
62 Journal of Basic & Applied Sciences, 2018, 14, 62-71

 ISSN: 1814-8085 / E-ISSN: 1927-5129/18 © 2018 Lifescience Global

Pedagogical Significance of Natural Language Programming in
Introductory Programming

Muhammad Shumail Naveed1,* and Muhammad Sarim2

1Department of Computer Science & Information Technology, University of Balochistan, Pakistan
2Department of Computer Science, Federal Urdu University of Arts, Science & Technology, Pakistan

Abstract: Learning programming is hard for novice students. Complicated syntax and semantic of programming
languages and lack of previous knowledge are the contributing factors behind the hardness of programming. Natural
programming language allows to program in a natural language and thereby ease the programming. In this paper, it is
ascertained whether natural programming language is fruitful in learning the elementary programming concepts and
supportive in preparing students for introductory programming courses. The discussion included in this paper can be
used to design supportive programming languages and formulating effective courses and learning material to ameliorate
performance of students’ in learning of introductory programming environments.

Keywords: Introductory programming courses, natural language programming, CS0, failure and dropout rates.

1. INTRODUCTION

The need of computing experts in organizations has
led to increase the attention of computer science
education [1]. The computer science is a large domain
and includes a variety of disciplines and programming
is one of them. Programming is a central part of a
computer science and one of the most demanding
areas of computer science [2]. It is estimated that
employment of programmers is expected to grow 8
percent from 2012 to 2022 [3]; however, the academic
institutes are not producing the enough graduates in
computer science. Even the American colleges are not
producing adequate graduate to satisfy the need up to
2020 [4].

Programming within computer science is
indispensable, and grasp of this skill is essential for
novice students to progress. To be victorious in
programming the students have to establish consistent
mental of the computer executing their program [5].

The majority of novice students faced difficulties in
understanding programming as they are coerced to
concentrate on concepts as well as on the syntax of
programming languages while many of them have no
prior knowledge of programming. Similarly, the majority
of programming constructs and concepts are
intrinsically difficult for beginners.

In [6, 7], it is described that recursion is one of a
hard concept for learners. Similarly, in [8], sequence,

*Address correspondence to this author at the Department of Computer
Science & Information Technology, University of Balochistan, Quetta, Pakistan;
E-mail: mshumailn@gmail.com

assignment, iteration and recursion are described as
complex concepts for beginners.

In a comprehensive study [9], it is reported that
students experienced problems in determining the valid
selection structure for the given problems. Problems
are also encountered in evaluating the output
statements in the control selection structure and
evaluating the conditions for selection structures.

Lahtinen et al. in [10], categorized the pointers and
references, recursion and abstract data types are
categorized as the difficult programming concepts for
beginners. Similarly, Dale [11] mentioned the arrays,
recursion, pointers and control structures as the difficult
topics for novice students. Based on these
suppositions multiple courses on programming
languages are usually offered to students. The
selection of programming language for introductory
courses is an important indicator of the concepts
focused during course instruction [12].

For the mitigation of the inherent complexities of
programming an astounding care is taken in the
planning of first programming courses. The first
programming course has an everlasting effect on the
student attitude toward programming and accordingly
the first programming language has a strong influence
on the programmer’s program development capabilities
as profound as the impact of our native language on
our thought [13].

The first programming courses are usually
fundamental courses, but students commonly face
problems even on these fundamental courses [14], and
at the end of introductory courses, a large number of

Pedagogical Significance of Natural Language Programming Journal of Basic & Applied Sciences, 2018, Volume 14 63

students do not know how to program [15], and this
causes high failure and dropouts in introductory
programming courses [16, 17].

Several solutions like visual languages &
microworlds, program visualization & animation tools,
flowchart based programming environments and
games have been introduced to increase the
performance of students in introductory programming
courses.

Several studies [18, 19, 20] reveal that the students
with no prior experience of programming face
difficulties in completing their education, whereas the
prior experience of programming positively affect the
performance, especially in the first programming
course [21]. For this convincing reason, a small
programming course usually called CS0 (pre-
programming) is intervened before the first
programming course. The CS0 course, virtually aims to
provide the basic knowledge of programming to
students and develop rational thinking before diving in
a first programming course. Several notable CS0
courses have already been introduced [22, 23, 24, 25].

