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Abstract: The purpose of this article is to determine the monogenity of families of certain biquadratic fields K  and cyclic 
bicubic fields L  obtained by composition of the quadratic field of conductor 5 and the simplest cubic fields over the field 
Q  of rational numbers applying cubic Gauß sums. The monogenic biquartic fields K  are constructed without using the 

integral bases. It is found that all the bicubic fields L  over the simplest cubic fields are non-monogenic except for the 
conductors 7 and 9. Each of the proof is obtained by the evaluation of the partial differents !"! #  of the different 
!F / Q (" )  with F = K  or L  of a candidate number ! ,  which will or would generate a power integral basis of the fields F.  

Here !  denotes a suitable Galois action of the abelian extensions F / Q  and !F / Q (" )  is defined by 
! "G\{#}$ (%&% ! ),  

where G  and !  denote respectively the Galois group of F / Q  and the identity embedding of F.   
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INTRODUCTION  

Let F  be an algebraic number field over the field 
Q  of rational numbes with the extension degree 
n = [F :Q].  Then the ring ZF  of integers in F  has an 
integral basis {! j}1"j"n  such that ZF  is the Z -module 

 Z !" 1+!+ Z !" n  of rank n.  If there exists a suitable 
number !" F  such that ZF =   Z !1+!+ Z !" n#1,  then it 
is said that ZF  has a power integral basis or F  is 
monogenic. It is known as Dedekind-Hasse’s problem 
to determine whether an algebraic number field is 
monogebnic or not [7, 5]. Let IndF (! )  denote the index 

dF (! )
dF

 of an integer !  in F  with the discriminant 

dF (! )  of a number !  and the field disciminant dF  of 
the field F.  This value coincides with 
The volume of the parallelotope spanned by {! j}0"j"n#1 $ 4(quadrants)
The volume of the parallelotope spanned by {% j}1"j"n $ 4(quadrants)

 

for n = 2.  Then it is enough for the monogenity of F  to 
find a number !  in F  such that the value IndF (! )  is 
equal to 1.  On the other hand, to show the non-
monogenity we must prove that IndF (! ) >1  for every 
number !  in F.   
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Let ! n  be an n th root of unity and kn  be the n th 
cyclotomic field Q(! n)  with the extension degree 
! (n),  where !  is the Euler totient function. Let G  be 

the Galois group of Qkn/  and  G
!

 the character group 

of G.  For a character ! "   G
!
,  the Gauß sum ! "  

attached to !  is defined by the sum  

x!G" #(x)$ n
x.   

Then ! "  belongs to the field km ! kn  with the degree 
m |! (n)  of !.  We find two phenomena.  

Theorem 1.1. Let  ! !  be a biquadratic character of 
conductor  !.  Let K  be a biquadratic field Q(!" m ,!" n ),  
where  ! " !

 is the quadratic Gauß sum attached to  ! !.  
Then  

(1) K  is non-monogenic, if m ! n !1( mod 4)  and 
(m,n) =1.   

(2) There exist infinitely many monogenic biquadratic 
fields K ,  if m ! 0( mod 4),   

n !1( mod 4)  and (m,n) =1  or m ! n ! 0( mod 4)  and 
(m,n) = 4  or 8.   

The proof is obtained without using any integral 
basis of a field Q(! " m

,!" n ).  This result is a  
 



The Gauß Sum and its Applications to Number Theory Journal of Basic & Applied Sciences, 2018, Volume 14      231 

genaralization of the previous work and gives the 
cardinality to Corollary 1.3 in [24].  

Theorem 1.2. There does not exist any monogenic 
sextic bicubic fields Q(!" 5 ,#$n

)  with the quadratic 
Gauß sum !" 5  and the cubic Gauß period !"n

 attched 
to the quadratic character ! 5  and the cubic one !n  
with the coprime conductors 5  and n,  respectively, 
where the Gauß period !"n

 is determined by 

((!1)r +" #n
+"

#n
2) / 3  with the cubic Gauß sum ! "n

 and 

the number r  of distinct prime factors of n,  when n  is 
square free and the fields Q(!"n

)  range over the 

simplest cubic fields of conductor n = a2 + 3a+ 9  except 
for n = 7  of a = !1  and 9  of a = 0.   

