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Abstract: Classification is a data mining (machine learning) technique used to predict group membership for data 
instances. There are several classification techniques that can be used for classification purpose. In this paper, we 
present the basic classification techniques. Later we discuss some major types of classification method including 
Bayesian networks, decision tree induction, k-nearest neighbor classifier and Support Vector Machines (SVM) with their 
strengths, weaknesses, potential applications and issues with their available solution. The goal of this study is to provide 
a comprehensive review of different classification techniques in machine learning. This work will be helpful for both 
academia and new comers in the field of machine learning to further strengthen the basis of classification methods. 
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1. INTRODUCTION 

Machine Learning (ML) is a vast interdisciplinary 
field which builds upon concepts from computer 
science, statistics, cognitive science, engineering, 
optimization theory and many other disciplines of 
mathematics and science [1]. There are numerous 
applications for machine learning but data mining is 
most significant among all [2]. Machine learning can 
mainly classified into two broad categories include 
supervised machine learning and unsupervised 
machine learning.  

Unsupervised machine learning used to draw 
conclusions from datasets consisting of input data 
without labeled responses [3] or we can say in 
unsupervised learning desired output is not given. 
Supervised machine learning techniques attempt to 
find out the relationship between input attributes 
(independent variables) and a target attribute 
(dependent variable) [4]. Supervised techniques can 
further classified into two main categories; classification 
and regression. In regression output variable takes 
continuous values while in classification output variable 
takes class labels [5].  

Classification is a data mining (machine learning) 
approach that used to forecast group membership for 
data instances [6]. Although there are variety of 
available techniques for machine learning but 
classification is most widely used technique [7]. 
Classification is an admired task in machine learning 
especially in future plan and knowledge discovery.  
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Classification is categorized as one of the supreme 
studied problems by researchers of the machine 
learning and data mining fields [8]. A general model 
supervised learning (classification techniques) is shown 
in Figure 1.  

Although classification is well known technique in 
machine learning but it suffers with issues like handling 
missing data. Missing values in data set can cause 
problem during both training and classification phases. 
Some of potential reasons of missing data are 
presented in [9] includes; Non entry of record due to 
misconception, data recognized irrelevant at the time of 
entry, data removal because of deviation with other 
documented data and equipment malfunction. 

Missing data problem can overcome by approaches 
[10] like; Data miners can overlook the omitting data, 
swap whole omitting values with an individual global 
constant, swap an omitting value with its feature mean 
for the given class, manually observe samples with 
omitting values and insert a feasible or probable value. 
In this work we will focus only on some selected 
classification methods. 

This paper organized as following; in section 2 
methodology of review is presented. Section 3 is 
divided into four subsections in which selected 
classification techniques has been discussed. In 
section 3.1 Logic based technique (decision tree) has 
been discussed. In section 3.2, statistical learning 
techniques (Bayesian networks) are discussed. K- 
Nearest neighbor classifiers are presented in section 
3.3. Support Vector Machines has been discussed in 
section 3.4. 
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2. METHODOLOGY 

A literature search was performed for the articles by 
using databases include IEEE xplore, google scholar, 
science direct and some related web pages that are 
written in English. The keywords used for literature 
search include; Machine learning, data mining, 
classification, classification review, classification 
applications and classification algorithms. These 
keywords were used alone and in combination for the 
initial collection of research material. Only those 
articles that contain relevant data about classification 
techniques applications, challenges and solutions were 
included in this review. It is difficult to provide 
exhaustive review of all supervised machine learning 
classification methods in a single article, Therefore we 
focused only on commonly used classification 
techniques include Decision Tree (ID3 and C4.5), 
Bayesian Network, K-Nearest Neighbor and Support 
Vector Machines. Applications of different classification 
techniques are presented in Table 1 and issues of 
classification techniques with their available solutions 
are presented in Table 2. 

3. CLASSIFICATION TECHNIQUES 

Major classification techniques has been discussed 
in this section with their basic working, advantages and 
disadvantages. 

3.1. Decision Tree Induction 

Decision tree algorithms are most commonly used 
algorithms in classification [11]. Decision tree provides 
an easily understandable modeling technique and it 

also simplifies the classification process [12]. The 
decision tree is transparent mechanism it facilitate 
users to follow a tree structure easily in order to see 
how the decision is made [13]. In this section basic 
philosophy of decision tree methods has been 
discussed with their strengths, limitations and 
applications. 

The core objective of decision tree is to produce a 
model that calculates the value of a required variable 
based on numerous input variables [6]. Usually all 
decision tree algorithms are constructed in two phases 
(i) tree growth; in which training set based on local 
optimal criteria is splitting recursively until most of the 
record belonging to the partition having same class 
label [14] (ii) tree pruning; in which size of tree is 
reduced making it easier to understand [15]. In this 
section we will focus on ID3 and C4.5 decision tree 
algorithm. 

