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Abstract: We show the temperature dependence such as smoothness and monotone decreasingness with respect to 
the temperature of the solution to the BCS-Bogoliubov gap equation for superconductivity. Here the temperature belongs 
to the closed interval [0,! ]  with ! > 0  nearly equal to half of the transition temperature. We show that the solution is 
continuous with respect to both the temperature and the energy, and that the solution is Lipschitz continuous and 
monotone decreasing with respect to the temperature. Moreover, we show that the solution is partially differentiable with 
respect to the temperature twice and the second-order partial derivative is continuous with respect to both the 
temperature and the energy, or that the solution is approximated by such a smooth function. 
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1. INTRODUCTION AND MAIN RESULT 

In this paper we show the temperature dependence 
such as smoothness and monotone decreasingness 
with respect to the temperature of the solution to the 
BCS-Bogoliubov gap equation [1, 2] for 
superconductivity:  

 

u(T ,x) =
0

!!D" U(x,#)u(T ,#)
# 2 + u(T ,#)2

tanh
# 2 + u(T ,#)2

2T
d#,  (1.1) 

where the solution u  is a function of the absolute 
temperature T ! 0  and the energy x   (0 ! x ! !"D ) . 
The solution u  corresponds to the energy gap between 
the superconducting ground state and the 
superconducting first excited state, and so the value of 
the solution is nonnegative, i.e., u(T ,x) ! 0 . The 
constant !D > 0  stands for the Debye angular 
frequency, and the potential U  satisfies U(x,!) > 0  at 
all  (x,!) " [0,!#D ]

2 . 

In (1.1) we consider the solution u  as a function of 
the absolute temperature T  and the energy x . 
Accordingly, we deal with the integral with respect to 
the energy ! . Sometimes one considers the solution u  
as a function of the absolute temperature and the wave 
vector of an electron. Accordingly, instead of the 
integral with respect to the energy !  in (1.1), one deals 
with the integral with respect to the wave vector over  
 

 

*Address correspondence to this author at the Division of Mathematical 
Sciences, Graduate School of Engineering, Gunma University, 4-2 Aramaki-
machi, Maebashi 371-8510, Japan; Tel/Fax: 081-27-220-7570;  
E-mail: shuwatanabe@gunma-u.ac.jp 
Mathematics Subject Classification 2010. 45G10, 47H10, 47N50, 82D55. 

the three dimensional Euclidean space  !
3 . The 

existence and uniqueness of the solution to the BCS-
Bogoliubov gap equation were established in previous 
papers [3-8] for each fixed temperature. So the 
temperature dependence such as smoothness and 
monotone decreasingness with respect to the 
temperature of the solution is not covered except for 
the paper [9]. In [9] the gap equation in the Hubbard 
model for a constant potential was studied, and its 
solution was shown to be strictly decreasing with 
respect to the temperature. In this connection, for 
interdisciplinary reviews of the BCS-Bogoliubov model 
of superconductivity, see [10, 11]. 

As is well known, studying the temperature 
dependence of the solution to the BCS-Bogoliubov gap 
equation is very important in condensed matter 
physics. This is because studying the temperature 
dependence of the solution, by dealing with the 
thermodynamic potential, leads to a mathematical proof 
of the statement that the transition to the 
superconducting state is a second-order phase 
transition in the BCS-Bogoliubov model of 
superconductivity. In order to give its proof, we have to 
differentiate the thermodynamic potential, and hence 
the solution with respect to the temperature twice, and 
we have to study some properties of the second-order 
partial derivative of the solution. So it is highly desirable 
to study the temperature dependence such as 
smoothness and monotone decreasingness with 
respect to the temperature of the solution to the BCS-
Bogoliubov gap equation (1.1). 

We now define a nonlinear integral operator A  by  

 

Au(T ,x) =
0

!!D" U(x,#)u(T ,#)
# 2 + u(T ,#)2

tanh
# 2 + u(T ,#)2

2T
d#. (1.2) 
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Here the right side of this equality is exactly the right 
side of the BCS-Bogoliubov gap equation (1.1). Since 
the solution to the BCS-Bogoliubov gap equation is a 
fixed point of our operator A , we apply fixed point 
theorems to our operator A  and study the temperature 
dependence such as smoothness and monotone 
decreasingness with respect to the temperature of the 
solution to the BCS-Bogoliubov gap equation (1.1). 