In the case of the prime conductor p  of quadratic 
character !

p"
 with prime discriminant p! = ("1)( p"1)/2 p  

and cubic one !p ,  the monogenity of the sextic field 
Q(!"

p#
,$%p

)  has been determined by the first and the 

third authors such that there does not exist any cyclic 
sextic fields Q(!"

p#
,$%p

)  except for the prime power 

conductors 7,32  and 13  [12].  

There are related works on the abelian; pure sextic 
and octic extensions F / Q  [11, 23, 17, 15, 16, 6, 14, 
3]; [4, 9, 2, 1, 8].  

Proof of Theorem 1.1.  

The next lemma is fundamental to simplify the 
proof.  

Lemma 2.1. Assume that ZK = Z[! ]  for a number 
!="+#$  with !,"# Q($ % m

),  !" Q(# $ n
)  and field 

discriminants m  and n.  Then  

(1) !  is a unit in Q(! " m
).   

(2) !  and !  are units in Q(! " m
)  and Q(! " n

),  
rspectively, if != 0.   

Proof of Lemma 2.1. Since K = Q(! " m
) # Q(! " n

),  there 
exist !,"# Q($ % m

)  and !" Q(# $ n
)  such that 

!="+#$.  By IndK (! ) =1,  it holds that 
dK = d Q (! " m

) # d Q (! " n
) #  

 
d Q (! " !

) = dK (# )  =±NK (!K (" ))  

with  ! = lcm[m,n],  where the different !K (" )  of a 
number !  with respect to K / Q  is defined by 
(!"! # )(!"! $ )(!"! # $ )  [25]. The Galois group 
G(K / Q)  coincides with <! ," >  with 

G( Q(!" m ) / Q) =<# >  and G( Q(! " n
) / Q) =<! >,  where 

 <! 1,!,! s>  with ! j  in G  means the subgroup 
generated by {! j}1"j"s  of a group G.  Then it holds that  

 ! : m ! " m ,   n ! n  and  ! : m ! m ,  

 n ! ! n.   

(1) Thus we have that !"! # =$(%"% # ) & ' Q (# ( n
) .  Then 

!"1.  Here for numbers ! ,"  and an ideal  in an 
algebraic number field F,  !"#  or !"  means that 
both sides are equal to (! ) = (" )  or (! ) =  as ideals, 
respectively, where  (! 1,!,! t)  with ! j" F  denots the 
ideal  ZF !" 1+!+ ZF !" t  of F.   

(2) Let !M  denote the field different of an algebraic 
number field M .  Since it is deduced that 
!"! # = ($"$ # )%& 'Q (( ) m )  and !"! # =$ (%"% # )  

! " Q (# $ n
) ,  !  and !  are units in K .  

Proof of Theorem 1.1. (1) Suppose that ZK = Z[! ]  
with !="+#$,  !,"# Q($% m )  and !" Q(#$ n ).  (i) 

Assume that != 0.  Put != s+ t m
2

 and != u+ v n
2

.  

Then by !"! # = t m$% m ,  t =±1  holds. By 

!"! # =$ v n%& n,  v =±1  holds. Thus it is deduced 

that NK / Q (! " m
) (#$#

% ! )  = NK / Q (! " m )
(s+ t m

2
u+ v n
2

 

!
s! t m
2

u ! v n
2

)  = 1
4
(!(sv)2n+ (tu)2m)  = 1

4
(!(±4 !m)n  

+ (±4 ! n)m)  !±n±m ! 0( mod 2),  which is a 
contradiction to !"! # $ %1.  (ii) Assume that !" 0.  
Without loss of generality we may put !="+#  as 
! "1#=! "1$+%.  Then we have !"! # $ =  

!+"# (! $ +" ) =± m ± n.  Thus NK / Q (! " m
) (#$#

% ! )  

= m! n " 0( mod 4),  which contradicts to !"! # $ %1.  
Therefore K  is non monogenic.  

