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Abstract: This paper investigates the effects of classical trapping on the control of malaria transmission. The Ross-
Macdonald model is modified and a trapping probability function is introduced to construct a partial differential equation 
(PDE) system. The proof of existence and uniqueness of solution of density functions to the PDE system is given, 
numerical simulation results based on Gaussian distribution and exponential distribution are obtained for the solutions, 
and graphical representations of solutions are shown and interpreted. 

Keywords: Trapping Probability, Ross-Macdonald Model, Gaussian Distribution, Mosquito Density, Malaria. 

1. INTRODUCTION 

 Malaria is one of the most devastating disease and 
a leading cause of death in the tropical regions of the 
world [1]. Half the world’s population is at risk for 
malaria, which is endemic in more than 100 countries. 
Although preventable and treatable, malaria causes 
significant morbidity and mortality, particular in 
resource-poor regions [2]. 

Malaria is an infectious disease caused by the 
Plasmodium parasite and transmitted between humans 
through the bite of female Anopheles mosquito [3]. The 
incidence of malaria has been growing recently due to 
increasing parasite drug-resistance and mosquito 
insecticide-resistance. 

Malaria is spread in three ways. The most common 
way is by the bite of an infected female Anopheles 
mosquito. Although malaria could also be spread 
through a transfusion of infected blood and by sharing 
needles with an infected person, they can be prevented 
effectively. Therefore, as long as we can find an 
effective preventive measure to prevent the first way 
that malaria can spread, malaria can be reduced or 
eradicated. Although, in some tropical regions, malaria 
has decreased recently, in some areas, the 
transmission of the disease is still a severe threat and 
the factors that maintain the transmission remain little 
understood. Therefore, it is very important to 
investigate these factors thoroughly by developing and 
studying appropriate mathematical models to establish 
the essential tools and identifiable targets needed to 
eliminate the transmission of malaria. 
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Various control strategies have been applied to 
reduce malaria transmission. 

Different mathematical models have been 
developed to investigate the effects of these strategies. 
In [4], the authors investigated the effects of indoor 
residual spraying. In [5], the authors investigated the 
effects of migration on malaria transmission. In [6], the 
authors investigated the effects of vaccinations. In [7], 
the authors investigated the effects of weather on 
malaria transmission. In [8], the authors investigated 
the impact of chemo-therapy on optimal control of 
malaria transmission. In [9], the authors investigated 
the effects of anti-malaria drugs. In this paper, we will 
investigate the effects of classical trapping on the 
control of malaria transmission. It is well known that 
classical trapping problems are related in many ways to 
search problems when the target moves as a diffusion 
process [10]. These results will provide the decision 
maker some useful references to take appropriate 
control or preventive measures.  

2. DESCRIPTION OF THE MODEL 

We will consider a simple modification of Ross-
Macdonald model. Because the life expectancy of a 
human is much longer than that of a mosquito we 
assume that the population of humans is closed with no 
births and no deaths except from malaria. We also 
assume that humans and mosquitoes are either 
infected or uninfected and the total numbers of humans 
and mosquitoes are constants. Thus we need only to 
investigate the dynamics of the infected humans and 
mosquitoes. 

Let u(t, x)  and v(t, x)  be the spatial densities of 
infected humans and infected mosquitoes at time t  in 
x , respectively. Let a  be the human-biting rate, that is, 
the rate at which mosquitoes bite humans and b  be 
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the mosquito-to-human transmission efficiency, that is, 
the probability, given an infectious mosquito has bitten 
a susceptible human, that the human becomes 
infected. !  denotes the human-to-mosquito 
transmission efficiency, that is, the probability, given a 
susceptible mosquito has bitten an infectious human, 