Let U1 > 0  is a positive constant and set U(x,!) =U1  
at all  (x,!) " [0,!#D ]

2 . Then the solution to the BCS-
Bogoliubov gap equation becomes a function of the 
temperature T  only, and so we denote the solution by 

 !1 :T ! !1(T ) . Accordingly, the BCS-Bogoliubov gap 
equation (1.1) is reduced to the simple gap equation 
[1]:  

 

1 =U1 0

!!D" 1
# 2 +$1(T )

2
tanh

# 2 +$1(T )
2

2T
d#, 0 % T % &1.

          (1.3) 

Here the temperature !1 > 0  is defined by (see [1])  

 
1 =U1 0

!!D" 1
#
tanh #

2$1
d#.  

See also Niwa [12] and Ziman [13]. As is well 
known in the BCS-Bogoliubov model, physicists and 
engineers studying superconductivity always assume 
that there is a unique nonnegative solution !1  to the 
simple gap equation (1.3), that the solution !1  is 
continuous and strictly decreasing with respect to the 
temperature T , and that the solution !1  is of class C 2  
with respect to the temperature T , and so on. But, as 
far as the present authors know, there is no 
mathematical proof for these assumptions of the BCS-
Bogoliubov model. Then, applying the implicit function 
theorem to the simple gap equation (1.3), one of the 
present authors obtained the following proposition that 
indeed gives a mathematical proof for these 
assumptions mentioned just above: 

Proposition 1.1 ([14, Proposition 1.2]) Let 
U(x,!) =U1 (> 0)  at all  (x,!) " [0, #D ]

2  and set  

 

! = !"D

sinh 1
U1

.  

Then there is a unique nonnegative solution 
!1 :[0,"1 ]# [0,$)  to the simple gap equation (1.3) such 
that the solution !1  is continuous and strictly 
decreasing with respect to the temperature T  on the 
closed interval [0,!1 ] :  

!1(0) = ! > !1(T1 ) > !1(T2 ) > !1("1 ) = 0, 0 < T1 < T2 < "1.  

Moreover, the solution !1  is of class C 2  with 
respect to the temperature T  on the interval [0,!1 )  
and satisfies  

!"1(0) = !!"1(0) = 0 and
T#$1

lim !"1(T ) = %&.  

Remark 1.2 We set !1(T ) = 0  for T > !1 . See 
Figure 1.  

 
Figure 1: The graphs of the functions !1  and !2  with the 
energy x  fixed. 

We introduce another positive constant U2 > 0 . Let 
0 <U1 <U2  and set U(x,!) =U2  at all  (x,!) " [0,!#D ]

2 . 
Then a similar discussion implies that for U2 , there is a 
unique nonnegative solution !2 :[0," 2 ]# [0,$)  to the 
simple gap equation  

 

1 =U2 0

!!D" 1
# 2 +$2 (T )

2
tanh

# 2 +$2 (T )
2

2T
d#,

0 % T % & 2 .

    (1.4) 

Here, ! 2 > 0  is defined by  

 
1 =U2 0

!!D" 1
#
tanh #

2$ 2
d#.  

We again set !2 (T ) = 0  for T > ! 2 . 

Lemma 1.3 ([14, Lemma 1.5]) (a) The inequality 
!1 < ! 2  holds. 

(b) If 0 ! T < " 2 , then !1(T ) < !2 (T ) . If T ! " 2 , then 
!1(T ) = !2 (T ) = 0 .  
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See Figure 1. The function !2  has properties 
similar to those of the function !1 . 

We now deal with the BCS-Bogoliubov gap 
equation (1.1), where the potential U  is not a constant 
but a function. We assume the following condition on 
U :  

  

U(!,!) " C([0,!#D ]
2 ), U1 $U(x,%) $U2

at all (x,%) " [0, #D ]
2 .

     (1.5) 

Let 0 ! T ! " 2  and fix T . We now consider the 
Banach space  C[0,!!D ]  consisting of continuous 
functions of the energy x  only, and deal with the 
following temperature dependent subset VT :  

 
VT =

u(T ,!) " C[0,!#D ] :$1(T ) % u(T ,x) % $2 (T )
at x " [0,!#D ]

&
'
(

)
*
+
.  

Remark 1.4 The set VT  depends on the 
temperature T . See Figure 1 and 2.  