Natural language programming is a class of
programming which allows to program in natural
language. The use of natural languages increased the
programming aptitude and logic of programmers, since
there is no need to shape the program ideas according
to the structure of programming languages. Similarly,
the error handling and debugging of programs written
in natural language is comparatively simpler than the
other programming languages. Natural language
programming has proved very effective in different
areas including databases, robot programming and
question answering systems.

In this paper, we discuss whether the induction of
natural language programming, as a precursor of
introductory programming course is helpful in learning
the programming essentials and fruitful in
comprehending first programming language.

The rest of this paper is organized as follows. The
second section describes the natural programming
languages and third section describes the major natural
programming languages. Section four describes the
methodology. Discussion and conclusion are included
in section five and six respectively.

2. NATURAL LANGUAGE PROGRAMMING

Language is a system for communication. A
language that we learn from our environment and use

to communicate with others is called a natural
language [26]. Natural languages are fundamentally
the most logical way of communication. Analysis and
effective use of natural language in different areas of
computer science is of a valuable research area of
computer science and computational linguistics.

It is generally argued that it is better to program in
natural language rather than in classical programming
languages like Java [27]. Programming in natural
language is an oldest dream of human, albeit many
researchers like Dijkstra [28] recognized this as a
foolish idea. However, there are many strong
proponents of natural language programming. Natural
language programming is a type of programming that
allows the development of computer programs by
means of natural language [29]. The substantial
development in the area of parsing, computational
linguistics and natural language processing makes it
realizable to develop computer programs in natural
language.

In ideal programming, the programmers must spend
sufficient amount of time in thinking and rationalizing
the definite ideas of a program. But in reality, most of
the time spends on trimming their thoughts and logic
according to the structure of particular programming
languages, and this ultimately affects the creativity of
programmers. In this situation, natural language
programming helps the programmers to think,
rationalize and code in their own languages. Likewise,
the time and efforts require to develop programs is
dramatically reduced. Similarly, the error handling and
debugging of natural language programs are
comparatively simpler than the programs in other
programming languages.

Several notable studies have been conducted to
evaluate the effectiveness of natural language
programming. Vadas and Curran [27] defined a system
that converts English language instructions into Python
programming language code and found it very useful.
Cambranes [30] introduced the idea of using visual
programming for development of program and
generation of side by side description in natural
language. The system is provided with a series of
input/output examples by crowdsourcing and passed to
Programming by Example system. Bruckman and
Edwards [31] studied the significance of natural
language type syntax in programming languages. More
than 35,000 commands on MOOSE crossing were
recorded in the online interaction of 16 students and
the encountered errors were identified and categorized.

64 Journal of Basic & Applied Sciences, 2018, Volume 14 Naveed and Sarim

The study reported that for various applications, the
use of natural language is a dynamic approach to
developing the end user programming languages.

3. MAJOR NATURAL PROGRAMMING
LANGUAGES

Natural language programming is useful to ease the
programming as no extra effort is required in its
learning and consequently novice students can
concentrate on concepts rather than confronting with
unusual and complicated syntax. Since 1960’s several
notable natural programming languages have been
developed.

Pegasus is a multilingual natural language
programming developed at Darmstadt University of
Technology [29]. It can read and recognize the natural
language and generates the executable programs.
Pegasus is able to work on multiple languages,
including English and German. The use of natural
language makes the programming in Pegasus very
simple and understandable. The structure of Pegasus
is defined in the form of brain and it has three
components: the mind, the long-term memory and the
short-term memory. Consider the Pegasus acceptable
text.

Figure 1: Pegasus program for matrix [29].

The text illustrated in Figure 1 is highly explicable
and easy to recognize. In Pegasus, the program is a
collection of statements each of them is ended with a
colon or full stop.

NLC (Natural language computation) is another
useful system based on natural language [32] and used
for matrix operations. It allows the users to define
commands in English and observe their execution on
panel. NLC provides a feedback to the user about the
validity of the program during the computation. NLC
system comprised of a scanner, syntax analyzer,
semantic processor and matrix computer.

Consider a simple program in NLC:

Figure 2: NLC Program [33].

The problem domain for NLC is the world of
matrices shown in Figure 2, so all the references are
associated with entries, rows and entry columns and
therefore no reference are added to the problem
notions, such as employees or salary.

