The Gauß Sum and its Applications to Number Theory

Nadia Khan^{1,*}, Shin-Ichi Katayama², Toru Nakahara³ and Hiroshi Sekiguchi⁴

¹National University of Computer & Emerging Sciences Lahore campus, Pakistan

²University of Tokushima, Japan

³Saga University, Japan

⁴Daiichi Tekkou Co., 5 Chome-3 Tokaimachi, Tokai, Aichi Prefecture 476-0015, Japan

Abstract: The purpose of this article is to determine the monogenity of families of certain biquadratic fields *K* and cyclic bicubic fields *L* obtained by composition of the quadratic field of conductor 5 and the simplest cubic fields over the field *Q* of rational numbers applying cubic Gauß sums. The monogenic biquartic fields *K* are constructed without using the integral bases. It is found that all the bicubic fields *L* over the simplest cubic fields are non-monogenic except for the conductors 7 and 9. Each of the proof is obtained by the evaluation of the partial differents $\xi - \xi^{\rho}$ of the different $\partial_{F/\varrho}(\xi)$ with F = K or *L* of a candidate number ξ , which will or would generate a power integral basis of the fields *F*. Here ρ denotes a suitable Galois action of the abelian extensions F/Q and $\partial_{F/\varrho}(\xi)$ is defined by $\prod_{\rho \in G\backslash(\iota)} (\xi - \xi^{\rho})$, where *G* and ι denote respectively the Galois group of F/Q and the identity embedding of *F*.

Keywords: Monogenity, Biquadratic field, Simplest cubic field, Cyclic sextic field, Discriminant, Integral basis.

INTRODUCTION

Let *F* be an algebraic number field over the field *Q* of rational numbes with the extension degree n = [F:Q]. Then the ring Z_F of integers in *F* has an integral basis $\{\omega_j\}_{1 \le j \le n}$ such that Z_F is the *Z*-module $Z \cdot \omega_1 + \cdots + Z \cdot \omega_n$ of rank *n*. If there exists a suitable number $\xi \in F$ such that $Z_F = Z \cdot 1 + \cdots + Z \cdot \xi^{n-1}$, then it is said that Z_F has a power integral basis or *F* is monogenic. It is known as Dedekind-Hasse's problem to determine whether an algebraic number field is monogebric or not [7, 5]. Let $Ind_F(\xi)$ denote the index

 $\sqrt{rac{d_F(\xi)}{d_F}}$ of an integer ξ in F with the discriminant

 $d_F(\xi)$ of a number ξ and the field disciminant d_F of the field *F*. This value coincides with The volume of the parallelotope spanned by $\{\xi^j\}_{0 \le j \le n-1} \times 4(quadrants)$

 $\sqrt{\text{The volume of the parallelotope spanned by } \{\omega_i\}_{1 \le i \le n} \times 4(quadrants)}$

for n = 2. Then it is enough for the monogenity of F to find a number ξ in F such that the value $Ind_F(\xi)$ is equal to 1. On the other hand, to show the nonmonogenity we must prove that $Ind_F(\xi) > 1$ for every number ξ in F.

Mathematics Subject Classification (2010) 11R04, 11R11, 11R16.

Let ζ_n be an *n* th root of unity and k_n be the *n* th cyclotomic field $Q(\zeta_n)$ with the extension degree $\phi(n)$, where ϕ is the Euler totient function. Let *G* be the Galois group of k_n/Q and \hat{G} the character group

of *G*. For a character $\chi \in G$, the Gauß sum τ_{χ} attached to χ is defined by the sum

 $\sum_{x\in G}\chi(x)\zeta_n^x.$

Then τ_{χ} belongs to the field $k_m \cdot k_n$ with the degree $m |\phi(n)|$ of χ . We find two phenomena.

Theorem 1.1. Let λ_{ℓ} be a biquadratic character of conductor ℓ . Let *K* be a biquadratic field $Q(\tau_{\lambda_m}, \tau_{\lambda_n})$, where $\tau_{\lambda_{\ell}}$ is the quadratic Gauß sum attached to λ_{ℓ} . Then

(1) *K* is non-monogenic, if $m \equiv n \equiv 1 \pmod{4}$ and $(m,n) \equiv 1$.

