that  

(
i=1

p

ui [ fi (x) gi (x)] (
i=1

p

ui [ fi (x ) gi (x )]  

1

2 i=1

p

ui [ fi (x ) gi (x )], (x, x* ) ))  

[
j=1

q

vj Gj (x ) +
1

2 j=1

q

vj
2Gj (x )z , (x, x

* )  

+
1

2 j=1

q

vj Gj (x ), (x, x
* )  

+

k=1

r

wk Hk (x ) +
1

2 k=1

r

wk
2Hk (x )z , (x, x

* ) ]  

+
1

2 k=1

r

wk Hk (x ), (x, x
* ) ]  

 

+

i I
+

ui [ i (x, x ) + i (x, x )] (x, x )
m

 

 

{
i I

+

ui [ i (x, x ) + i (x, x )]+
j J

+

vj ˆ j (x, x ) +

k K
k (x, x )} (x, x )

m  

(by (3.7) and (3.8))  

0 (by (iv)).  

But (a) 0 a 0 , we have  

i=1

p

ui [ fi (x) gi (x)] (
i=1

p

ui [ fi (x ) gi (x )]  

1

2 i=1

p

ui [ fi (x ) gi (x )], (x, x* ) ) 0,     (3.9) 

which using (3.3) implies that 

i=1

p

ui [ fi (x) gi (x)] 0.  

Now using this inequality and Lemma 3.1, we have  

(x ) = i=1

p

ui fi (x)

i=1

p

ui gi (x)
u U
max i=1

p

ui fi (x)

i=1

p

uigi (x)
= (x).  

Since  x F  is arbitrary, we conclude from this 

inequality that x  is an optimal solution to (P) . 

(b): Proceeding as in part (a), for each j J
+

, we 

have  

(vj
*Gj (x) 0 vjGj (x )

1

2
(x, x* ), vj

* Gj (x
* ) ,   

which implies 

ˆ
j (vj

*Gj (x) vjGj (x ) +
1

2
(x, x* ), vj

* Gj (x
* ) ) 0,  

which in view of (ii) implies that  

j=1

q

vj Gj (x ) +
1

2 j=1

q

vj
2Gj (x )z , (x, x

* )  

+
1

2 j=1

q

vj Gj (x
* ), (x, x* ) ˆ(x, x ) (x, x )

m
.  
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Now proceeding as in the proof of part (a) and using 
this inequality instead of (3.6), we arrive at (3.8), which 

leads to the desired conclusion that x  is an optimal 
solution of (P) . 

(c) - (e): The proofs are similar to those of parts (a) and 
(b). 

(f): Since (x, x ) 0 , (3.1) and (3.2) imply  

(x, x* ), L(x ,u , v ,w , ) +
1

2
2L(x ,u , v ,w , )z  

+ (x, x* ), L(x ,u , v ,w , ) (x, x ) (x, x )
m
,  

which in view of our ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvexity assumption implies that  

(L(x,u , v ,w , ) [L(x ,u , v ,w , )

1

2
L(x ,u , v ,w , ), (x, x* ) ]) 0.

 

But (a) 0 a 0  and hence we have  

L(x,u , v ,w , ) 0.  

Because x,x* F,v* 0 , and (3.3), (3.3) and (3.5) 

hold, we get  

i=1

p

ui [ fi (x) gi (x)] 0.  

As seen in the proof of part (a), this inequality leads 

to the desired conclusion that x  is an optimal solution 
of (P) .  

Theorem 3.2. Let x* F , = (x ) , the functions 

fi ,gi ,i p,Gj , j q , and Hk ,k r , be twice 

differentiable at 
.

x  Then there exist 
 
u U, v

+

q , 

and  w
r  such that (3.1) - (3.5) hold. Assume, 

furthermore, that any one of the following five sets of 
hypotheses is satisfied:  

(a) (i) ( ,u , )  is ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvex at x , and (a) 0 a 0 ; 

(ii) for each j J
+

J(v ),Gj  is ( ˆ j ,  ,  ,  ,  ˆ j ,  

,  m)-quasisonvex at x , ˆ j  is increasing, and 

ˆ
j (0) = 0 ; 

(iii) for each k K K(w ), Dk ( ,w )  is ( k ,  ,  

,  ,  k ,  ,  m)-quasisonvex at x , and 
 k (0) = 0 ; 

(iv) 
 

(x, x ) +
j J

+

vj ˆ j (x, x ) + k K k (x, x ) 0  for 

all x F ;  

(b) (i) ( ,u , )  is ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvex at x , and (a) 0 a 0 ; 

(ii) C( , v )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ; 

(iii) for each k K , Dk ( ,w )  is ( k ,  ,  ,  ,  

 k ,  ,  m)-quasisonvex at x , and 
 k (0) = 0 ; 

(iv) (x, x ) + ˆ(x, x ) +
k K k (x, x ) 0  for all 

x F ;  

(c) (i) ( ,u , )  is ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvex at x , and (a) 0 a 0 ; 

(ii) for each j J
+
,Gj  is ( ˆm ,  ,  ,  ,  ˆ j ,  ,  m)-

quasisonvex at x , ˆ j  is increasing, and ˆ j (0) = 0 ; 

(iii) D( ,w )  is ( ,  ,  ,  ,  
 
,  ,  m)-

quasisonvex at x , and (0) = 0 ; 

(iv) (x, x ) +
j J

+

vj ˆ j (x, x ) + (x, x ) 0  for all 

 x F ;  

(d) (i) ( ,u , )  is ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvex at x , and (a) 0 a 0 ; 

(ii) C( , v )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ; 

(iii) D( ,w )  is (
 
,  ,  ,  ,  

 
,  ,  m)-

quasisonv 

(e) (i) ( ,u , )  is ( ,  ,  ,  ,  ,  ,  m)-

pseudosonvex at x , and  

(ii) g( , v ,w )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ; 

(iii) (x, x ) + ˆ(x, x ) 0  for all  x F .  