Liu and Lieberman [34] introduced the idea of
natural language specification as the definition for
programs and introduced a system called Metafor
which visualized user’s typed stories as a code.
Metafor automatically generates the scaffolding code
as the story typed by the user. The scaffolding code is
not directly executable, but can be useful for designer.
Parser, Programmatic Interpreter, MetaforLingua, Code
Renderer, Introspection, Dialog and User Interface are
the main components of Metafor.

Consider the Figure 3 for the Metafor program and
its visualization:

Figure 3: Screenshot of Metafor [34].

The parser of Metafor is based on huge knowledge
base of common sense knowledge, but cannot
recognize every grammatically correct construction.

Price et al. in [35], introduced a natural language
interface called NaturalJava for developing Java
programs. The restricted natural language is used in
the languages, but the pattern of statements and
organization of programs is still very imperative.
Sundance, PRISM and TreeFace are the main
components of NaturalJava.

Consider the Figure 4 for a tiny program of
NaturalJava:

Pedagogical Significance of Natural Language Programming Journal of Basic & Applied Sciences, 2018, Volume 14 65

Figure 4: Program in NaturalJava [35].

NaturalJava supports a huge but restricted subset
of Java features. It does not allow nested classes and
similarly does not permit array declaration.

sEnglish [36] is a tool used for developing MATLAB
programs in natural language. It can generate Latex
and HTML document of sEnglish program written in
natural language. It is appropriate for the programming
of handheld devices, robots and other complex
systems.

As an illustration, consider the sEnglish sentences
in Figure 5 for the database handling:

Figure 5: sEnglish sentences [36].

sEnglish is available for multiple platforms and
available in combination with Octave and Python.

SNAP (A Stylized NAtural Procedural language) is a
natural procedural language developed for
nonscientists [37]. The SNAP procedure consists of
English sentences like statements. It allows very plain
and straightforward statements for the programming.

Consider a small segment of SNAP program in
Figure 6.

Figure 6: SNAP Program [38].

The statements’ in SNAP are in simple English yet
too imperative. The statements generally begin with an
imperative verb.

There are many programming languages like
Learners Programming Language [39, 40], HyperTalk,
Resume, AppleScript, xTalk and Lingo that use natural
language in their syntax, but the semantics are towards
synthesized programming and therefore do not
categorize as natural language programming, but as
natural language complemented programming [41].

4. METHODOLOGY & RESULTS

Learning to program is recognized to be hard and
challenging task for a significant number of beginners.
The main difficulty in learning programming is to obtain
a different collection of skills at the same time.
Beginners have to learn both the complicated syntax
and unusual semantics of a programming language
while growing problem-solving abilities.

Natural programming language allows writing
program with simple and understandable statements of
natural language and thereby relaxing the user from
complicated syntax and unusual semantics of
programming languages. The effectiveness of natural
language programming to ease the programming is an
open secret; but, its appropriateness in introductory
programming environments by helping novice students
to learn elementary programming and comprehend
contemporary programming languages are still a less
studied area and therefore addressed in this paper.

The Pegasus programs comprised of natural
language statements which can be grouped into
sections through indentation. This feature is visibly
simple, but unavailable in contemporary programming
languages like C, C++, Java and C#. In classical
languages, the group of statements is explicitly marked
with special delimiters which identify the boundary of
code sections. This information is essential for novice
students, but indentation for grouping the section would
be confusing for beginners especially when
transitioning to the actual programming language.

The style of programming in Pegasus seems simple
but its pattern is far different from contemporary
programming languages. Implicit referencing and
context dependency are extensively followed in
Pegasus programs and pronouns like “it” or “that” are
frequently used in Pegasus but not available in
conventional programming languages. As an example,

66 Journal of Basic & Applied Sciences, 2018, Volume 14 Naveed and Sarim

consider the following segment of code for
socioeconomic simulation.

“A society consists of many citizens. The
citizens have an income and pay taxes to
the state. If a citizen has no job, he is
unemployed. Two citizens of different
gender can marry”

Implicit referencing and context dependency
reduced the size of the program, but these features are
not available in classical programming languages. In
Pegasus, there is no explicit mechanism for the
declaration of typed variables; the notion of selection is
absolutely different from the methods available in
imperative programming languages. The expressions
for the compression like “for all” or “vice versa” are
permissible in Pegasus; however, unavailable in clas-
sical programming languages and no explicit method of
Pegasus is directly traceable to the comprehension of
iteration structures in imperative programming.