(2) Let m = 4(4t !1)  and n = 4(4t + 3)  with a square 
free number (4t !1)(4t + 3).  Then the biquadratic fields 
K = Q(!" m ,!" n )  coincides with Q(!," )  with != m  

and != n.  Thus by the Hasse’s Conductor-
Discriminant Theorem, the field discriminant dK  is 
equal to m !n !mn / 42 = 24 ! (4t "1)2 ! (4t + 3)2  [25]. 

Choose a number 4t !1+ 4t + 3
2

 = !+"
4

 as ! .  By 
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TK / Q (! " n )
(# ) =$ / 2  and NK / Q (! " n

) (# ) = ($%
2+& 2) / 4 = 1,  

!  belongs to the ring ZK  because of 

 K! Z
!

Q ("# n ) = ZK ,  where  Z
!
F  means the integral 

closure of the ring ZF  of algebraic integers in a field F,  
and for a relative field extension M / F  of finite degree 
of algebraic number fields M  and F,  TM /F (! )  and 
NM /F (! )  of a number !  in M  denote the relative norm 
and the relative trace, respectively. By the definition, it 
follows that dK / Q (! ) = ("1)

4(4"1)/2NK (#K (! ))  
= NK / Q (! / 2 "# / 2 " (!+# ) / 4) = dK .  Thus we obtain 

ZK = Z[1,! ,!
2,! 3].   

On the cardinality of the monogenic fields K  the 
following lemma is available.  

Lemma 2.2. There exist infinitely many square-free 
numbers 16t 2 ! 8t ! 3  for t ! Z .   

Proof of Lemma 2.2 See [18], [21] or use the slightly 
modified Lemma 8.5 in 1st  ed. of [20] with the value of 
! (2)  and prime number theorem [19]. Moreover on the 
density of  

#{D =16t 2 ! 8t ! 3 = (4t !1)2 ! 4;D :  squre-free, 

D ! x}  we have C x +O( x3 log x),  where 

C = 1
4 p:odd primes! (1" (2 / p2 ))  and hence 

C > 1
4

1

1! 2
9

2 2
2 2 !1

 3 3
3 3 !1

1

" ( 3
2
)
> 0  holds by 

1! 2
p2
> 1! p

p2
 for any prime number p!5  [10, 13]. 

Proof of Theorem 1.2. 

Let k  be a real quadratic field Q(!" 5 )  and K  the 
simplest cubic fields which is defined by the cubic 
equation; x3 = ax2 + (a+ 3)x+1  with 
dK = (a

2 + 3a+ 9)2 = dK (!)  for the field discriminant dK  
and the discriminant dK (!)  of a solution !  of the 
equation x3 ! ax2 ! (a+ 3)x !1= 0  derived by D. Shanks 
[22]. The composite field k !K  is denoted by L.  Then 
the field L  makes a sextic bicubic extension field over 
the field Q.  Assume that ZL = Z[! ]  for an integer !  
in L.  Let !  and !  be generators of the Galois groups 
G(K / Q)  and G(k / Q),  respectively. Then we consider 
the following identity among the partial differents of a 
number !  in L ;  

(!"! # )(!"! # ) $ " (!"! $ )(!"! $ )#

!("!" # $ )("!" # $ ) $ = 0.  (!)   

Since these three products of the differents are 
invariant by the action ! , they belong to the the cubic 
field K .  By the assumption of IndL (! ) =1,  it is deduced 
that !L (" ) = !L= !L/K!K = !k!K  by gcd(!K ,!k ) =1.  Here 
!M (" )  and !M /L  denote the different of a number !  
and the relative field different with respect to L /K ,  
respectively. For an ideal  and a number !  of a field 
M ,  =!  means that both ideals  and (! )  are equal 
to each other in M .  On the above identity, we explain 
the meaning for the case of a prime conductor p  of K .  