ID3 (Iterative Dichotomiser 3) decision tree 
algorithm was introduced in 1986 [16, 17]. It is one of 
the widely used algorithms in the area of data mining 
and machine learning due to its effectiveness and 
simplicity [16]. The ID3 algorithm is based on 
information gain. Some of the strengths and 
weaknesses of ID3 decision tree are presented in [18], 
strengths includes; easy to understand and in final 
decision whole training example is considered while 
weaknesses includes; no back tracking search, unable 
to handle missing values and no global optimization. 

C4.5 is a famous algorithm for decision trees 
production. It is an expansion of the ID3 algorithm and 

 
Figure 1: Supervised learning classification techniques. 
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it minimize its drawbacks caused by ID3. In pruning 
phase C4.5 tries to eliminate the un-comfort branches 
by swapping them with leaf nodes by going back 
through the tree once it has been generated [19]. The 
strengths of C4.5 are dealing training data with missing 
feature values, deals both discrete and continuous 
features and providing facility of both pre and post 
pruning [18, 20]. The weaknesses includes; not 
suitable for small data set [18] and high processing 
time as compare to other decision trees. 

3.2. Bayesian Networks 

A Bayesian Network (BN) refers graphical model for 
probability associations betwixt a set of variables [21]. 
BN structure S consist directed acyclic graph (DAG) 
and the nodes in S are in one-to-one communication 
with the X features. The arcs exemplify unexpected 
impacts betwixt the nodes while the scarcity of possible 
arcs in S encodes conditional liberties [2]. Normally 

Bayesian Network learning tasks can be isolated into 
two subtasks; (a) network DAG structure learning, (b) 
parameters determination. 

One of the problems with Bayesian networks 
classifier is that it usually requires continuous attributes 
to be discretized. The process of conversion of 
continuous attribute into discrete attribute introduced 
classification issues [22, 23]. These issues may include 
noise, missing information and consciousness to the 
change of the attributes towards class variables [24]. 
The other method of Bayesian network classifier in 
which continuous attribute does not converted into 
discrete attribute, needs valuation of the attribute’s 
conditional density [23].  

To overcome the problem of conditional density 
estimation of attributes, in [24] Gaussian kernel 
function with stable constraints for evaluation of 
attributes density was used. Then Experiment was 

Table 1: Classification Techniques Applications 

Classification Techniques Applications Reference 

ID3 

predicting student performance 
land capability classification 

tolerance related knowledge acquisition 
computer crime forensics 
fraud detection application 

[20] 
[31] 
[32] 
[33] 
[34] 

C4.5 

Decision making of loan application by debtor 
Predicting Software Defects 

Thrombosis collagen diseases 
Electricity price prediction 

coal logistics customer analysis 
Selecting Question Pools 

[35] 
[36] 
[37] 
[38] 
[39] 
[40] 

Bayesian Network 

automatic and interactive mode for Image Segmentation 
traffic incident detection 

signature verification 
efficient patrolling of nurses 

examine dental pain 
telecommunication and internet networks 

[41] 
[42] 
[43] 
[44] 
[45] 
[46] 

K- Nearest neighbor 

Microarray data classification 
Phoneme Prediction 

Face recognition 
Agarwood oil quality grading 

Classification of nuclear receptors and their subfamilies 
Short-term traffic flow forecasting 

Plant Leaf Recognition 

[47] 
[48] 
[49] 
[50] 
[51] 
[52] 
[53] 

SVM 

Scene classification 
Predict corporate financial distress 

Induction motors fault diagnosis 
Analog circuit fault diagnosis 
enterprise market competition 

[54] 
[55] 
[56] 
[57] 
[58] 
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performed on data set given at UCI machine learning 
repository indicate that continuous attributes provides 
better classification accuracy as compare to other 
techniques by using Gaussian kernel function in 
Bayesian Network classifiers. 

Some of the advantages of Bayesian network are 
presented in [25] includes (i) smoothness properties; 
minor changes in Bayesian network model do not 
influence the working of the system (ii) Flexible 
applicability; identical Bayesian Network model can be 
used for resolving both regression and classification 
issues (iii) handling missing data; Bayesian network 
has capability to filled out missing data by assimilating 
over all opportunities of the missing values. 