(2) There exist infinitely many monogenic biquadratic fields *K*, if $m \equiv 0 \pmod{4}$,

 $n \equiv 1 \pmod{4}$ and (m,n) = 1 or $m \equiv n \equiv 0 \pmod{4}$ and (m,n) = 4 or 8.

The proof is obtained without using any integral basis of a field $Q(\tau_{\lambda_m}, \tau_{\lambda_n})$. This result is a

^{*}Address correspondence to this author at the National University of Computer & Emerging Sciences Lahore Campus, Pakistan; E-mail: p109958@nu.edu.pk

genaralization of the previous work and gives the cardinality to Corollary 1.3 in [24].

Theorem 1.2. There does not exist any monogenic sextic bicubic fields $Q(\tau_{\lambda_5}, \eta_{\psi_n})$ with the quadratic Gauß sum τ_{λ_5} and the cubic Gauß period η_{ψ_n} attched to the quadratic character λ_5 and the cubic one ψ_n with the coprime conductors 5 and *n*, respectively, where the Gauß period η_{ψ_n} is determined by $((-1)^r + \tau_{\psi_n} + \tau_{\psi_n^2})/3$ with the cubic Gauß sum τ_{ψ_n} and the number *r* of distinct prime factors of *n*, when *n* is square free and the fields $Q(\eta_{\psi_n})$ range over the simplest cubic fields of conductor $n = a^2 + 3a + 9$ except for n = 7 of a = -1 and 9 of a = 0.

In the case of the prime conductor p of quadratic character λ_{p^*} with prime discriminant $p^* = (-1)^{(p-1)/2} p$ and cubic one ψ_p , the monogenity of the sextic field $Q(\tau_{\lambda_{p^*}},\eta_{\psi_p})$ has been determined by the first and the third authors such that there does not exist any cyclic sextic fields $Q(\tau_{\lambda_{p^*}},\eta_{\psi_p})$ except for the prime power conductors 7,3² and 13 [12].

There are related works on the abelian; pure sextic and octic extensions F/Q [11, 23, 17, 15, 16, 6, 14, 3]; [4, 9, 2, 1, 8].

Proof of Theorem 1.1.

The next lemma is fundamental to simplify the proof.

Lemma 2.1. Assume that $Z_{\kappa} = Z[\xi]$ for a number $\xi = \alpha + \beta \omega$ with $\alpha, \beta \in Q(\tau_{\lambda_m}), \omega \in Q(\tau_{\lambda_n})$ and field discriminants *m* and *n*. Then

(1) β is a unit in $Q(\tau_{\lambda_m})$.

(2) β and ω are units in $Q(\tau_{\lambda_m})$ and $Q(\tau_{\lambda_n})$, rspectively, if $\alpha = 0$.

Proof of Lemma 2.1. Since $K = Q(\tau_{\lambda_m}) \cdot Q(\tau_{\lambda_n})$, there exist $\alpha, \beta \in Q(\tau_{\lambda_m})$ and $\omega \in Q(\tau_{\lambda_m})$ such that $\xi = \alpha + \beta \omega$. By $Ind_{\kappa}(\xi) = 1$, it holds that $d_{K} = d_{\mathcal{Q}(\tau_{\lambda_{m}})} \cdot d_{\mathcal{Q}(\tau_{\lambda_{m}})} \cdot d_{\mathcal{Q}(\tau_{\lambda_{k}})} = d_{K}(\xi) = \pm N_{K}(\partial_{K}(\xi))$ with $\ell = lcm[m,n]$, where the different $\partial_{\kappa}(\xi)$ of a number ξ with respect to K / Q is defined by $(\xi - \xi^{\sigma})(\xi - \xi^{\tau})(\xi - \xi^{\sigma\tau})$ [25]. The Galois group coincides with $<\sigma.\tau>$ with $G(K \mid Q)$

 $G(Q(\tau_{\lambda_m})/Q) = <\sigma>$ and $G(Q(\tau_{\lambda_n})/Q) = <\tau>$, where $<\sigma_1, \dots, \sigma_s>$ with σ_j in *G* means the subgroup generated by $\{\sigma_j\}_{1 \le j \le s}$ of a group *G*. Then it holds that

$$\sigma: \sqrt{m} \mapsto -\sqrt{m}, \qquad \sqrt{n} \mapsto \sqrt{n} \qquad \text{and} \qquad \tau: \sqrt{m} \mapsto \sqrt{m}, \\ \sqrt{n} \mapsto -\sqrt{n}.$$