Applying the Schauder fixed-point theorem to our 
operator (1.2) defined on VT , one of the present 
authors gave another proof of the existence and 
uniqueness of the nonnegative solution to the BCS-
Bogoliubov gap equation (1.1), which shows how the 
solution varies with the temperature.  

Theorem 1.5 ([14, Theorem 2.2]) Assume (1.5) 
and fix T ! [0," 2 ] . Then there is a unique nonnegative 
solution u0 (T ,!) " VT  to the BCS-Bogoliubov gap 
equation (1.1):  

 

u0 (T ,x) = 0

!!D" U(x,#)u0 (T ,#)
# 2 + u0 (T ,#)

2
tanh

# 2 + u0 (T ,#)
2

2T
d#,

x $ [0,!!D ].

 

Consequently, the solution u0 (T ,!)  with T  fixed is 
continuous with respect to the energy x  and varies 
with the temperature as follows:  

 !1(T ) " u0 (T ,x) " !2 (T ) at (T ,x) # [0,$ 2 ]% [0,!&D ].  

See Figure 2. 

Superconductivity is observed when the 
temperature T  satisfies T < Tc . Here, Tc  is the 
transition temperature (critical temperature) and divides 
superconductivity (T < Tc )  and normal conductivity 
(T > Tc ) . The existence and uniqueness of the 
transition temperature Tc  were pointed out in previous 
papers [4-6, 8]. In our case, we can define it as follows:  

Definition 1.6 Let u0 (T ,!)  be as in Theorem 1.5. 
Then the transition temperature Tc  is defined by  

 Tc = inf{T > 0 :u0 (T ,x) = 0 at all x ! [0,!"D ]}.  

Note that the transition temperature Tc  satisfies 
!1 " Tc " ! 2 . Let u0 (T ,!)  be as in Theorem 1.5. A 
straightforward calculation gives that if there is a point 

 x1 ! [0,!"D ]  satisfying u0 (T ,x1 ) = 0 , then u0 (T ,x) = 0  at 
all  x ! [0,!"D ] . We then set u0 (T ,x) = 0  at all 

 x ! [0,!"D ]  for T ! Tc . We thus see that u0 (T ,x) > 0  at 
all  x ! [0,!"D ]  for 0 ! T < Tc  and that u0 (T ,x) = 0  at all 

 x ! [0,!"D ]  for T ! Tc . See Figure 2. 

 
Figure 2: For each fixed T , the solution u0 (T ,x)  lies 
between !1(T )  and !2 (T ) . 

Remark 1.7 Theorem 1.5 tells us nothing about 
continuity of the solution u0  with respect to the 
temperature T . Applying the Banach fixed-point 
theorem, we then showed in [15, Theorem 1.2] that the 
solution u0  is indeed continuous both with respect to 
the temperature T  and with respect to the energy x  
under the restriction that the temperature T  is 
sufficiently small. See also [16].  

When the potential U(!,!)  is not a constant but a 
function, one of the present authors [17] studied the 
temperature dependence such as smoothness and 
monotone decreasingness of the solution to the BCS-
Bogoliubov gap equation (1.1) with respect to the 
temperature near the transition temperature Tc , and 
gave the behavior of the solution near the transition 
temperature Tc . Then, dealing with the thermodynamic 
potential, it was shown that the transition to the 
superconducting state is a second-order phase 
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transition from the viewpoint of operator theory [17]. 
Moreover, the exact and explicit expression for the gap 
in the specific heat at constant volume at the transition 
temperature Tc  was also obtained in [17]. 

Let us denote by z0 > 0  a unique solution to the 

equation 2
z
= tanh z  (z > 0) . Note that z0  is nearly 

equal to 2.07 and that 2
z
! tanh z  for z ! z0 . Let ! 0 (> 0)  

satisfy  

!1(" 0 ) = 2z0" 0 .         (1.6) 

From (1.6) it follows immediately that (0 <)! 0 < !1 . 

Remark 1.8 Observed values in many experiments 
by using superconductors imply the temperature ! 0  is 
nearly equal to Tc / 2 .  

Let 0 < ! < ! 0  and fix ! . We then deal with the 
following subset V  of the Banach space 

 C([0,! ]" [0,!#D ]) :  

 
V =

u ! C([0," ]# [0,!$D ]) : 0 % u(T ,x)& u( 'T ,x)
% ( 'T &T( ) (T < 'T ),
)
*
+

,+
 

!1(T ) " u(T ,x) " !2 (T ), u
is partially differentiable with respect to T twice,

 

 

!u
!T
, !

