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Abstract: Purpose of this research is to extract features associated with human brain signal related to 
electroencephalographic measurements and classification of extracted EEG signals to the relevant the brain region. 
EEG brain signals from 14 electrodes placed on the human scalp is recorded non-invasively using Emotiv EPOC / 
EPOC+: Scientific contextual EEG system with a sampling rate of 128 Hz. EEG data of human brain functions related to 
evoked motor imagery tasks consisting of two different classes of activities, namely imagination of right arm-movement 
i.e. arm down (termed here as PUSH) and arm up (termed here as PULL) for three healthy subjects is recorded. After 
pre-processing for noise and artifacts removal, the EEG signals associated with investigated evoked activities are 
extracted using Independent Component Analysis (ICA). The results obtained show good contrast plots for the extracted 
brain signals recorded on F7, FC5 and FC6 electrodes, decomposed on independent components, namely IC1, IC4, IC5, 
IC6. Classification of extracted features is mapped on to the motor imagery parts of human brain. The algorithm based 
on independent component analysis gives good results for feature extraction corresponding to evoked signals. Power 
spectra are also determined for the extracted independent components.  
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event related potential. 

1. INTRODUCTION 

Rapid technological advancement has resulted in 
data acquisition and analysis techniques of brain 
signals, such as electroencephalograms (EEGs) and 
electrocorticograms (ECoGs), has a profound impact 
on brain wave research, leading to various applications 
such as severe motor disabilities resulting from 
severed nerve connections to control prostheses for 
the movement of disabled body parts. This paradigm of 
scientific progress and technological advancement, this 
is, Brain-Computer Interface (BCI) provides an effective 
human control over devices such as computers, 
assistive appliances, neurophysiological disorders and 
sophisticated technology requiring fast and efficient 
human control. Although in its infancy, BCI has already 
started making differences in helping individuals in 
gaining their independency, an improvement in the 
quality of living. 

Human brain is in a continuous state of dynamic 
working, generating signals associated with various 
activities which it can control and perform. Signals 
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corresponding to different activities are in the form of 
weak brain electrical signals (microvolts) and are called 
electroencephalogram (EEG) signals. These brain 
activity measures (EE signals) are different from the 
measuring techniques used for measuring brain 
structure. Some of the brain structure analysis 
techniques are Magnetic Resonance Imaging (MRIs), 
Computerized Axial Tomography (CAT) scans and X-
Rays. An EEG measuring device use surface sensors 
placed on subject scalp for measuring EEG signals or 
brain waves. The technique is non-invasive measuring 
EEG signals painlessly, i.e. without the need of 
opening the skull to implant sensors, as is done in 
invasive EEG recording. 

Various brain activities and associated signals are 
classified according to their frequency band, viz., delta, 
theta, alpha and beta [1, 2]. The delta band of 
frequencies corresponds to frequency of 3 Hz or below. 
Signals lying in this band are highest in amplitude but 
lowest in frequency. It is a dominant rhythm in infants 
and/or in sleep state of adults. The theta frequency 
band corresponds to "slow activities" and is in the 
range 3.5 Hz to 7.5 Hz. Signals with these frequencies 
are normal in children up to the age of 13 years and in 
sleep state. Alpha frequency band lie in the range 7.5 
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Hz to 13 Hz. Beta frequency band correspond to fast 
activities with a frequency range of 14 Hz to 30 Hz. 
High-frequency brain activities are classified in the 
gamma frequency band lying in the range of 30 Hz to 
80 Hz. There has been a considerable interest in 
studying the brain EEG signals corresponding to 
gamma frequency band. High frequency EEG signals 
associated with muscle activity (∼20-300 Hz) 
completely mask the signals associated with the 
gamma frequency band. Therefore there is a growing 
appreciation in scientific community of the recorded 
EEG signals in the gamma frequency band being 
contaminated by neural signals associated with muscle 
activity.  

EEG signals are used in a number of applications 
ranging from investigations of neurological disorders to 
Brain-Computer-Interfacing (BCI). EEG signals used 
for the diagnosis of Neurological disorders include 
pesudoseizures, epilepsy [3, 4]. Analysis of EEG data 
is also useful in the areas of research associated with 
the BCI [5, 6]. A number of research papers have been 
published, regarding awake and sleep states of a 
human brain [7], assessment of visual and audio 
alertness [8]. In the area of feature extraction from EEG 
data, a new method was proposed based on wavelet 
packet decomposition (WPD) [9]. Features associated 
with left and right hand movement were extracted from 
EEG data using wavelet transform and probabilistic 
neural network [10]. Monte Carlo simulation studies 
were also performed to remove the effect of forward 
model errors, different data sets of EEG, MEG and 
EEG/MEG are used for source localization [11]. The 
motor cortex, or M1, area of the brain located in the 