(1) Thus we have that $\xi - \xi^{\tau} = \beta(\omega - \omega^{\tau}) \cong \partial_{\mathcal{Q}(\tau_{\lambda_n})}$. Then $\beta \cong 1$. Here for numbers γ, δ and an ideal \mathfrak{C} in an algebraic number field F, $\gamma \cong \delta$ or $\gamma \cong \mathfrak{C}$ means that both sides are equal to $(\gamma) = (\delta)$ or $(\gamma) = \mathfrak{C}$ as ideals, respectively, where $(\gamma_1, \dots, \gamma_t)$ with $\gamma_j \in F$ denots the ideal $Z_F \cdot \gamma_1 + \dots + Z_F \cdot \gamma_t$ of F.

(2) Let ∂_M denote the field different of an algebraic number field M. Since it is deduced that $\xi - \xi^{\sigma} = (\beta - \beta^{\sigma}) \omega \cong \partial_{Q(\tau_{\lambda_m})}$ and $\xi - \xi^{\tau} = \beta(\omega - \omega^{\tau})$ $\cong \partial_{Q(\tau_{\lambda_m})}$, ω and β are units in K.

Proof of Theorem 1.1. (1) Suppose that $Z_{\kappa} = Z[\xi]$ with $\xi = \alpha + \beta \omega$, $\alpha, \beta \in Q(\tau_{\lambda_m})$ and $\omega \in Q(\tau_{\lambda_n})$. (i) Assume that $\alpha = 0$. Put $\beta = \frac{s + t\sqrt{m}}{2}$ and $\omega = \frac{u + v\sqrt{n}}{2}$. Then by $\xi - \xi^{\sigma} = t \sqrt{m} \omega \approx \sqrt{m}$, $t = \pm 1$ holds. By $\xi - \xi^{\tau} = \beta v \sqrt{n} \omega \approx \sqrt{n}, v = \pm 1$ holds. Thus it is deduced that $N_{K/Q(\tau_{\lambda_m})}(\xi-\xi^{\sigma\tau}) = N_{K/Q(\tau_{\lambda_m})}(\frac{s+t\sqrt{m}}{2}\frac{u+v\sqrt{n}}{2})$ $-\frac{s-t\sqrt{m}}{2}\frac{u-v\sqrt{n}}{2} = \frac{1}{4}(-(sv)^2n + (tu)^2m) = \frac{1}{4}(-(\pm 4 - m)n)$ $+(\pm 4 - n)m) = \pm n \pm m \equiv 0 \pmod{2},$ which is a contradiction to $\xi - \xi^{\sigma \tau} \approx 1$. (ii) Assume that $\alpha \neq 0$. Without loss of generality we may put $\xi = \alpha + \omega$ as $\beta^{-1}\xi = \beta^{-1}\alpha + \omega.$ Then we have $\xi - \xi^{\sigma \tau} =$ $\alpha + \omega - (\alpha^{\sigma} + \omega) = \pm \sqrt{m} \pm \sqrt{n}. \quad \text{Thus} \quad N_{K/Q(\tau_{\lambda_m})}(\xi - \xi^{\sigma\tau})$ $= m - n \equiv 0 \pmod{4}$, which contradicts to $\xi - \xi^{\sigma \tau} \cong 1$. Therefore K is non monogenic.

(2) Let m = 4(4t-1) and n = 4(4t+3) with a square free number (4t-1)(4t+3). Then the biquadratic fields $K = Q(\tau_{\lambda_m}, \tau_{\lambda_n})$ coincides with $Q(\alpha, \beta)$ with $\alpha = \sqrt{m}$ and $\beta = \sqrt{n}$. Thus by the Hasse's Conductor-Discriminant Theorem, the field discriminant d_K is equal to $m \cdot n \cdot mn/4^2 = 2^4 \cdot (4t-1)^2 \cdot (4t+3)^2$ [25]. Choose a number $\frac{\sqrt{4t-1} + \sqrt{4t+3}}{2} = \frac{\alpha+\beta}{4}$ as ξ . By $T_{K/Q(\tau_{\lambda_n})}(\xi) = \beta/2$ and $N_{K/Q(\tau_{\lambda_n})}(\xi) = (-\alpha^2 + \beta^2)/4 = 1$, belongs to the ring Z_{κ} because ξ of $K \cap Z \ \varrho(\tau_{\lambda_n}) = Z_K$, where Z_F means the integral closure of the ring Z_F of algebraic integers in a field F, and for a relative field extension M/F of finite degree of algebraic number fields M and F, $T_{M/F}(\xi)$ and $N_{M/F}(\xi)$ of a number ξ in M denote the relative norm and the relative trace, respectively. By the definition, it $d_{K/Q}(\xi) = (-1)^{4(4-1)/2} N_K(\partial_K(\xi))$ follows that = $N_{K/Q}(\alpha/2\cdot\beta/2\cdot(\alpha+\beta)/4) = d_{K}$. Thus we obtain $Z_{\kappa} = Z[1,\xi,\xi^2,\xi^3].$