that the mosquito becomes infected. r = M
N

 denotes 

the ratio of the number of female mosquitoes to 
humans, M  is the size of female mosquito population 
and N  is the size of human population. We assume 
that M  and N  are constants. Malaria is strongly 
associated with location, with disease transmission 
restricted to a few kilometers from specific mosquito 
breeding sites [4, 11]. Same as in [9, 10], we assume 
that the flight of the mosquitoes and the movement of 
humans are supposed to be a Brownian motion so that 
a classical diffusion term appears in the equations 
governing the mosquito and human density. Assume 
the diffusion rates for humans and mosquitoes are d1  
and d2 , respectively. µ  denotes the recovery rate of 
human hosts due to treatment and !  denotes the per 
capita death rate of infected human hosts due to the 
disease. !  is the mosquito death rate. Then one 
version of mathematical model for malaria transmission 
in a region !  with diffusion is  

du
dt
= d1!u + abrv(1" u)" (µ +#)u, x $ %, t > 0,

dv
dt
= d2!v+ a&u(1" v)"'v, x $ %, t > 0.

(

)
**

+
*
*

  (2.1) 

In this paper, we are going to investigate the effects 
of classical trapping on malaria transmission. 
Associated with the trap is a "trap radius" rt  with the 
property that if distance between the mosquito and the 
center of the trap is less than rt , then the mosquito is 
trapped [12]. Same as in [10] and [12], we define the 
probability density for an untrapped mosquito as  

f (x, y, t)dxdy = Pr
at time t the mosquito is in a small area dxdy

around the point (x,y) and is not trapped
!
"
#

$
%
&
.  

Therefore, the probability that a mosquito is not 
trapped at time t  is  

P(t) =
!" f (x, y, t)dxdy,  

and the probability that is trapped is  

1! P(t) = 1!
"# f (x, y, t)dxdy.  

Also same as in [10] and [12], we define the 
trapping function !(x, y, t, z)  as  

!(x, y, t, z)dt = Pr

mosquito is trapped by one of the N traps
in the time interval(t,t +"t)|at time t the

mosquito is located at(x,y) and the vector of trap
location is z

#

$
%
%

&
%
%

'

(
%
%

)
%
%

,  

where  

 
z = (zx1 , zy1 , zx2 , zy2 ,!, zxN , zyN ),  

and (zxi , zyi )  are the coordinates of the center of the i -

th trap. We adopt one model for the trapping function 
as follows  

!(x, y, z) =
i=1

N

"ai[qi + (x # zxi )
2 + (y # zyi )

2 ]#$ ,  

where ai , qi , and !  are positive parameters. Assume 
that the distribution of displacement in a short time !t  
is Gaussian with mean displacement 0 + o(!t)  and 
variance D!t + o(!t) , then we have  

!f
!t
= D"f #$f .         (2.2) 

Thus we have the following model:  

!u
!t
= d1"u + abrv(1# u)# (µ +$)u,

!v
!t
= d2"v+ a%u(1# v)#&v # (1# '( f (x, y, t)dxdy)v,

)

*
++

,
+
+

(2.3) 

where f (x, y, t)  satisfies (2.2). 

Let ! = abr , ! = a" , and 

g(t) = 1!
"# f (x, y, t)dxdy $ 0 , then we can rewrite (2.3) 

as  

!u
!t
= d1"u +#v(1$ u)$ (µ +%)u,

!v
!t
= d2"v+ &u(1$ v)$'v $ g(t)v,

(

)
**

+
*
*

     (2.4) 

In this paper we consider an experimental region 
! = B(0,R) " R2  which is a disc centered at origin with 
radius R  (!  could be the whole R2  plane). If ! = R2 , 
we assume that u(x, y), v(x, y)! 0  as (x, y)!" . When 
!  is bounded, we assume that mosquitoes and 
humans do not enter or leave the region. This means 
u  and v  satisfy the boundary conditions  

!u
!"
= !v
!"
= 0, on !#,  

where !  is the outward normal to the boundary !"  of 
the region ! .  