rear portion of the frontal lobe, as shown in Figure 1a, 
is responsible for voluntary movements of the body. 
Prior to an actual movement, planning is done in the 
primary motor cortex area which communicates with 
other parts of the brain to assess the present state and 
position of the body. The skeletal muscles on the 
opposite side of the body are activated by neural 
impulses travelling across the body which are 
generated by primary motor cortex. This implies that 
the right and left sides of the body are controlled by the 
opposite sides of the human brain, viz. left and right 
hemispheres. All parts of the body are mapped to 
primary motor cortex area and are somatotopically 
arranged, i.e. there is a point-to-point correspondence 
of different parts of the body to specific points in 
primary cortex. In the motor cortex part of the brain, the 
amount of brain matter allocated to any part of the body 
depends upon the amount of control or sensitivity 
associated with that part of the body. An example of 
such correspondence can be seen in controlling 
complex movements such as those of the hands and 
fingers. In this case larger amount of cortical space is 
required as compared to that for trunk and legs whose 
motions are relatively simple (see Figure 1b). 

2. MATERIALS AND METHODS 

2.1. Experimental Setup and Pre-Processing of 
Recorded EEG Signals 

In this study Emotiv EPOC / EPOC+: Scientific 
contextual EEG system is used to record EEG brain 
signals. The EEG signals from human brain are 
recorded by fixing electrodes on the subject scalp, 14 

 
     (a)       (b) 
Figure 1: Primary motor cortex M1 and mapping of cortical matter to different body parts. In the present study authors 
emphasised on the primary motor cortex region marked in blue.  
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EEG electrodes are placed on the human scalp. An 
International 10-20 EEG electrode placement scheme 
is followed in this work [12-14] (see Figures 2 & 3). The 
actual experiment consists of recording EEG data at a 
sampling rate of 128 Hz and with an epoch time of ca. 
1 minute (i.e. ca. 60 segments of EEG data are 
recorded in one minute duration), therefore a total of 
ca. 8000 data points are contained in data sets. To 
investigate the spectral region of our interest, the EEG 
data is filtered between 0.5 and 30 Hz. The line noise is 
suppressed by using a 50 Hz notch filter. The evoked 
activities belonging to motor imagery tasks 
corresponding to right or left arm down i.e. PUSH and 
up i.e. PULL are studied. EEG data of 3 normal 
subjects (all female) aging between 18-24 years is 
recorded using the experimental setup, schematically 
shown in Figure 4. The subject sits on a comfortable 
chair with arms in rest state. A visual cue is used to 
instruct the subject to perform left or right arm 
movement. The experiment consists of taking 10 trials 
for each subject separated by several minutes of 
relaxation. The recorded EEG data for different 
subjects performing same activity showed a 
considerable difference; therefore a training phase was 
conducted before actually taking the EEG data for 
signal analysis and decomposition. The subjects were 
requested to concentrate on the task given to them and 
at the same time maximum possible number of 
distractions were removed from the experimental area. 
Same cue description is followed while recording EEG 
data from different subjects. The scalp diagram 
showing 14 electrode positions AF3, F7, F3, FC5, T7, 
P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 using 2 
reference electrodes, (see Figure 3). The EEG data 
recorded simultaneously on all 14 electrodes 
constitutes a frame of EEG signals and in one second 
resulting in 128 such frames. The experimental setup is 
given in Figure 4. In addition to the EEG signals 
associated with neurological disorders and various 
other evoked activities, EEG signals associated with 
voluntary and involuntary activities e.g. muscular 
activities, blinking of eyes are some major sources of 
contamination of EEG data. The EEG data is also 
contaminated by power line electrical noises. These 
artefacts and sources have adverse affects on the 
useful features of the signals and before applying any 
signal processing technique, the recorded EEG data 
must be pre-processed for the elimination of unwanted 
signals. Several pre-processing steps are followed 
before any features are extracted, these include 
removal of artefacts’, to reduce the dimensions of EEG 
data, signal averaging is performed, thresholds of the 

output are set, the resulting signal is amplified, and 
finally, edge detection. After pre-processing phase 
features are extracted using Independent Component 
Analysis (ICA).  

 
Figure 2: The general system electrode placements. A 10–
20 international system of electrode placement [11] is used. 

 

 
Figure 3: In the experiment 14 electrodes are used whose 
positions are shown in the figure. 

2.2. EEG Signal Processing and Feature Extraction 

A feature is a unique or a characteristic 
measurement, structural component, transform 
extracted from a segment of a pattern [15]. Different 
feature extraction modalities are based on whether the 
features are extracted in space or time domain. The 
choice of a specific feature extraction scheme depends 
on the requirement that a certain feature or information 
is important for the classification of EEG data [16-18]. 
Some examples of such modalities are Principal 
Component Analysis (PCA), Independent Component 
Analysis (ICA), Autoregression technique (AR), Fast 
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Fourier Transform (FFT), Wavelet Transform (WT), 
Tensor Decomposition (TR). In this communiqué the 
authors have successfully extracted features from EEG 
data using Independent Component Analysis 
technique.  