On the cardinality of the monogenic fields K the following lemma is available.

Lemma 2.2. There exist infinitely many square-free numbers $16t^2 - 8t - 3$ for $t \in Z$.

Proof of Lemma 2.2 See [18], [21] or use the slightly modified Lemma 8.5 in 1^{st} ed. of [20] with the value of $\zeta(2)$ and prime number theorem [19]. Moreover on the density of

$$\#\{D = 16t^{2} - 8t - 3 = (4t - 1)^{2} - 4; D: \text{ squre-free,} \\ D \le x\} \text{ we have } C\sqrt{x} + O(\sqrt[3]{x}\log x), \text{ where} \\ C = \frac{1}{4} \prod_{prodd \ primes} (1 - (2/p^{2})) \text{ and } \text{ hence} \\ C > \frac{1}{4} \frac{1}{1 - \frac{2}{9}} \frac{2\sqrt{2}}{2\sqrt{2} - 1} \frac{3\sqrt{3}}{3\sqrt{3} - 1} \frac{1}{\zeta(\frac{3}{2})} > 0 \text{ holds } \text{ by} \\ 1 - \frac{2}{p^{2}} > 1 - \frac{\sqrt{p}}{p^{2}} \text{ for any prime number } p \ge 5 \ [10, 13].$$

Proof of Theorem 1.2.

Let *k* be a real quadratic field $Q(\tau_{\lambda_5})$ and *K* the simplest cubic fields which is defined by the cubic equation; $x^3 = ax^2 + (a+3)x + 1$ with $d_K = (a^2 + 3a + 9)^2 = d_K(\eta)$ for the field discriminant d_K and the discriminant $d_K(\eta)$ of a solution η of the equation $x^3 - ax^2 - (a+3)x - 1 = 0$ derived by D. Shanks [22]. The composite field $k \cdot K$ is denoted by *L*. Then the field *L* makes a sextic bicubic extension field over the field *Q*. Assume that $Z_L = Z[\xi]$ for an integer ξ in *L*. Let σ and τ be generators of the Galois groups G(K/Q) and G(k/Q), respectively. Then we consider the following identity among the partial differents of a number ξ in *L*;

$$(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\tau} - (\xi - \xi^{\tau})(\xi - \xi^{\tau})^{\sigma} - (\xi - \xi^{\sigma\tau})(\xi - \xi^{\sigma\tau})^{\tau} = 0.$$
 (*)

Since these three products of the differents are invariant by the action τ , they belong to the the cubic field *K*. By the assumption of $Ind_L(\xi)=1$, it is deduced that $\partial_L(\xi)=\partial_L=\partial_{L/K}\partial_K=\partial_k\partial_K$ by $gcd(\partial_K,\partial_k)=1$. Here $\partial_M(\xi)$ and $\partial_{M/L}$ denote the different of a number ξ and the relative field different with respect to L/K, respectively. For an ideal \mathfrak{C} and a number γ of a field *M*, $\mathfrak{C} = \gamma$ means that both ideals \mathfrak{C} and (γ) are equal to each other in *M*. On the above identity, we explain the meaning for the case of a prime conductor *p* of *K*.