Then x  is an optimal solution of (P).  

Proof. Let x  be an arbitrary feasible solution of (P) . 

(a): Based on assumptions specified in (ii) and (iii), 
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(3.6) - (3.8) still hold for this case. From (3.1), (3.2), 
(3.6), (3.7), and (iv) we deduce that  

i=1

p

ui [ fi (x ) gi (x )]+
1

2 i=1

p

ui [
2 fi (x )

2gi (x )]z , (x, x
* )

 

+
1

2 i=1

p

ui [ fi (x ) gi (x )], (x, x
* )  

[
j=1

q

vj Gj (x ) +
1

2 j=1

q

vj
2Gj (x )z , (x, x

* )  

+
1

2 j=1

q

vj Gj (x ), (x, x
* )  

+

k=1

r

wk Hk (x ) +
1

2 k=1

r

wk
2Hk (x )z , (x, x

* )  

+
1

2 k=1

r

wk Hk (x ), (x, x
* ) ]  

[
j J

+

vj ˆ j (x, x ) +
k K

k (x, x )] (x, x )
m
(by (3.6) and (3.7))  

(x, x ) (x, x )
m
(by (iv)),  

which in view of (i) implies that  

( (x,u , ) [ (x ,u , )
1

2
(x ,u , ), (x, x* ) ]) 0.  

Based on the properties of the function , the last 

inequality yields  

(x,u , ) 0.  

As shown in the proof of Theorem 3.1, this 

inequality leads to the conclusion that x  is an optimal 
solution to (P) . 

(b) - (e) : The proofs are similar to that of part (a).  

Theorem 3.3. Let  x* F , let = (x ) , and 

assume that the functions fi , gi , i p,Gj , j q , and 

Hk , k r , are twice differentiable at x , and that there 

exist 
 
u U, v

+

q , and  w
r  such that (3.1) - (3.4) 

hold. Assume, furthermore, that any one of the 
following five sets of hypotheses is satisfied:  

(a) (i) ( ,u , )  is prestrictly ( ,  ,  ,  ,  ,  ,  

m)-quasisonvex at x , and (a) 0 a 0 ;  

(ii) for each j J
+

J
+
(v ),Gj  is ( ˆ j ,  ,  ,  ,  ˆ j ,  

,  m)-quasisonvex at x , ˆ j  is increasing, and 

ˆ
j (0) = 0 ;  

(iii) for each k K K(w ), Dk ( ,w )  is (
 k ,  ,  

,  ,  
 k ,  ,  m)-quasisonvex at x , and k (0) = 0 ;  

(iv) 
 

(x, x ) +
j J

+

vj ˆ j (x, x ) + k K k (x, x ) > 0  for 

all  x F ;  

(b) (i) ( ,u , )  is prestrictly ( ,  ,  ,  ,  ,  ,  

m)-quasisonvex at x , and (a) 0 a 0 ;  

(ii) C( , v )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ;  

(iii) for each k K , Dk ( ,w )  is ( k ,  ,  ,  ,  

 k ,  ,  m)-quasisonvex at x , and k (0) = 0 ;  

(iv) (x, x ) + ˆ(x, x ) +
k K k (x, x ) > 0  for all 

 x F ;  

(c) (i) ( ,u , )  is prestrictly ( ,  ,  ,  ,  ,  ,  

m)-quasisonvex at x , and (a) 0 a 0 ;  

(ii) for each j J
+
,Gj  is ( ˆ j ,  ,  ,  ,  ˆ j ,  ,  m)-

quasisonvex at x , ˆ j  is increasing, and ˆ j (0) = 0 ;  

(iii) D( ,w )  is (
 
,  ,  ,  ,  

 
,  ,  m)-

quasisonvex at x , and 
 
(0) = 0 ;  

(iv) 
 

(x, x ) +
j J

+

vj ˆ j (x, x ) + (x, x ) > 0  for all 

 x F ;  

(d) (i) ( ,u , )  is prestrictly ( ,  *,  ,  ,  ,  ,  

m)-quasisonvex at x , and (a) 0 a 0 ;  

(ii) C( ,w )  is ( ˆ,  ,  ,  ,  ˆ,  ,m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ;  

(iii) D( ,w )  is (
 
,  ,  ,  ,  

 
,  ,  m)-

quasisonvex at x , and 
 
(0) = 0 ;  

(iv) 
 
(x, x ) + ˆ(x, x ) + (x, x ) > 0  for all x F ;  

(e) (i) ( ,u , )  is prestrictly ( ,  ,  ,  ,  ,  ,  

m)-quasisonvex at x , and (a) 0 a 0 ;  
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(ii) g( , v ,w )  is ( ˆ,  ,  ,  ,  ˆ,  ,  m)-

quasisonvex at x , ˆ  is increasing, and ˆ(0) = 0 ;  

(iii) (x, x ) + ˆ(x, x ) > 0  for all  x F .  

Then x  is an optimal solution of (P).  

Proof. The proof is similar to that of Theorem 3.2.  

4. CONCLUDING REMARKS 

We established several results applying the new 
notion of higher order ( ,  ,  ,  ,  ,  ,  m)-

invexities, which generalizes/unifies most of the 
existing generalized invexities and its variants in the 
literature, and then we proved some results on second-
order optimality conditions for our principal problem 

(P).  The obtained results to the context of discrete 

minmax fractional programming offer further 
applications to other fields of research endeavors 
relating to discrete fractional programming problems, 
including the publications [1-4] relating to the multitime 
multiobjective variational problems. 
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