436    Journal of Basic & Applied Sciences, 2016, Volume 12 Zhang et al. 

3. EXISTENCE OF PROBABILITY DENSITY 
FUNCTION 

3.1. ! = R2  

 We first consider a special case. That is, ! = R2  
and there is a single trap located at the origin. For the 
convenience of notations, we express all functions in 
terms of polar coordinates. The trap function is  

!(r) = a
(q + r2 )"

,  

and the associated problem for f  becomes an initial 
value problem  

!f
!t
" D#f = "$f , rt < r < +%, t > 0,

f (r, 0) = f0 ,

&

'
(

)(
     (3.1) 

where  

f0 =
1

!(r2 " rt
2 )
, r > rt ,

0, otherwise.

#

$
%

&
%

 

For initial value problem (3.1), the authors in [10] 
proved the local existence and uniqueness under the 
assumptions !, f0 " L2/# (R2 )  with 0 < ! < 1  and weak 
global existence and uniqueness under the 
assumptions that ! = " 2  such that  

! " L4/# ,4/(2$# ) (R2 % R+ ), 2 / 3 < # < 4 / 3,  

and  

 
g =W * f0 ! L4/" ,4/(2#" ) (R2 $ R+ ),  

where W  is the fundamental solution of heat equation 
and * denotes the convolution in space. 

3.2. R < !  

When R < ! , that is, !  is bounded, the related 
problem for f  is an initial-boundary value problem. 
Again, we assume that there is a single trap located at 
the origin. Then the problem is  

!f
!t
= D"f #$f , rt < r < R,

f (rt , t) = 0, !r f (R, t) = 0,
f (r, 0) = f0 .

%

&

'
'

(

'
'

      (3.2) 

It seems there is no existence results available for 
this problem. Since the boundary condition are 

homogeneous, we solve this problem by using 
separation of variables. 

Assume that f (r, t) = p(r)q(t) . Recall that assuming 
radial symmetry, in terms of polar coordinates,  

!f = 1
r
"
"r
(r "f
"r
).  

By substituting this into (3.2) we have  

p !q " D !!p q " D
r

!p q = "#(r)pq.  

Dividing each term by pq  and move all terms with 
q  to one side and all terms with p  to the other side we 
have  

!q
q
= D !!p

p
+
D !p
rp

"#(r).  

Since the left hand side is a function of t  and the 
right hand side is a function of r  and it holds for all t  
and r , it must be a constant, say, !" . Therefore, we 
have  

!q
q
= D !!p

p
+
D !p
rp

"#(r) = "$.  

Solving  

!q
q
= "#  

gives us  

q(t) = ce!"t .  

From the boundary conditions we have  

p(rt ) = 0, !p (R) = 0.  

Thus p(r)  satisfies  

Dr !!p + D !p "#(r)rp + $rp = 0, rt < r < R,
p(rt ) = 0, !p (R) = 0.

%
&
'

    (3.3) 

This is a standard regular Sturm-Liouville 
eigenvalue problem [13]. It is well known that there 
exist an infinite number of eigenvalues  

 !1 < !2 <! < !n < !n+1 <!  

such that !n "#  as n!" . Corresponding each 
eigenvalue !n , there is an eigenfunction !n (r)  and 

 {!n (r),n =1, 2,!}  form a complete set. Thus we 
assume that  
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f (r, t) =
n=1

!

"An#n (r)e
$%nt .  

From the initial condition, we have  

n=1

!

"An#n (r) = f0 .  

Therefore,  

An =
rt

R
! "n (r) f0 (r)rdr

rt

R
! "n2 (r)rdr

.  

4. EXISTENCE AND UNIQUENESS OF SOLUTION 

Now we prove the existence and uniqueness of 
solution of (2.4) for R < ! by constructing a pair of 
super- and sub-solutions. For a bounded region ! , 
(2.4) can be formularized as  

!u
!t
= d1"u +#v(1$ u)$ (µ +%)u, t > 0, x & ',

!v
!t
= d2"v+ (u(1$ v)$)v $ g(t)v, t > 0, x & ',

!u
!*
|!'=

!v
!*
|!'= 0, t > 0,

u(x, 0) = u0 (x), v(x, 0) = v0 (x), x & '.