 $\partial_{I}(\xi) = (\xi - \xi^{\sigma})(\xi - \xi^{\sigma^{2}})$ $(\xi - \xi^{\tau})(\xi - \xi^{\sigma\tau})$ By $(\xi - \xi^{\sigma^2 \tau}) = \partial_t$ it holds that $(\xi - \xi^{\tau}) = (\tau_{\lambda \tau}), \quad (\xi - \xi^{\sigma}) = \mathfrak{P}$ and $(\xi - \xi^{\sigma \tau}) = (1)$ for the ramified prime ideals $(\tau_{\lambda_5}) = (\sqrt{5})$ in k and \mathfrak{P} in K with $(\tau_{\lambda_5})^2 = (5)$ and $\mathfrak{P}^{3}=(p)$. Thus on the difference of the two products in (*) we obtain $N_{\kappa}((\xi-\xi^{\sigma})(\xi-\xi^{\sigma})^{\tau}-(\xi-\xi^{\tau})(\xi-\xi^{\tau})^{\sigma})$ $= N_{\kappa}((\xi - \xi^{\sigma \tau})(\xi - \xi^{\sigma \tau})^{\tau}) = \pm 1,$ and hence $N_{\nu}((\xi - \xi^{\tau})(\xi - \xi^{\tau})^{\sigma}) = ((\sqrt{5})(-\sqrt{5}))^{3}$ $=\pm 1(mod p),$ namely $5^3 + 1 = 2 \cdot 3^2 \cdot 7 = 0$ or $5^3 - 1 = 2^2 \cdot 31 = 0 \pmod{p}$ holds. Since p is a conductor $a^2 + 3a + 9$ of a simplest cubic field, we obtain the simplest cubic fields K, which should coincide with the maximal real subfield k_7^+ for a = -1 of 7th cyclotomic k_7 or k_9^+ for a = 0 of 9th cyclotomic k_{0} . Since a sextic field L is a relative cubic extension over the quadratic subfield k, a candidate element ξ of $Z_L = Z[\xi]$ is represented by $\alpha + \beta \omega$ with an integer α , a unit $\beta \in K$ and a unit $\omega = \frac{1+\sqrt{5}}{2}$. In fact, for the case of k_7^+ we can choose $\eta \omega$ as ξ with the Gauß period η attached to a cubic character ψ_{γ} and for the case of k_{q}^{+} we can find $\eta+\omega$ as ξ with the period η attached to a cubic character ψ_0 . For an integral basis $\{\xi_i\}_{1 \le i \le 6}$ of L, we have $\{\eta^i \omega^j\}_{0 \le i \le 2, 0 \le j \le 1}$. The sextic field L is generated by $\xi = \eta \omega$, which satisfies $(\xi/\omega)^3 + (\xi/\omega)^2 - 2(\xi/\omega) - 1 = 0$, namely by $\xi^{3} - 2\xi - 1 = (-\xi^{2} + 2\xi + 2)\omega$ it holds that $\left(\frac{\xi^{3} - 2\xi - 1}{-\xi^{2} + 2\xi + 2}\right)^{2}$

 $-\frac{\xi^{3}-2\xi-1}{-\xi^{2}+2\xi+2}-1=0$ First we examine the fact for the sortic field *L* by PAPI/CP, which is written in Section

sextic field *L* by PARI/GP, which is written in Section 4. Next since the fields *K* and *k* are linearly disjoint, that is $K \cap k = Q$ by $gcd(d_k, d_k) = 1$, the ring Z_L of the

composite field *L* coincides with $Z_{K} \cdot Z_{k} = Z[1,\eta,\eta^{2}] \cdot Z[1,\omega] = Z[1,\eta,\eta^{2},\omega,\eta\omega,\eta^{2}\omega]$. Thus for $\xi = \eta\omega$ the representation matrix *A* of $\{1,\xi,\xi^{2},\xi^{3},\xi^{4},\xi^{5}\}$ with respect to $\{1,\eta,\eta^{2},\omega,\eta\omega,\eta^{2}\omega\}$ is equal to

 $(^{t}(1, \dots 1, -2, 9), ^{t}(\dots 2, -2, 15), ^{t}(\dots 1, -1, 6, 12), ^{t}(\dots 2, -3, 15), ^{t}(1, \dots 4, -3, -25), ^{t}(\dots 1, -2, 9, -20)),$

which is equivalent to

 $({}^{t}(1, \cdot, \cdot, \cdot, \cdot), {}^{t}(\cdot, \cdot, 2, -2, 15), {}^{t}(\cdot, \cdot, 1, \cdot, \cdot, \cdot), {}^{t}(\cdot, \cdot, 2, -3, 15), {}^{t}(\cdot, 1, \cdot, \cdot, \cdot), {}^{t}(\cdot, \cdot, 1, -1, 3, -8)),$

and hence whose determinant is equal to -1, namely the matrix A belongs to $SL_6(Z)$, where \cdot means 0 and tM for a matrix *M* denotes the transposed one. Thus the sectic field $L = k \cdot k_7^+$ is actually monogenic.