2u
!T 2 " C([0,# ]$ [0,!%D ])

&
'
(
.  

Here, ! > 0  is defined by (2.2) below. Let us define 
our operator (1.2) on the subset V  of the Banach 
space  C([0,! ]" [0,!#D ]) . We denote by V  the closure 
of the subset V  with respect to the norm  ! ! !  of the 
Banach space  C([0,! ]" [0,!#D ]) . 

Remark 1.9 The constant ! > 0  depends neither on 

u ! V , nor on T ! [0," ] , nor on  x ! [0,!"D ] . See (2.2).  

The following is our main result. 

Theorem 1.10 Assume (1.5). Let !  and V  be as 
above. Then the operator A :V !V  has a unique fixed 

point u0 ! V , and so there is a unique nonnegative 

solution u0 ! V  to the BCS-Bogoliubov gap equation 
(1.1):  

 

u0 (T ,x) = 0

!!D" U(x,#)u0 (T ,#)
# 2 + u0 (T ,#)

2
tanh

# 2 + u0 (T ,#)
2

2T
d#,

0 $ T $ % , 0 $ x $ !!D .

 

Consequently, the solution u0  is continuous on 

 [0,! ]" [0,!#D ] , i.e., the solution u0  is continuous with 
respect to both the temperature T  and the energy x . 
Moreover, the solution u0  is Lipschitz continuous and 
monotone decreasing with respect to the temperature 
T , and satisfies !1(T ) " u0 (T ,x) " !2 (T )  at all 

 (T ,x) ! [0," ]# [0,!$D ] . Furthermore, if u0 ! V , then the 
solution u0  is partially differentiable with respect to the 
temperature T  twice and the second-order partial 
derivative is continuous with respect to both the 
temperature T  and the energy x . On the other hand, if 
u0 ! V \V , then the solution u0  is approximated by 
such a smooth element of the subset V  with respect to 
the norm  ! ! !  of the Banach space  C([0,! ]" [0,!#D ]) .  

See Figure 3 for the graph of the solution u0  with 
the energy x  fixed. 

 

Figure 3: The solution u0  belongs to the subset V . 

2. PROOF OF THEOREM 1.10 

We prove Theorem 1.10 in a sequence of lemmas. 

Lemma 2.1 Let 0 < ! < ! 0  and fix ! . Define a 
function F  on [0,! ]  by  

 

F(T ) =
0

!!D" 1
# 2 +$1(T )

2
tanh

# 2 +$1(T )
2

2% 0
d#,

T & [0,% ].
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Then the function F  is continuous on [0,! ] .  

Proof. Let T ! [0," ] . Note that z
2cosh z
! tanh z  

(z ! 0)  and that tanh z
z

!1  (z ! 0) . Then  

F(T + h)! F(T )  

 

!
0

!"D#
$1(T + h)

2 % $1(T )
2

2 & 2 + d( )3/2

tanh
& 2 + d
2' 0

+
& 2 + d
2' 0

1

2cosh
& 2 + d
2' 0

(

)

*
*

+

*
*

,

-

*
*

.

*
*

d&

 

 

! "1(T + h)
2 #"1(T )

2
0

!$D% 1
& 2 + d( )3/2

tanh
& 2 + d
2' 0

d&  

 

! "1(T + h)
2 #"1(T )

2
0

!$D% d&
2' 0 & 2 + d( )

.  

Here, d  is between !1(T + h)
2  and !1(T )

2 . Since 
d ! "1(# )

2 , it follows that  

 
F(T + h)!F(T ) " #1(T + h)

2 !#1(T )
2 1
2$ 0#1($ )

arctan !%D

#1($ )
.  

Continuity of the function !1  proves the lemma.     !  

Let 0 < ! < ! 0  and fix ! . In view of Lemma 2.1, we 
set  

 

a =
0!T !"
max 0

!#D$ 1
% 2 +&1(T )

2
tanh

% 2 +&1(T )
2

2" 0
d%,     (2.1) 

 
b = 32! 2

"1(! )
2 arctan

!#D

"1(! )
.  