NLC is based on natural language and its problem
domain is the world of matrices, so all the references
are associated with entries, rows and entry columns,
therefore no reference is added to the problem notions.
The selection and iteration in NLC are purely defined in
natural style and their structure is entirely different from
traditional programming languages and consequently
not obliging in understanding the conditional and
iteration structures of programming languages.
Broadly, no concepts of abstract data type, recursion,
pointers and procedure are available in NLC.

Like Pegasus the pronoun like “that” and the
expression like “for all” are allowed in NLC. The NLC
programs are extensively based on the implicit
referencing, context dependency and compression. As
an example, consider the following statements:

“Subtract 4 from THAT entry.
Double THOSE rows.
Multiply the last row by ITSELF.
Add the odd entries to THEMSELVES.
Square the NEXT entry.
Triple the OTHER numbers in row 5.”

The majority of elementary programming concepts
like variable, data type, function, selection and
repetition structure are directly not available in NLC.

Metafor is another important programming system
based on natural language. The central theme of

Metafor is very unique and helpful in mitigating the
complexity of programming. However, the essential
features of introductory programming like variable,
repetition structure, pointers, selection structure,
recursions and functions are directly not supported in
Metafor. The side-by-side code generated Metafor has
been supportive in comprehending programming
languages, yet some perquisite is required to
comprehend the code. Like other natural language
programming the Metafor support implicit referencing,
context dependency and syntax compression. These
traits significantly reduced the size of programs, but
provide no support in learning programming
fundamentals.

NaturalJava is an interface based on restricted
natural language. In NaturalJava, the elementary
concepts of introductory imperative programming like
variables, data types, methods, selection and repetition
structures are explicitly allowed in the restricted natural
language and the statements are highly motivated from
high-level languages. Some unusual statements which
are uncommon in other contemporary programming
languages are also allowed in NaturalJava like “I would
like” and “please return”. The pronoun like “it” is
allowed in NaturalJava. Working with NaturalJava may
help the beginners to understand the imperative
concepts of programming like variables, data types,
selection and repetition; however, it is typically
designed to develop Java programs so based on
methods, attributes and classes.

sEnglish is one of an important development in the
area of natural language programming. It is particularly
developed for engineers and scientists so it’s no
primitive features typically address any concept of
introductory programming. The subset of English used
in sEnglish is quite simple, but the overall structure of
statements is still unusual and only technical users with
some knowledge of MATLAB can program in sEnglish.
More importantly the users who are proficient in
sEnglish gain no obvious knowledge of introductory
programming.

The definition of variable in sEnglish is descriptive,
but complex in that multiple properties of a variable is
defined in a single statement which is different from
traditional programming languages. The natural
language representation of assignments, calling of
functions and passing of parameters to functions in
sEgnlish is still technically and cannot be helpful in
visualizing the equivalent concepts of programming
languages. Similarly, the implementation of selection

Pedagogical Significance of Natural Language Programming Journal of Basic & Applied Sciences, 2018, Volume 14 67

and repetition structures are far different from classical
programming languages.

SNAP is a natural language based system and
essentially designed for teaching, but its string handling
techniques are more appropriate for text processing
systems. The statements in SNAP generally begin with
an imperative verb like READ, PRINT, APPEND and
DELETE, and many of them are very similar to their
equivalents in high-level languages. For instance, the
print statement consists of a verb PRINT, a quotation
and a period. The input statement consists of verb
READ, name and a period.

Declaration of the procedure is allowed in SNAP
and very much similar to the procedures of high-level
languages. A mechanism for transforming the control is
available in SNAP and the EXECUTE statement is
available for transferring control from the loader to the
processor. Conditional statements in SNAP starts with
IF and includes the conditions with the possible
actions.

Unlike conventional programming the condensing of
statements is allowed in SNAP:

{INCREASE, DECREASE} e BY f.

The repetition is allowed in SNAP and CONTINUE
WITH is used for going forward and REPEAT FROM
for going back. Control is return to monitor with
TERMINATE statement. The arithmetic operations are

originally allowed in linguistic form, but the general
arithmetic instructions have been introduced.