In the case of $L = k \cdot k_{q}^{+}$, the choice $\xi = \eta \omega$ would be failed, where the Gauß period η is a root of $g(y) = y^3 - 3y + 1$. Then we select $\eta + \omega$ as a candidate ξ of a power integral basis; $Z[\xi] = Z_L$. Since the simplest cubic field is monogenic, $N_{\kappa}((\xi - \xi^{\sigma})(\xi - \xi^{\sigma^2}))$ = $N_{\kappa}((\eta - \eta^{\sigma})(\eta - \eta^{\sigma^2})) = p^2$ holds. Thus it follows that $N_{IJK}(N_K((\eta-\eta^{\sigma})(\eta-\eta^{\sigma^2}))) = p^4$ and $N_{IJK}(N_K(\xi-\xi^{\tau}))$ $=N_{L/k}(N_k(\omega-\omega^{\tau}))=5^3$. On the other hand, by $\partial_L = \partial_K \partial_k$ it is deduced that $d_L = N_L(\partial_K) - N_L(\partial_k)$ $= d_{\kappa}^{[L:K]} \cdot d_{\iota}^{[L:k]} = (3^4)^2 \cdot 5^3 = 3^8 \cdot 5^3 = 820125.$ Here for an ideal \mathfrak{P} in a field M, $N_{M}(\mathfrak{P})$ means the ideal norm of \mathfrak{P} with respect to M / Q. Then we must confirm that the partial factor $\xi - \xi^{\sigma \tau}$ and hence $\xi - \xi^{\sigma^2 \tau}$ $= -(\xi - \xi^{\sigma \tau})^{\sigma^2 \tau}$ are not obstacle factors, namely they are units in L. We take the relative norm $N_{L/k}(\xi - \xi^{\sigma \tau}) = N_{L/k}(\eta_0 - \eta_1 + \tau_{\lambda_5}) = (\eta_0 - \eta_1 + \sqrt{5})$ $(\eta_1 - \eta_2 + \sqrt{5})(\eta_2 - \eta_0 + \sqrt{5}) = (\eta_0 - \eta_1)(\eta_1 - \eta_2)(\eta_2 - \eta_0)$ +{ $(\eta_0 - \eta_1)(\eta_1 - \eta_2) + (\eta_1 - \eta_2)(\eta_2 - \eta_0) + (\eta_2 - \eta_0)(\eta_0 - \eta_1)$ } $\cdot \sqrt{5}$ $+\{(\eta_0 - \eta_1) + (\eta_1 - \eta_2) + (\eta_2 - \eta_0)\} \cdot 5 + 5\sqrt{5}$. On the first product, we obtain -C+D with $C = \eta_0 \eta_2^2 + \eta_1 \eta_0^2 + \eta_2 \eta_1^2$ and $D = \eta_0^2 \eta_2 + \eta_1^2 \eta_0 + \eta_2^2 \eta_1$. By $(\eta_0 \eta_1 + \eta_1 \eta_2 + \eta_2 \eta_0)$ $(\eta_2 + \eta_0 + \eta_1) = C + D + 3N_K(\eta_0).$ it follows that $C + D = -3N_{\kappa}(\eta_0) = 3$. We obtain $C \cdot D = B_3 + 3 \cdot N_{\kappa}(\eta_0)^2$ + $S_3N_{\kappa}(\eta_0)$. Here we use the relations

 $B_2B_1 = B_3 + (D+C)N_K(\eta_0) \text{ with } B_j = (\eta_0\eta_1)^j + (\eta_1\eta_2)^j + (\eta_2\eta_0)^j, \quad j = 1, 2, 3 \text{ and } S_3 = \eta_0^3 + \eta_1^3 + \eta_2^3.$ Then we have

 $B_3 = -24$ and $S_3 = -3$, and hence $C \cdot D = -18$. Thus the set $\{C,D\}$ of values is equal to $\{-6,3\}$. Then it deduces for the derivative g'(y) of g(y) that $N_{L/K}(\xi - \xi^{\sigma \tau}) = -C + D + \{-g'(\eta_1) - g'(\eta_2) - g'(\eta_0)\}\sqrt{5}$ $+0 \cdot 5 + 5\sqrt{5} = \pm 9 - 4\sqrt{5}$, and hence $N_k(N_{L/k}(\xi - \xi^{\sigma \tau})) = 81 - 16 \cdot 5 = 1$.