3.3. K- Nearest Neighbor 

In K-nearest neighbor (KNN) technique, nearest 
neighbor is measured with respect to value of k, that 
define how many nearest neighbors need to be 
examine to describe class of a sample data point [26]. 
Nearest neighbor technique is divided into two 
categories i.e, structure based KNN and structure less 
KNN. The structure based technique deals with the 
basic structure of the data where the structure has less 
mechanism which associated with training data 
samples [27]. In structure less technique entire data is 
categorized into sample data point and training data, 
distance is calculated between sample points and all 
training points and the point with smallest distance is 
known as nearest neighbor [28]. 

One of the main advantage of KNN technique is that 
it is effective for large training data and robust to noisy 
training data [29]. Scaling KNN queries over enormous 
high dimensional multimedia datasets is a stimulating 
issue for KNN classifiers. To overcome this issue an 
high performance multimedia KNN query processing 
system [30] was introduced, in this system the fast 
distance based pruning methods are coupled with 
suggested Distance-Pre computation based R-tree 
(DPR-Tree) index structure. Input/output cost is 
reduced by this exclusive coupling but it increase the 
computational work of KNN search. 

Two important obstacles with nearest neighbor 
based classifiers are highlighted in [59] that includes; 
space requirement and its classification time. Different 
methods have been introduced to overcome space 
requirement issue. K-Nearest Neighbor Mean Classifier 
(k-NNMC) was introduced in [59]. K-NNMC 
independently search k nearest neighbors for every 
training pattern class and calculate mean for all given 
k-neighbors. It is presented experimentally by using 
numerous standard data-sets that the classification 
accuracy of suggested classifier is better as compare 
to other classifiers like weighted k-nearest neighbor 
classifier (Wk-NNC) [60] and it has ability to combine 
efficiently with any space reduction and indexing 
methods. 

 The advantages of KNN include simplicity, 
transparency, Robust to noisy training data, easy to 
understand and implement and disadvantages includes 

Table 2: Classification Techniques Issue and Solutions 

Classification Approach Issue Solution/technique Ref. 

Decision tree (ID3 and 
C4.5) 

multi valued attributes 
Complex information entropy and attribute with 

more values 
Noisy data classification 

Algorithm by combining ID3 and association 
function(AF) 

modification to the attribute selection 
methods, pre pruning strategy and rainforest 

approach 
Enhanced algorithm with Taylor formula 

Credal-C4.5 tree 

[62] 
 

[63] 
 
 

[64] 
[65] 

Bayesian Network 

Attributes conditional density estimation 
Inference (large domain discrete and continuous 

variables) 
Multi-dimensional data 

Gaussian kernel function 
decision-tree structured conditional probability 

greedy learning algorithm 

[24] 
[66] 
[67] 

K nearest neighbor 
space requirement 
time requirement 

KNN scaling over multimedia dataset 

Prototype selection 
feature selection and extraction methods 

finding R-Tree index 
multimedia KNN query processing system 

[68] 
[69] 
[70] 
[30] 

SVM 
controlling the false positive rate 

low sparse SVM classifier 
multi-label classification 

Risk Area SVM (RA-SVM) 
Cluster Support Vector Machine (CLSVM) 

fuzzy SVMs (FSVMs) 

[71] 
[72] 
[73] 
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computation complexity, memory limitation, poor run-
time performance for large training set and irrelevant 
attributes can cause problems [28, 61]. 

3.4. Support Vector Machines 

Vapnik proposed statistical learning theory based 
machine learning method which is known as Support 
vector machine (SVM) [74]. SVM has considered as 
one of the highest prominent and convenient technique 
for solving problems related to classification of data 
[75] and learning and prediction[76]. Support vectors 
are the data points that lie closest to the decision 
surface [77]. It executes the classification of data 
vectors by a hyper plane in immense dimensional 
space [78]. Maximal margin classifier is the simplest or 
basic form of SVM that helps to determine the most 
simple classification problem of linear separable 
training data with binary classification [27]. The 
maximal margin classifier used to find the hyper plane 
with maximal margin in real world complications [79].  

The main advantage of SVM is its capability to deal 
with wide variety of classification problems includes 
high dimensional and not linearly separable problems. 
One of the major drawback of SVM that it requires 
number of key parameters to set correctly to attain 
excellent classification results [80]. 

4. CONCLUSION 

In this paper various popular classification 
techniques of machine learning has been discussed 
with their basic working mechanism, strengths and 
weaknesses. The potential applications and issues with 
their available solutions have also been highlighted. 
Classification methods are typically strong in modeling 
interactions. The discussed classification techniques 
can be implemented on different type of data set i.e. 
health, financial etc. It is difficult to find out which 
technique is superior to other because each technique 
has its own merits, demerits and implementation 
issues. The selection of classification technique 
depends on user problem domain. However, lot of work 
has been done in classification domain but it still 
requires formal attention of research community to 
overcome classification issues that have been arising 
due to dealing with new classification problems like 
problems in classification of Big Data. 
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