2.3. Independent Component Analysis 

Independent Component Analysis (ICA) is a 
common statistical technique capable of linearly 
transforming any observed random data into underlying 
components such that they are made maximally 
independent of each other and at the same time 
addressing characteristics features in the distribution. 
The technique based on blind source separation 
problem and is used to extract features or independent 
components present in a given data set associated with 
some physical phenomenon.  

Since both the source signals and their mixing 
procedure are both unknown so is termed as a blind 
source separation (BSS). ICA is a technique used for 
solving blind source separation problem and separates 
the independent components. The technique is based 
on the procedure in which the original data is 
transformed into a linear system such that the 
independent components present in the original system 

can be separated. The linear system developed is 
known as the un-mixing system. ICA is different from 
Principal Component Analysis (PCA) which is a 
correlation based transformation process. ICA is not 
only useful for its property of de-correlating various 
components but is also able to remove higher order 
statistical dependencies. The technique is outlined in 
the following paragraphs. 

Given a set of random observations (EEG signals) 
measured in time domain or sample index, that is, 
(x1(t), x2(t), ..... , xN(t)) and are produced as a linear 
mixtures of independent components (independent 
features) : 
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where A is an unknown matrix whose elements are 
mixing coefficients 
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Figure 4: Experimental setup of EEG signals recording scheme. The subject wears a 14 electrode Emotiv EPOC / EPOC+: 
Scientific contextual EEG system having a sampling rate of 128 Hz. Visual queues related to hand movements are given to the 
subject. The generated EEG data is amplified and recorded in a computer for further processing and analysis.  
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If the components of S(t) are such that at most one 
source is normally distributed then it is possible to 
extract the sources S(t) from the received mixtures x(t) 
[19, 20]. In ICA linear transformation matrix W of the 
dependent sensor signals x(t) is obtained which is the 
inverse of the unknown, mixing matrix A such that the 
output is made as independent as possible 

u(t) =Wx(t) =WAS(t)           (3) 

where u(t) are estimate of sources and un-mixing 
signals, i.e. 
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The component independence is obtained using 
various mathematical techniques; in this work 
expectation value of kurtosis is calculated for the 
recorded and observed EEG data distribution.  

3. RESULTS AND DISCUSSION 

After pre-processing of the EEG time-series data, 
ICA technique is employed to separate various evoked 
features present in the EEG data using Fast ICA 
algorithm [19, 20]. In the present paper EEG data for 
ca. 60 trials or sub-epochs, each with 128 frames, are 
analysed. Recorded EEG signals pre-processing and 
application of Fast ICA algorithm are performed in 
MatlabTM workspace. Activity power spectrum 
associated with all 14 scalp electrodes AF3, F7, F3, 
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 
and for the decomposed independent components and 
topographic images are also generated in MatlabTM 
workspace. Plots of epochs vs. frames for the recorded 
EEG continuous data are also generated in MatlabTM 
workspace. Statistical analysis of the recorded EEG 
signal data for the scalp electrodes and for 
decomposed independent components is determined. 

In this communiqué two ERP signals, i.e. brain 
signals associated with specific events or activities are 
analysed. These activities, associated with brain 

 
Figure 5: Scalp topographies of averaged component clusters of 14 independent components. A prominent contrast is 
observed for independent component number 5. On all other components the contrast is comparatively poor. 
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signals, are for evoked potentials of arm down, here 
designated as PUSH and arm up, designated as PULL. 
EEG signals corresponding to the state of wakefulness, 
lying in 7-30 Hz rhythms associated with alpha and 
beta bands. In these state the signals are characterised 
by the presence of low voltage fast activity associated 
with visual, somatosensory and auditory cortices. EEG 
data is analysed for temporal and spatial separation by 
applying Fast Fourier Transform (FFT) and 
Independent Component Analysis (ICA) algorithm, 
respectively. The technique is applied on three EEG 
signals datasets recorded using three healthy subjects. 
In this study spectral and spatial features are extracted 
for all investigated datasets and topographic images 
showing spatial distribution of recorded signals are also 
developed. A topographic plot showing images of all 14 
decomposed independent components of a dataset for 
evoked activity PUSH are shown in Figure 4. In Figure 
4, a high unilateral contrast is seen at the position of 
electrode F7 decomposed on IC-5. Activity power 
spectrum and the identified spectral and spatial 
features from the analysis are shown in Figures 6-17.  