3. EXPERIMENTS AND FUTURE WORKS

To find new phenomena on Number Theory, PARI/GP experiments by are sometimes indispensable. Let L be the cyclic sextic field $Q(\eta,\omega)$ over the simplest cubic field with a root η of the cubic polynomial $x^{3} = ax^{2} + (a+3)x + 1|_{a=-1}$ and a unit $\omega = \frac{1 + \sqrt{5}}{2}$ in the real quadratic field with prime discriminant 5. Select a number $\eta+\omega$ as a candidate of $Z_{I} = Z[\xi] = Z[1,\xi,\cdots,\xi^{5}].$ integral power basis; PARI/GP gives an affirmative answer as follows.

 $\label{eq:linear_line$

Since the fields $Q(\tau_{\lambda_5}) = Q(\sqrt{5})$ and the simplest cubic field $Q(\eta)$ with $\eta^3 = -\eta^2 + 2\eta + 1$ are linearly disjoint, that is, $(\partial_{Q(\tau_{\lambda_5})}, \partial_{Q(\eta)}) \cong 1$, the set $\{\eta^i \omega^j\}_{0 \le i \le 2, 0 \le j \le 1}$ makes an integral basis of *L*. Let *A* be the representation matrix of $\{\xi^j\}_{0 \le j \le 5}$ with respect to $\{\eta^i \omega^j\}_{0 \le i \le 2, 0 \le j \le 1}$, then it turns out that *A* belongs to $SL_6(Z)$ in Section 3. Then for $\xi = \eta + \omega$ it is deduced that $Z[\xi] = Z_L$, namely the experiment is correct.

FUTURE WORKS

• Generalize Thorem 1.2 for the cyclic sextic fields $L = K \cdot k$ in which any simplest cubic field *K* and any real or imaginary quadratic field *k* with $(\partial_K, \partial_k) \cong 1$.

•₂ Let *p* and ζ_p be a prime number and a *p* th root of unity, respectively and F_p the finite field of *p* element. Let τ_{χ} be the Gauß sum $\sum_{x \in F_p} \chi(x) \zeta_n^x$ attached to the non-trivial character χ belonging to the

character group F_p^{\times} with the multiplicative group $F_p^{\times} = F_p \setminus \{0\}$. Let $J(\chi, \lambda) = \sum_{x,y \in F_p, x+y=1} \chi(x)\lambda(y)$ be the Jacobi sum attached to the non-trivial characters χ and λ . Then the relation

$$J(\chi,\lambda) = \frac{\tau_{\chi}\tau_{\lambda}}{\tau_{\chi\lambda}}$$

of Gauß sum and Jacob sum is deduced [12]. Let $\Gamma(x)$, B(x, y) be the Gamma function

 $\int_{0}^{\infty} e^{-t} t^{x-1} dt \quad (\Re(x) > 0) \text{ and Beta function } \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt$ $\Re(x), \Re(y) > 0, \text{ respectively. Then the next relation is well known;}$

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Thus find a suitable interpretation between Jacobi sum and Beta function.

ACKNOWLEDGEMENTS

The authors thank to the referee for his/her kind notices to Lemma 2.2 with the references [18] and [21].

REFERENCES

- Ahmad S, Nakahara T, Hameed A. On certain pure sextic fields related to a problem of Hasse. International Journal of Algebra and Computation 2016; 26-3: 577-563.
- [2] Ahmad S, Nakahara T, Husnine SM. Power integral bases for certain pure sextic fields. International Journal of Number Theory (Singapore) 2014; 10(8): 2257-2265. <u>https://doi.org/10.1142/S1793042114500778</u>
- [3] Akizuki S, Ota K. On power bases for ring of integers of relative Galois extensions. Bull London Math Soc 2013; 45: 447-452. <u>https://doi.org/10.1112/blms/bds112</u>
- [4] Dedekind R. Über die Zusammenhang zwischen der Theorie der Ideals und der Theorie der höhren Kongruenzen. Abh Akad Wiss Göttingen Math-Phys KI 1878; 23: 1-23.
- [5] Gaál I. Diophantine equations and power integral bases, new computational methods, Birkhäuser Boston, Inc., Boston, 2002. https://doi.org/10.1007/978-1-4612-0085-7
- [6] Gras M-N, Tanoé F. Corps biquadratiques monogènes. Manuscripta Math 1995; 86: 63-77. https://doi.org/10.1007/BF02567978
- [7] Györy K. Discriminant form and index form equations, Algebraic Number Theory and Diophantine Analysis (F.