Most of the SNAP list operations are not very useful
in learning introductory programming. The statements
of SNAP are in computable style yet too verbose and
would not be a very cogent tool for introductory
programming environments; however, it would be
supportive in the basic course of data processing.

All the major natural programming languages are
based on the same philosophy, so their main features
are summarized in Table 1.

The natural programming languages support
familiar lexicons with simple syntax and semantics.
However, the primitive data types which are available
in contemporary programming languages are mainly
not available in natural programming languages.
Similarly, the concept of variable declaration and
delimitation are also missing in natural programming
languages.

The imperative style of selection and iteration
structures are directly not supported in natural
programming languages, and similarly the generation
of high-level programming code is only available in few
natural programming languages. In any natural
programming language, there is no predefined support
which helps the users while transitioning to the
traditional programming languages. Implicit

Table 1: Main Features of Natural Language Programming

Natural Programming Languages
Features

Pegasus NLC Metafor NaturalJava sEnglish SNAP

Use of common lexicons Yes Yes Yes Yes Yes Yes

Simple syntax Yes Yes Yes Yes Yes Yes

Plain semantics Yes Yes Yes Yes Yes Yes

Direct support of major data types Limited No Limited Yes Limited Limited

Explicit declaration of typed variables No No No Yes No No

Explicit construct/marks for delimiters No No No No No No

Support of elementary programming features Limited Limited Limited Limited Limited Limited

Direction support of programming selection structure Limited Limited Limited Yes Limited Limited

Direction support of programming iteration structure Limited Limited Limited Yes Limited Limited

Generation of high level programming code Limited No Limited Yes Limited No

Support in transition to other programming languages No No No No No No

Implicit referencing Yes Yes Yes Yes Yes Yes

Context dependency Yes Yes Yes Yes Yes Yes

Compression Yes Yes Yes Yes Yes Yes

68 Journal of Basic & Applied Sciences, 2018, Volume 14 Naveed and Sarim

referencing, context dependency and compression are
the real traits of natural language programming and
make their program concise.

The prominence of any programming language can
be evaluated with its popularity and natural
programming languages are no exception. The TIOBE
programming community index is of an important and
widely used measure of the popularity of programming
languages. The TIOBE index is updated once a month.
The statistics of popular languages for October 2017
are illustrated in Figure 7 [42].

Figure 7: TIOBE Index for October 2017.

Figure 7 shows that none of any natural
programming language is included in the top twenty
popular programming languages. More detailed
information maintained by TIOBE community on
popular programming languages from 2002 to 2016 is
shown in Figure 8.

Popularity index of programming languages
illustrated in Figure 8 shows that from 2002 to 2016
none of any natural programming language is
recognized as a popular language.

Figure 8: TIOBE Programming Community Index [42].

5. DISCUSSION

The use of natural language in computer
programming has had a considerable impact on
simplifying the programming. The majority of natural
programming languages comprised of simple lexicons
with obvious syntax and semantics. The concept of
data types is somewhat present in natural language
programming, yet the conventional data types of
programming languages are almost unavailable in
natural language programming. The absence of
conventional data types in natural programming
languages eases the programming, but would not help
the students in learning conventional programming
languages.

The explicit declaration of variable is one of a
central concept of elementary programming and
thereby available in most of the classical programming
languages including C, C++ and Java. This feature is
almost unavailable in natural language programming
and the absence of this feature obviously eases the
pattern of programming and reduced the size of
program code. However, the experience of working
with implicitly declared variables in natural
programming language is problematic for novice
students of traditional programming language because
these languages are based on the explicit declaration
of variables.

The concept of explicit delimitation is unavailable in
natural programming languages, but extensively used
in contemporary programming languages. So, working
with natural programming languages provides no
support for novice students in learning explicit
delimitation of contemporary programming languages.
Similarly, the pattern of selection structure and iteration
structures of natural programming language is far
different from classical programming languages and
hence not very helpful for classical programming
environments.

The majority of natural programming languages
does not support the generation of pure high-level code

Pedagogical Significance of Natural Language Programming Journal of Basic & Applied Sciences, 2018, Volume 14 69

from the input source program. So, it would very
difficult to learn the high-level code of classical
programming languages from natural programming
code. More importantly, no feature is available in any
natural programming language that would be helpful for
their users transitioning to common languages of
introductory programming environment.