The power spectrum for the electrode FC6 is shown 
in Figure 6 and is related to the evoked potential for 
PUSH activity for a subject performing the activity using 
left hand. A peak in the frequency range from 10-15 Hz 
can be seen in this figure. Application of ICA on the 
data set resulted in a similar line profile and an ERP 
appears on the independent component number 1 (IC-
1) in the frequency range 10-15 Hz (see Figure 7). The 
power spectrum observed in Figure 8 is associated 
with electrode F7 which separates on IC-5 as shown in 
Figure 9. In both figures the signals appear in the range 
10-15 Hz but are broader as compared to those 
appearing in Figures 6 and 7. Similarly, the signals 
appearing in Figures 6 and 7 are for the subject who 
performed the said activity using right hand.  

 
Figure 6: Activity power spectrum for electrode FC6 (PUSH-
Dataset-1). 

 
Figure 7: Activity power spectrum for independent 
component (IC-1) (PUSH-Dataset-1). 

 
Figure 8: Activity power spectrum for electrode F7 (PUSH-
Dataset-2). 

 
Figure 9: Activity power spectrum for independent 
component (IC-5) (PUSH-Dataset-2). 

Figures 10 and 11 give the evoked activities 
associated with PUSH and are in the frequency range 
of 10-15 Hz. Signals are recorded on FC5 and 
separated on IC5. Brain signal on FC5 implies that 
activity was performed using right hand movement.  
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Figure 10: Activity power spectrum for electrode FC5 
(PUSH-Dataset-3). 

 
Figure 11: Activity power spectrum for independent 
component (IC-5) (PUSH-Dataset-3). 

 
Figure 12: Activity power spectrum for electrode F7 (PULL-
Dataset-1). 

Figures 12, 14 and 16 show ERP signals for the 
evoked activity, PULL. The ERP signal appears on 
electrode F7 and separated on IC-6 or IC-4 as shown 
in Figures 13, 15 and 17. The analysis indicates that 
the signals are in the frequency range of 15-20 Hz and 
are for right hand arm up movement i.e. PULL activity. 
In Figure 8 the line profile is broad which can be 

explained as follows. The subject is queued to perform 
arm down movement i.e. PUSH activity. In the process 
the subject first generated a brain signal to raise right 
or left arm and then according to the queue generates 
a signal for arm down movement i.e. PUSH. This 
contributes to both the activities resulting in a broader 
line profile. Figure 18 shows the power spectrum for 

 
Figure 13: Activity power spectrum for independent 
component (IC-6) (PULL-Dataset-1). 

 
Figure 14: Activity power spectrum for electrode F7 (PULL-
Dataset-2). 

 
Figure 15: Activity power spectrum for independent 
component (IC-4) (PULL-Dataset-2). 
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PUSH activity recorded at electrode F7, decomposed 
on IC5. A high contrast is observed for the independent 
component 5. This suggests the decomposition of EEG 
signal recorded signal on IC5. Table 1 gives the 
statistical analysis for the recorded EEG data for 
different sets. For each data set statistical parameters 
are determined and Kolmogrove - Simronv tests are 
also performed to check the Gaussianity of the 
recorded data signals. Table 2 gives the statistical 
results for the decomposed independent components. 
The Kolmogrove - Simronv tests suggest that both 
recorded EEG signals and extracted features are non-
Gaussian, this is indicated in Tables 1 & 2.  

4. CONCLUSIONS 

The objective of this study is to extract and classify 
EEG signals associated with event-related-Potentials 

(ERP) generated in primary motor cortex area for hand 
movement. EEG signals comprising six data sets for 
evoked activities PUSH and PULL are analysed using 
Independent Component Analysis (ICA) method. For 
the evoked activity PUSH the recorded brain signals lie 
in the frequency range of 10 – 15 Hz and for the activity 
PULL the recorded brain signals lie in the range 15 – 
20 Hz. Good contrast plots are observed for the 
decomposed signals associated with electrodes F7, 
FC5 and FC6 which are decomposed on IC1, IC4, IC5, 
IC6. It can be concluded that the independent 
component analysis method gives good results for 
feature extraction corresponding to evoked signals. 
The study is beneficial in BCI domain where neural 
commands are transformed into control signals, these 
controlled signals then can be used in vast majority of 
applications ranging from mental and Physical 
disabilities to robotic control of machines.  

 
Figure 16: Activity power spectrum for electrode F7 (PULL-
Dataset-3). 

 
Figure 17: Activity power spectrum for independent 
component (IC-6) (PULL-Dataset-3). 

 
Figure 18: Power spectrum of all 14 electrodes as a function of frequency. Topographic or Scalp images of specific electrode 
and of highest contributing independent Components are also given. Independent component number 5 i.e. IC5 shows higher 
contrast as compared to other independent components. 
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