Received on 07-07-2017

https://doi.org/10.6000/1927-5129.2018.14.35

Accepted on 12-12-2017

Published on 22-06-2018

Halter-Koch and R. F. Tichy. Eds.), Walter de Gruyter, Berlin-New York, 2000; 191-214.

- [8] Hameed A, Nakahara T. Integral basis and relative monogenity of pure octic fields. Bull Math Soc Sci Math Roumani 2015; 58-4: 419-433.
- [9] Hameed A, Nakahara T, Husnine S, Ahmad S. On existing of canonical number system in certain class of pure algebraic number fields Journal of Prime Research in Mathematics 2011; 7: 19-24.
- [10] Katayama S-I. On the Class Numbers of Real Quadratic Fields of Richaud-Degest Type. J Math Tokushima Univ 1997; 31: 1-6.
- [11] Khan N, Nakahara T, Katayama S-I, Uehara T. Monogenity of totally real algebraic extension fields over a cyclotomic field. Journal of Number Theory 2016; 158: 348-355. <u>https://doi.org/10.1016/j.jnt.2015.06.018</u>
- [12] Khan N, Nakahara T. On the cyclic sextic fields of prime conductor related to a problem of Hasse. To be submitted.
- [13] Montgomery L, Weinberger P. Real Quadratic Fields with Large Class Number. Math Ann 1977; 225: 173-176. <u>https://doi.org/10.1007/BF01351721</u>
- [14] Motoda Y. Notes on quartic fields. Rep Fac Sci Engrg Saga U Math 2003; 32-1: 1-19. Appendix and Crrigenda to "Notes on Quartic Fields," ibid, 37-1 (2008) 1-8.
- [15] Motoda Y, Nakahara T. Power integral basis in algebraic number fields whose galois groups are 2-elementry abelian. Arch Math (Basel) 2004; 83: 309-316. <u>https://doi.org/10.1007/s00013-004-1077-0</u>
- [16] Motoda Y, Nakahara T, Shah SIA. On a problem of Hasse for certain imaginary abelian fields. J Number Theory 2002; 96: 326-334. <u>https://doi.org/10.1006/jnth.2002.2805</u>
- [17] Motoda Y, Nakahara T, Shah SIA, Uehara T. On a problem of Hasse, RIMS kokyuroku Bessatsu. Kyoto Univ B 2009; 12: 209-221.
- [18] Nagell T. Zur Arithmetik der Polynome. Abh Math Sem Hamburg 1922; 1: 180-194. https://doi.org/10.1007/BF02940590
- [19] Nakahara T. On cyclic biquadratic fields related to a problem of Hasse. Mh Math 1982; 94: 125-132. <u>https://doi.org/10.1007/BF01301930</u>
- [20] Narkiewicz W. Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, 1st ed. 1974, 3rd ed. Berlin-Heidelberg-New York; PWM-Polish Scientific Publishers, Warszawa 2007.
- [21] Ricci G. Ricerche arithmetiche sur polinome. Rend Circ Mat Palermo 1933; 57: 433-475. https://doi.org/10.1007/BF03017586
- [22] Shanks D. The simplest cubic fields. Mathematics of Computation 1974; 28-128: 1137-1152.
- [23] Sultan M, Nakahara T. On certain octic biquartic fields related to a problem of Hasse. Monatshefte für Mathmatik 2014; 174(4): 153-162.
- [24] Sultan M, Nakahara T. Monogenity of biquadratic fields related to Dedekind-Hasse's problem. Punjab University Journal of Mathematics 2015; 47(2): 77-82.
- [25] Washington LC. Introduction to cyclotomic fields, Graduate texts in mathematics, 2nd ed., Springer-Verlag, New York-Heidelberg-Berlin 1995; 83.

© 2018 Khan et al.; Licensee Lifescience Global.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (<u>http://creativecommons.org/licenses/by-nc/3.0/</u>) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.