+

,

-
-
--

.

-
-
-
-

    (4.1) 

For the convenience of notations we let  

f1(t,u, v) =!v(1" u)" (µ +#)u,  

f2 (t,u, v) = !u(1" v)"#v " g(t)v.  

It is easily seen that  

f1v =!(1" u) # 0, f2u = $(1" v) # 0.  

Therefore, system (4.1) is a quasi-monotonic 
increasing system. For such a system, a pair of 
functions U = (u , v ) , V = (u, v)  is called a pair of super- 
and sub- solutions of (4.1) if  

!u
!t

" d1#u " f1(u , v ) $ 0 $
!u
!t
" d1#u " f1(u, v),  

!v
!t
" d2#v " f2 (u , v ) $ 0 $

!v
!t
" d2#v " f2 (u, v),  

!u
!"
|!#$ 0 $

!u
!"
|!# ,

!v
!"
|!#$ 0 $

!v
!"
|!# ,  

u (x, 0) ! u0 (x) ! u(x, 0), v (x, 0) ! u0 (x) ! v(x, 0).  

It is well-known that if (4.1) has a pair of super- and 
sub- solutions U(x, t)  and V (x, t)  such that 
V (x, t) !U(x, t) , then it has a unique solution in 
[V (x, t),U(x, t)]  [14]. Now we prove that (4.1) has a 
solution by constructing a pair of super- and sub- 
solutions U(x, t)  and V (x, t)  as follows. 

First, it is easily seen that U = (u , v ) = (1,1)  and 
V = (u, v) = (0, 0)  is a pair of super- and sub- solutions. 
Therefore, (4.1) has a solution. In order to get a better 
idea about the solution, we try to look for a nonconstant 
super-solution. Assume 
(1,1) !U = (u , v ) = (p(t),q(t)) > (0, 0)  is a super-solution. 
Since it is independent of x , the boundary conditions 
are automatically satisfied. To become a super-
solution, p(t)  and q(t)  should satisfy  

!p + (µ +")p #$q(1% p),
!q + (& + g(t))q # 'p(1% q).

(
)
*

      (4.2) 

Since p !1  and q !1 , to have (4.2), we need only  

!p + (µ +" +#)p =#,
!q + ($ + % + g(t))q = %.

&
'
(

      (4.3) 

Solving (4.3) gives  

p(t) = (u0 !
"

µ +# +"
)e!(µ+#+" )t + "

µ +# +"
,  

q(t) = e
!("+# )t!

0

t
$ g(% )d%

#
0

t
$ e

("+# )%+
0

%

$ g(s )ds
d% + v0

&

'

(
(

)

*

+
+,  

where u0 = !max u0 (x), v0 = !max v0 (x) . Therefore, we 
know that (4.1) has a unique solution (u(x, t), v(x, t))  
satisfying 

0 ! u(x, t) ! p(t), 0 ! v(x, t) ! q(t).  

From the expression of p(t)  and q(t)  we can get 
some long time estimate for (u(x, t), v(x, t))  which can 
also been seen from the numerical simulations we will 
do next. 

5. NUMERICAL SIMULATION RESULTS 

In this section we adopt realistic probability 
distributions to simulate the initial conditions of both u  
and v , assign values to parameters, solve the PDE 
system (4.1) numerically and graph the solutions of u  
and v . 

Assume both u  and v  follow a Gaussian 
distribution at time t = 0 , we can write the initial 
conditions as follows: 
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u(x, 0) = 1 / (! 2" ) exp[#x2 / (2! 2 )], x $ % , 

v(x, 0) = 1 / (! 2" ) exp[#x2 / (2! 2 )], x $ %.  