Then, for T ! [0," ] ,  

 

1 =U1 0

!!D" 1
# 2 +$1(T )

2
tanh

# 2 +$1(T )
2

2T
d#  

 

>U1 0

!!D" 1
# 2 +$1(T )

2
tanh

# 2 +$1(T )
2

2% 0
d#  

by (1.3). Lemma 2.1 implies 1 >U1a , where a  is that in 
(2.1). We choose U2 (>U1 )  such that 1 >U2a  holds 
true. Set  

! = U2b
1"U2a

(> 0).        (2.2) 

As mentioned in Remark 1.9, the constant ! > 0  

depends neither on u ! V , nor on T ! [0," ] , nor on 

 x ! [0,!"D ] . 

Lemma 2.2 Let T ! [0," 0 ]  and let X ! ["1(# 0 )
2 ,$) . 

Define a function G  by  

 

G(T ,X,!) = ! 2 tanh
! 2 + X
2T

+
4XT
! 2 + X

, 0 " ! " !#D .  

Then G  is a monotone increasing function with 
respect to T ! [0," 0 ] . Consequently, 
G(T ,X,!) "G(# 0 ,X,!) .  

Proof. A straightforward calculation gives  

!G
!T

= 1
2 " 2 + X

8X +
" " 2 + X

T cosh " 2 + X
2T

#

$

%
%
%
%

&

'

(
(
(
(

)

8X *
" " 2 + X

T cosh " 2 + X
2T

#

$

%
%
%
%

&

'

(
(
(
(

.

 

Since z
cosh z

!
2
z

 (z ! 0) , it follows from (1.6) that  

8X !
" " 2 + X

T cosh " 2 + X
2T

# 8X !
8"T
" 2 + X

 

= 8X ! 2 + X " 8!T
! 2 + X

 ! 8"1(# 0 )$ % 8$# 0
$ 2 + X

  

= 2 8!" 0
! 2 + X

z0 # 2( )  ! 0.  

Note that X ! "1(# 0 )  and that z0  is nearly equal to 
2.07. The result thus follows.  !  

A straightforward calculation gives the following.  

Lemma 2.3 The subset V  is bounded, closed, 
convex and nonempty.  
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Lemma 2.4 If u ! V , then !1(T ) " Au(T ,x) " !2 (T )  
at all  (T ,x) ! [0," ]# [0,!$D ] .  

Proof. Since u(T ,x) ! "2 (T ) , it follows that  

u(T ,!)
! 2 + u(T ,!)2

"
#2 (T )

! 2 +#2 (T )
2
.  

Therefore (1.4) gives  

 

Au(T ,x) !U2 0

!"D# $2 (T )
% 2 +$2 (T )

2
tanh

% 2 +$2 (T )
2

2T
d%

= $2 (T ).  

Similarly we can show the rest.         !  

Lemma 2.5 For T , !T " [0,# ] , let T < !T . If u ! V , 
then  

 0 ! Au(T ,x)" Au( #T ,x) ! $ #T "T( ) , x % [0,!&D ].  

Proof. Step 1. We first show Au(T ,x)! Au( "T ,x) # 0 .  

 
Au(T ,x)! Au( "T ,x) =

0

!#D$ U(x,%) K1 + K2( )d%,  

where  

K1 =
u(T ,!)

! 2 + u(T ,!)2
tanh

! 2 + u(T ,!)2

2T
"

u( #T ,!)
! 2 + u( #T ,!)2

tanh
! 2 + u( #T ,!)2

2T
,

 

K2 =
u( !T ,")

" 2 + u( !T ,")2

tanh
" 2 + u( !T ,")2

2T

# tanh
" 2 + u( !T ,")2

2 !T

$

%

&
&

'

&
&

(

)

&
&

*

&
&

.  

Since u(T ,!) " u( #T ,!) , it follows that  

u(T ,!)
! 2 + u(T ,!)2

"
u( #T ,!)

! 2 + u( #T ,!)2
.  

Hence K1 ! 0 . Clearly, K2 ! 0 . Thus 
Au(T ,x)! Au( "T ,x) # 0 . 