By !L (" ) = ("#"
$ )("#" $ 2)  (!"! # )(!"! $ # )   

(!"! # 2 $ ) = %L it holds that (!"! # ) = (# $ 5
),  (!"! # ) =  

and (!"! # $ ) = (1)  for the ramified prime ideals 

(! " 5
) = ( 5)  in k  and  in K  with (! " 5

)2 = (5)  and 
3= (p).  Thus on the difference of the two products in 

(!)  we obtain NK ((!"!
# )(!"! # ) $ " (!"! $ )(!"! $ )# )  

= NK ((!"!
# $ )(!"! # $ ) $ ) =±1,  and hence 

NK ((!"!
# )(!"! # )$ ) = (( 5 )(" 5))3  !±1( mod p),  

namely 53 +1= 2 ! 32 ! 7 " 0  or 53 !1= 22 " 31# 0( mod p)  
holds. Since p  is a conductor a2 + 3a+ 9  of a simplest 
cubic field, we obtain the simplest cubic fields K ,  
which should coincide with the maximal real subfield 
k7
+  for a = !1  of 7th cyclotomic k7  or k9

+  for a = 0  of 9th 
cyclotomic k9.  Since a sextic field L  is a relative cubic 
extension over the quadratic subfield k,  a candidate 
element !  of ZL = Z[! ]  is represented by !+"#  with 

an integer !,  a unit !" K  and a unit != 1+ 5
2

.  In 

fact, for the case of k7
+  we can choose !"  as !  with 

the Gauß period !  attached to a cubic character !7  
and for the case of k9

+  we can find !+"  as !  with the 
period !  attached to a cubic character !9.  For an 
integral basis {! j}1"j"6  of L,  we have {! i" j}0#i#2,0#j#1.  
The sextic field L  is generated by !="#,  which 
satisfies (! /" )3 + (! /" )2 # 2(! /" )#1= 0,  namely by 

! 3" 2!"1  = (!" 2+ 2"+ 2)#  it holds that ! 3" 2!"1
"! 2+ 2!+ 2
#

$
%

&

'
(

2

 

!
" 3! 2"!1
!" 2+ 2"+ 2

!1= 0.  First we examine the fact for the 

sextic field L  by PARI/GP, which is written in Section 
4. Next since the fields K  and k  are linearly disjoint, 
that is K! k = Q  by gcd(dK ,dk ) =1,  the ring ZL  of the 
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composite field L  coincides with 
ZK !Zk = Z[1,","

2]! Z[1,# ]  = Z[1,!,! 2,",!",! 2" ].  Thus 
for !="#  the representation matrix A  of 
{1,! ,! 2,! 3,! 4,! 5}  with respect to {1,!,! 2,",!",! 2"}  is 
equal to  

(t (1,! !1,"2,9),t (! ! !2,"2,15),t (! !1,"1,6,12),t

(! ! !2,"3,15),t (!1,!4,"3,"25),t (! !1,"2,9,"20)),
 

which is equivalent to  

(t (1,!,!,!,!,!),t (!,!,!,2,"2,15),t (!,!,1,!,!,!),t

(!,!,!,2,"3,15),t (!,1,!,!,!,!),t (!,!,1,"1,3,"8)),
  

and hence whose determinant is equal to !1,  namely 
the matrix A belongs to SL6 ( Z ),  where !  means 0  and 
t M  for a matrix M  denotes the transposed one. Thus 
the sectic field L = k ! k7

+  is actually monogenic.  

In the case of L = k ! k9
+,  the choice !="#  would be 

failed, where the Gauß period !  is a root of 
g(y) = y3 ! 3y+1.  Then we select !+"  as a candidate 
!  of a power integral basis; Z[! ] = ZL .  Since the 

simplest cubic field is monogenic, NK ((!"!
# )(!"! # 2))  

= NK ((!"!
# )(!"! # 2)) = p2  holds. Thus it follows that 

NL/K (NK ((!"!
# )(!"! # 2))) = p4  and NL/k (Nk (!"!

# ))  
= NL/k (Nk (!"!

# ))  = 53.  On the other hand, by 
!L= !K!k  it is deduced that dL = NL (!K )  NL (!k )  
= dK

[L:K ] !dk
[L:k ] = (34 )2 !53 = 38 !53 = 820125.  Here for an 

ideal  in a field M ,  NM ( ) means the ideal norm of 
 with respect to M / Q.  Then we must confirm that 

the partial factor !"! # $  and hence !"! # 2 $  

= !("!" # $ )#
2 $  are not obstacle factors, namely they 

are units in L.  We take the relative norm 
NL/k (!"!