The implicit referencing, context dependency and
compression are the pivotal traits of natural
programming languages, and helpful in reducing
redundancy, but absent in classical programming
languages. In most of the introductory programming
languages all the programming elements like variables,
constants and functions are explicitly referenced
whereas implicitly referenced in natural language
programming. In the same way, syntax and semantic
compressions are almost unavailable in high-level
programming languages, but frequently used in natural
language programming. So, anyone who is proficient in
natural language programming should naturally face
problems in learning elementary programming
languages because these languages are based on
implicit referencing with limited or no support of context
dependency and compression.

The design philosophy observed in natural
language programming revealed that its’ sole objective
is simplifying the intrinsic nature of programming and
helping end users to develop programs without learning
and understanding the fundamental concepts of
programming. However, its different structure and
pattern of programming makes it different from
elementary programming languages and therefore it is
not very helpful in introductory programming
environments.

6. CONCLUSION

Programming learning is a meticulous task and
naturally more complex for many students.
Complicated syntax and semantic of programming
languages and lack of previous knowledge are the
contributing factors behind the intricacies of
introductory programming courses. Natural
programming language is one of the prominent
systems that ease the programming by allowing simple,
plain and understandable notation of a natural
language. Use of natural language makes the
programming simple for many users; however its
general philosophy, programming style and supported
features are far different from the conventional
programming languages. Implicit referencing, context

dependency, compression, implicit declaration of
variables and delimitation are extensively exercised in
natural language programming. These features
manifestly improve the readability and ease the
programming, but these features are almost absent in
contemporary programming and therefore the notion of
natural language programming is not very helpful for
learning the fundamental of programming and topical
languages are thereby not very supportive for the
introductory programming environment.

ACKNOWLEDGEMENTS

The authors greatly acknowledge the support from
Muhammad Tahaam and Muhammad Aayaan for
motivating and providing with the material for this study
and for giving valuable feedback and comments.

REFERENCES

[1] Qian Y, Lehman JD. Correlates of Success in Introductory
Programming: A Study with Middle School Students. Journal
of Education and Learning 2016; 5(2): 73-83.
https://doi.org/10.5539/jel.v5n2p73

[2] Reardon S, Tangney B. Smartphones, studio-based learning,
and scaffolding: Helping novice learn to program.
Transaction of Computer Education 2014; 14(4): 1-15.
https://doi.org/10.1145/2677089

[3] Bureau of Labor Statistics, U.S. Department of Labor,
[homepage on the Internet]. Occupational outlook handbook,
2014-15 Edition, Computer Programmers. [cited: 2016 Sep
18]: Available from: from http://www.bls.gov/ooh/computer-
and-information-technology/computer-programmers.htm

[4] Microsoft Corporation, 2012. [homepage on the Internet]. A
national talent strategy: Ideas for securing U.S.
competitiveness and economic growth, 2012. [cited: 2013 Jul
22]: Available from http://www.microsoft.com/en-
us/news/download/presskits/citizenship/MSNTS.pdf.

[5] Berry M, Kölling M. Novis: A Notional Machine
Implementation for Teaching Introductory Programming.
Proceedings of the 2016 International Conference on
Learning and Teaching in Computing and Engineering; 2016;
31 Mar – 3 Apr; Mumbai, India; 2016; p. 54-59.
https://doi.org/10.1109/LaTiCE.2016.5

[6] Haberman B, Averbuch H. The Case of Base Cases: Why
Are They So Difficult to Recognize? Student Difficulties with
Recursion. ACM SIGCSE Bulletin 2002; 34(3): 84-88.
https://doi.org/10.1145/637610.544441

[7] Lewis CM. Exploring Variation in Students’ Correct Traces of
Linear Recursion. Proceedings of the Tenth Annual
Conference on International Computing Education Research;
2014: Aug 11-13; Glasgow, Scotland, United Kingdom; 2014;
p. 67-74.
https://doi.org/10.1145/2632320.2632355

[8] Vujoševic-Janicic M, Tošic D. The role of programming
paradigms in the first programming courses. THE
TEACHING OF MATHEMATICS 2008; XI(2): 63-83.