Step 2. We next show 

Au(T ,x)! Au( "T ,x) # $ "T !T( ) . Since z
2cosh z
!
2
z

 

(z ! 0) , it follows from Lemma 2.2 that  

K1 =
1

! 2 + c2( )3/2
! 2 tanh

! 2 + c2

2T
+

c2 ! 2 + c2

2T 2cosh
! 2 + c2

2T

"

#
$$

%
$
$

&

'
$$

(
$
$

) u(T ,!)* u( +T ,!){ }

 

!
1

" 2 + c2( )3/2
G(T ,c2 ,")#( $T %T )  

!
1

" 2 + c2( )3/2
G(# 0 ,c

2 ,")$( %T &T ),  

where c  satisfies u(T ,!) > c > u( "T ,!)  and depends on 
T , !T , !  and u . Note that  

! 2 + c2

2" 0
#

c2

2" 0
> $1(" 0 )

2" 0
= z0  

by (1.6). The substitution z =
! 2 + c2

2" 0
 therefore turns 

2
z
! tanh z  (z ! z0 )  into  

4! 0
" 2 + c2

# tanh
" 2 + c2

2! 0
.  

Hence  

K1 !
1

" 2 + c2
tanh

" 2 + c2

2# 0
$( %T &T )  

!
1

" 2 +#1( $T )2
tanh

" 2 +#1( $T )2

2% 0
&( $T 'T ).  

Since z
cosh z

!
2
z

 (z ! 0) , it follows that  

K2 =
2u( !T ,")( !T #T )
" 2 + u( !T ,")2

" 2 + u( !T ,")2

2 !!T
1

cosh
" 2 + u( !T ,")2

2 !!T

$

%
&&

'
&
&

(

)
&&

*
&
&

2

 

!
2u( "T ,#)( "T $T )
# 2 + u( "T ,#)2

16( ""T )2

# 2 + u( "T ,#)2
 

!
( "T #T )32$ 2

%1($ )
1

& 2 +%1($ )
2 ,  
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where T < !!T < !T . Thus, by (2.2),  

Au(T ,x)! Au( "T ,x)  

 

! ( "T #T )U2 0

!$D%

&

' 2 +(1( "T )2
tanh

' 2 +(1( "T )2

2) 0

+
32) 2

(1() )
1

' 2 +(1() )
2

*

+

,
,
,
,
,

-

.

/
/
/
/
/

d'  

! ( "T #T )U2 $a + b( )  

= ! ( "T #T ).       !  

Lemma 2.6 If u ! V , then  Au ! C([0," ]# [0,!$D ]) .  

Proof. Let T < !T . Then  

Au(T ,x)! Au( "T , "x ) # Au(T ,x)! Au( "T ,x)

+ Au( "T ,x)! Au( "T , "x ) .
     (2.3) 

Since U(!,!)  is uniformly continuous, for an arbitrary 
! > 0 , there is a !1 > 0  such that | x ! "x |< #1  implies  

 
U(x,!)"U( #x ,!) < $

2!%D

.  

Note that the !1 > 0  depends neither on x , nor on 
!x , nor on ! , nor on u ! V . Hence the second term on 

the right of (2.3) becomes  

 
Au( !T ,x)" Au( !T , !x ) #

0

!$D% U(x,&)"U( !x ,&) d& < '
2
.  

On the other hand, the first term on the right of (2.3) 
becomes  

Au(T ,x)! Au( "T ,x) # $( "T !T ) < %
2

 

by the preceding lemma. Here, !T "T < # / (2$ ) . Thus  

Au(T ,x)! Au( "T , "x ) < #, ( "T !T )+ x ! "x < $ = min $1,
#
2%

&

'
(

)

*
+.  

Note that the ! > 0  depends neither on x , nor on 
!x , nor on ! , nor on u ! V , nor on T , nor on !T .      !  

A straightforward calculation gives the following.  

Lemma 2.7 Let u ! V . Then Au  is partially 
differentiable with respect to T  twice (0 ! T ! " ) , and  

 

!Au
!T

, !
2Au
!T 2 " C([0,# ]$ [0,!%D ]).  

The preceding lemmas imply the following.  

Lemma 2.8 AV ! V .  

Lemma 2.9 The set AV  is relatively compact.  

Proof. Let u ! V . Lemma 2.4 then implies  

 

Au(T ,x) ! "2 (0) =
!#D

sinh 1
U2

.  

So the set AV  is uniformly bounded. As mentioned 
in the proof of Lemma 2.6, the !  does not depend on 
u ! V . Hence the set AV  is equicontinuous. The 
result thus follows from the Ascoli– Arzelà theorem.    !  

Lemma 2.10 The operator A :V !V  is continuous.  