Also we may consider to take g(t) = 1! e!t  since the 
derivative of g(t)  actually should be an exponential 
distribution which implies that half of mosquitos will 
have been trapped at time t=1 and all mosquitos will be 
trapped at t =! . 

The parameters values we use in the numerical 
simulation are:  

d1 = 1,d2 = 0.01,! = 0.2," = 0.1,µ = 0.1,# = 0.05,$ = 0.05 . 

For simplicity we also set the radius of !  to 1, then 
we can set !  to 1 / 6  because the probability falling 
within three standard deviations of a Gaussian 
distribution is almost 100%.  This actually assumes 
almost 100% of the initial infected humans u(x, 0)  and 
infected mosquitos v(x, 0)  are within the region of 
radius of 1 at t = 0 . 

Under polar coordinates system we can use the 
NDSolve function in Mathematica to obtain numerical 
solutions of u(x, t)  and v(x, t)  and plot their graphs as 
follows. 

 
Figure 1: Density of Infected Humans with Time t and 
Distance x from Center. 

From Figure 1 we see that the density of infected 
humans has largest value at the center which is a 
natural consequence since the initial condition 
(Gaussian distribution) already assumes the maximum 
density occurs at the center at the beginning. However, 
the density of infected humans drops very quickly with 
time t. We observe that it drops to close to 0 at time 
t =1 .  

 
Figure 2: Density of Infected Mosquitos with Time t, Distance 
x from Center and Trap Probability g(t) =1! e!t . 

From Figure 2 we see that the density of infected 
mosquitos also has largest value at the center which is 
a natural consequence since the initial condition 
(Gaussian distribution) also assumes the maximum 
density occurs at the center at the beginning. We 
notice that the density of infected mosquitos dropped 
not so quickly. It still maintains a significant level at 
time t =1 . This is because we choose the trap 
probability g(t) = 1! e!t  which has trapped half 
mosquitos in time t =1 . This can be seen clearly if we 
plot a faster trapping case when choosing trap 
probability g(t) = 1! e!10t  (Figure 3), and the case 
without the trap (Figure 4). 

 
Figure 3: Density of Infected Mosquitos with Time t, Distance 
x from Center and Trap Probability g(t) =1! e!10t . 

From Figure 3 we see the density of infected 
mosquitos drop a lot at a very fast pace since the 
trapping coefficient in front of time t now is 10. From 
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Figure 4 the density drops very slowly without a trap. 
The three above figures show the big difference how 
trapping is important to reduce the density of 
mosquitos. 

 
Figure 4: Density of Infected Mosquitos with Time t and 
Distance x from Center without a Trap ( g(t) = 0 ). 

 

 
Figure 5: Comparison of Density of Infected Humans with 
that of Infected Mosquitos. 

 

 
Figure 6: Comparison of Density of Infected Humans with 
that of Infected Mosquitos for x = 0.5 (Note that the plot of  
x = -0.5 is same due to symmetry). 

 
Figure 7: Comparison of Density of Infected Humans with 
that of Infected Mosquitos for x = 0. 

We can combine two density plots Figures 1 and 4 
into Figure 5 to make a comparison. The density of 
infected humans is in yellow and density of infected 
mosquitos is in blue. Apparently the density of infected 
mosquitos around the center (x = 0) is higher than that 
of infected humans and continue to maintain high level 
with time t. To see this clearly, two dimensionla plots 
Figures 6 and 7 are provided to compare u(x,t) 
withv(x,t) for x= ± 0.5 and x = 0 respectively. (Please 
note that due to symmetry plot of x =0.5 is same as 
that of x = 0.5. )Therefore, to eliminate malaria infection 
of a fixed region quickly, these simulation results 
suggest that people may not spend all time and 
medical resources all over the region, instead they 
should focus on center places where infected 
mosquitos are heavily populated. More importantly, a 
powerful trap with long trap radius is the key factor to 
reduce density of mosquitos thus control malaria 
transmission timely and efficiently. 
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