[9] Gobil AR, Shukor Z, Mohtar IA. A. Novice Difficulties in
Selection Structure. Proceedings of International Conference
on Electrical Engineering and Informatics; 2009: Aug 5-7;
Selangor, Malaysia; 2009; p. 351-356.
https://doi.org/10.1109/ICEEI.2009.5254715

70 Journal of Basic & Applied Sciences, 2018, Volume 14 Naveed and Sarim

[10] Lahtinen E, Ala-Mutka K, Jarvinen H. A Study of the
Difficulties of Novice Programmers. ACM SIGCSE Bulletin
2005; 37(3): 14-18.
https://doi.org/10.1145/1151954.1067453

[11] Dale NB. Most Difficult Topics in CS1: Results of an Online
Survey of Educators. ACM SIGCSE Bulletin 2006; 38(2): 49-
53.
https://doi.org/10.1145/1138403.1138432

[12] McMaster K, Sambasivam S, Rague B, Wolthuis S. Java vs.
Python Coverage of Introductory Programming Concepts: A
Textbook Analysis. Information Systems Education Journal
2017; 15(3): 4-13.

[13] Wexelblat RL. 1998. The consequences of one’s first
programming language. Software: Practice and Experience
1981; 11(7): 733-740.
https://doi.org/10.1002/spe.4380110709

[14] Amarathunga ML. Supporting Tool for Introductory
Programming Labs. 5th Annual UCSC Research Symposium;
2012; p. 37-41.

[15] McCracken M, Almstrum V, Diaz D. Guzdial M. Hagan D.
Kolikant YB. Laxer C. Thomas L. Utting I. Wilusz T. A Multi-
national, Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students. ACM SIGCSE
Bulletin 2001; 33(4): 25-180.
https://doi.org/10.1145/572139.572181

[16] Sloan RH, Troy P. CS 0.5: A Better Approach to Introductory
Science for Majors. ACM SIGCSE Bulletin 2008; 40(1): 271-
275.
https://doi.org/10.1145/1352322.1352230

[17] Herrmann N, Popyack JL, Char B, Zoski P, Cera CD, Lass
RN. Nanjappa A. Redesigning Introductory Computer
Programming Using Multi-level Online Modules for a Mixed
Audience. ACM SIGCSE Bulletin 2003; 35(1): 196-200.
https://doi.org/10.1145/792548.611967

[18] Davy JR, Audin K, Barkham M, Joyner C. Student Well-being
in a Computing Department. ACM SIGCSE Bulletin 2000;
32(3): 136-139.
https://doi.org/10.1145/353519.343145

[19] Hagan D, Markham S. Does It Help to Have Some
Programming Experience Before Beginning a Computing
Degree Program. ACM SIGCSE Bulletin 2000; 32(3): 25-28.
https://doi.org/10.1145/353519.343063

[20] Morrison M, Newman TS. A Study of the Impact of Student
Background and Preparedness on Outcomes in CS1. ACM
SIGCSE Bulletin 2001; 33(1): 179-183.
https://doi.org/10.1145/366413.364580

[21] Holden E, Weeden E. The Impact of Prior Experience in an
Information Technology Programming Course Sequence.
Proceedings of the 4th Conference on Information
Technology Curriculum; 2003; Oct 16-18; Indiana, USA;
2003; p.41-46.
https://doi.org/10.1145/947121.947131

[22] McIver L, Conway D. GRAIL: A Zeroth programming
language. Proceedings of seventh International Conference
on Computing in Education; Amsterdam Netherlands; 1999;
p. 43-50.

[23] Panitz M, Sung K, Rosenberg R. Game Programming in
CS0: A Scaffolded Approach. Journal of Computing Sciences
in Colleges 2010; 26(1): 126-132.

[24] McFarland RD. Development of a CS0 Course at Western
New Mexico University. Journal of Computing Sciences in
Colleges 2004; 20(1): 308-313.

[25] Ernest JC, Bowser AS. Ghule S. Sudireddy S. Porter J.P.
Talbert DA. Kosa MJ. Weathering MindStorms with Drizzle
and DIODE in CS0. ACM SIGCSE Bulletin 2005; 37(3): 353-
353.
https://doi.org/10.1145/1151954.1067552

[26] Harris MD. Introduction to Natural Language Processing.
Reston: Reston Publishing Company; 1985.