Proof. Let u,v ! V . Then combining a similar 
discussion to that in the proof of Lemma 2.5 with (1.3) 
gives  

Au(T ,x)! Av(T ,x)  

 

!U2 0

!"D# 1
$ 2 + d 2( )3/2

$ 2 tanh
$ 2 + d 2

2T
+

d 2 $ 2 + d 2

2T 2cosh
$ 2 + d 2

2T

%

&
''

(
'
'

)

*
''

+
'
'

, u(T ,$)- v(T ,$) d$

 

 

!U2 0

!"D# 1
$ 2 + d 2

tanh
$ 2 + d 2

2T
d$ u % v  

 

!
U2

U1
0

!"D# U1

$ 2 +%1(T )
2
tanh

$ 2 +%1(T )
2

2T
d$ u & v  

= U2

U1

u ! v .  

Here, d  is between u(T ,!)  and v(T ,!) , and  ! ! !  
denotes the norm of the Banach space 

 C([0,! ]" [0,!#D ]) . The result thus follows.         !  

We now extend the domain V  of our operator A  to 
the closure V . Let u ! V . Then there is a sequence 
{un}n=1

! " V  satisfying  ! u ! un !" 0  as n!" . A 
similar discussion to that in the proof of Lemma 2.10 
gives {Aun}n=1

! " V  is a Cauchy sequence, and hence 

there is an Au ! V  satisfying  ! Au ! Aun !" 0  as 

n!" . Note that Au ! V  does not depend on how to 
choose the sequence {un}n=1

! " V . We thus have the 
following. 
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Lemma 2.11 A :V !V .  

It is not obvious that Au  (u ! V )  is expressed as 
(1.2). The next lemma shows this is the case. A similar 
discussion to that in the proof of Lemma 2.10 gives the 
following. 

Lemma 2.12 Let u ! V . Then  

 

Au(T ,x) =
0

!!D" U(x,#)u(T ,#)
# 2 + u(T ,#)2

tanh
# 2 + u(T ,#)2

2T
d#.  

Proof. For u ! V , set  

 

I(T ,x) =
0

!!D" U(x,#)u(T ,#)
# 2 + u(T ,#)2

tanh
# 2 + u(T ,#)2

2T
d#,

(T ,x) $ [0,% ]& [0,!!D ]

 

and let {un}n=1
! " V  be a sequence satisfying 

 ! u ! un !" 0  as n!" . Note that the function 

 (T ,x)! I(T ,x)  just above is well-defined and 
continuous. Then  

| Au(T ,x)! I(T ,x) |"| Au(T ,x)! Aun (T ,x) |+ | Aun (T ,x)! I(T ,x) | .  

Since Aun ! Au  in the Banach space 

 C([0,! ]" [0,!#D ]) , the first term on the right becomes  

 | Au(T ,x)! Aun (T ,x) |" ! Au ! Aun !# 0 (n#$).  

A similar discussion to that in the proof of Lemma 
2.10 gives the second term becomes  

| Aun (T ,x)! I(T ,x) |"
U2

U1

un ! u # 0 (n#$).  

The result thus follows.            !  

Similar discussions to those in Lemmas 2.4 and 2.5 
give the following. 

Lemma 2.13 Let u ! V  and let !  be as in (2.2). 
Then !1(T ) " Au(T ,x) " !2 (T ) . Moreover, if T < !T , then 
0 ! Au(T ,x)" Au( #T ,x) ! $( #T "T ) .  

Lemma 2.13 implies Au(T ,x) ! "2 (0)  for u ! V  
since the function !2  is strictly decreasing with respect 

to the temperature T . Hence the set AV  is uniformly 
bounded. Similar discussions to those in the proofs of 
Lemmas 2.6 and 2.9 give the following. 

Lemma 2.14 Let u ! V . Then 

 Au ! C([0," ]# [0,!$D ]) . Moreover, the set AV  is 

equicontinuous, and hence the set AV  is relatively 
compact.  

By Lemma 2.12, a similar discussion to that in the 
proof of Lemma 2.10 gives the following. 

Lemma 2.15 The operator A :V !V  is continuous.  

Lemmas 2.14 and 2.15 imply the following. 

Lemma 2.16 The operator A :V !V  is compact.  

Combining Lemma 2.16 with Lemma 2.3 and then 
applying the Schauder fixed-point theorem give the 
following. 

Lemma 2.17 The operator A :V !V  has at least 

one fixed point u0 ! V , i.e., u0 = Au0 .  

The uniqueness of the nonzero fixed point of 
A :V !V  was pointed out in Theorem 1.5. Our proof of 
Theorem 1.10 is now complete. 
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