[27] Vadas D, Curran JR. Programming With Unrestricted Natural
Language. Proceedings of the Australasian Language
Technology Workshop; 2005: Dec 10 -11; Sydney, Australia;
2005; p. 191-199.

[28] Dijkstra EW. On the foolishness of “natural language
programming”. Program Construction, Lecture Notes in
Computer Science 1979; 69: 51-53.
https://doi.org/10.1007/BFb0014656

[29] Knol R, Mezini M. Pegasus: First Steps Toward a Naturalistic
Programming Language. Proceedings of companion to the
21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications; 2006;
Oct 22 – 26; Portland, Oregon, USA; 2006; p. 542 - 559.

[30] Cambranes E. Using Natural Language Descriptions of
Algorithms in the Early Stage of Programming. Proceedings
of IEEE Symposium on Visual Languages and Human-
Centric Computing; 2012: 30 Sept - 4 Oct; Innsbruck, Austria;
2012; p. 217-218.
https://doi.org/10.1109/VLHCC.2012.6344521

[31] Bruckman A. Edwards E. Should We Leverage Natural-
language Knowledge? An Analysis of User Errors in a
Natural-language- style Programming Language.
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems; 1990; May 15-20; Pittsburgh,
Pennsylvania, USA; 1990; p. 207-214.

[32] Ballard BW, Biermann AW. Programming in Natural
Language: “NLC” As a Prototype. Proceedings of the ACM
1979 Annual Conference; 1979; p. 228-237.
https://doi.org/10.1145/800177.810072

[33] Biermann AW, Ballard BW, Holler AM. A System for Natural
Language Computation. ACM SIGLASH Newsletter 1979;
12(1): 6-16.
https://doi.org/10.1145/1041361.1041362

[34] Liu H, Lieberman H. 2005. Metafor: Visualizing Stories as
Code. Proceedings of the 10th International Conference on
Intelligent User Interfaces; 2005; Jan 10 - 13; San Diego,
California, USA; 2005; p. 305-307.
https://doi.org/10.1145/1040830.1040908

[35] Price D, Rilofff E, Zachary J, Harvey B. NaturalJava: A
Natural Language Interface for Programming in Java.
Proceedings of the 5th International Conference on Intelligent
User Interfaces; 2000: Jan 09-12; New Orleans, Louisiana,
USA; 2000; p. 207-211.
https://doi.org/10.1145/325737.325845

[36] System English [homepage on the Internet]. 2004 [cited 2015
Dec 03]: Available from: http://www.system-english.com/

[37] Barnett MP, Ruhsam WM. SNAP: An Experiment in Natural
Language Programming. Proceedings of the Spring Joint
Computer Conference; 1969: May 14-16; Boston,
Massachusetts, USA, 1969; p. 75-87.
https://doi.org/10.1145/1476793.1476815

[38] Barnett MP, Ruhsam WM. A Natural Language Programming
System for Text Processing. IEEE Transactions on
Engineering Writing and Speech 1968; 11(2): 45-52.
https://doi.org/10.1109/TEWS.1968.4322334

[39] Naveed MS, Sarim M, Ahsan K. Learners Programming
Language a Helping System for Introductory Programming
Courses. Mehran University Research Journal of Engineering
& Technology 2016; 35(3): 347-358.

[40] Naveed MS, Sarim M, Ahsan K. On the Felicitous
Applications of Natural Language. Science International
2015; 27(23): 2643-2646.

Pedagogical Significance of Natural Language Programming Journal of Basic & Applied Sciences, 2018, Volume 14 71

[41] Knoll R, Gasiunas V, Mezini M. Naturalistic Types.
Proceedings of the 10th SIGPLAN Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software; 2011; Oct 22-27; Portland, Oregon, USA, 2011; p.
33-48.
https://doi.org/10.1145/2048237.2048243

[42] TIOBE [homepage on the Internet]. TIOBE Index for October
2017; [updated 2017 Oct; cited 2017 Oct 9]: Available from:
https://www.tiobe.com/tiobe-index/.

Received on 10-03-2018 Accepted on 20-03-2018 Published on 06-04-2018

https://doi.org/10.6000/1927-5129.2018.14.09

© 2018 Naveed and Sarim; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