# $ ) = NL/k (% 0"% 1+$ & 5
)  = (! 0"! 1+ 5)  

(! 1"! 2+ 5)(! 2"! 0+ 5)  = (! 0"! 1)(! 1"! 2)(! 2"! 0)  

+{(! 0"! 1)(! 1"! 2)+ (! 1"! 2)(! 2"! 0)+ (! 2"! 0)(! 0"! 1)} # 5  

+{(! 0"! 1)+ (! 1"! 2)+ (! 2"! 0)} #5  +5 5.  On the first 
product, we obtain !C +D  with C =! 0! 2

2+! 1! 0
2+! 2! 1

2  
and D =! 0

2! 2+! 1
2! 0+! 2

2! 1.  By (! 0! 1+! 1! 2+! 2! 0)  
(! 2+! 0+! 1) =C +D+ 3NK (! 0).  it follows that 
C +D = !3NK (" 0) = 3.  We obtain C !D = B3 + 3!NK (" 0)

2  
+ S3NK (! 0).  Here we use the relations  

B2B1 = B3 + (D+C)NK (! 0)  with Bj = (! 0! 1)
j + (! 1! 2)

j  

+ (! 2! 0)
j ,  j =1,2,3  and S3 =! 0

3+! 1
3+! 2

3.  Then we have 

B3 = !24  and S3 = !3,  and hence C !D = "18.  Thus the 
set {C,D}  of values is equal to {!6,3}.  Then it 
deduces for the derivative g' (y)  of g(y)  that 

NL/K (!"!
# $ )  = !C +D+{!g' (" 1)! g

' (" 2)! g
' (" 0)} 5  

+0 !5+ 5 5  =±9! 4 5,  and hence 
Nk (NL/k (!"!

# $ )) = 81"16 %5 =1.   

3. EXPERIMENTS AND FUTURE WORKS  

To find new phenomena on Number Theory, 
experiments by PARI/GP are sometimes 
indispensable. Let L  be the cyclic sextic field Q(!," )  
over the simplest cubic field with a root !  of the cubic 
polynomial x3 = ax2 + (a+ 3)x+1|a=!1  and a unit 

!= 1+ 5
2

 in the real quadratic field with prime 

discriminant 5. Select a number !+"  as a candidate of 
integral power basis;  ZL = Z[! ] = Z[1,! ,!,!

5].  
PARI/GP gives an affirmative answer as follows.  

\\Then PARI/GP gives a power integral basis gp> 
nfbasis((x^3-2*x-1)^2-(x^3-2*x-1)*(-x^2+2*x+2)-(-
x^2+2*x+2)^2) \\the field discriminant d_{L} of the sectic 
field L gp> nfdisc((x^3-2*x-1)^2-(x^3-2*x-1)*(-
x^2+2*x+2)-(-x^2+2*x+2)^2) \\and the prime number 
decomposition of d_{L} gp> factor(300125) \\namely 
d_{L}=5^3\cdot 7^4=d_{k}^{[L:k]}\cdot d_{K}^{[L:K]} with 
d_{k}=5 and d_{K}=7^2.  

Since the fields Q(!" 5 ) = Q( 5 )  and the simplest 

cubic field Q(!)  with ! 3= "! 2+ 2!+1  are linearly 
disjoint, that is, (! Q (" # 5)

,! Q ($ ) )%1,  the set 

{! i" j}0# i#2,0#j#1  makes an integral basis of L.  Let A  be 

the representation matrix of {! j}0"j"5  with respect to 

{! i" j}0#i#2,0#j#1,  then it turns out that A  belongs to 

SL6 ( Z )  in Section 3. Then for !="+#  it is deduced 
that Z[! ] = ZL ,  namely the experiment is correct.  

FUTURE WORKS  

•1  Generalize Thorem 1.2 for the cyclic sextic fields 
L = K ! k  in which any simplest cubic field K  and any 
real or imaginary quadratic field k  with (!K ,!k )"1.   

•2  Let p  and ! p  be a prime number and a p th 
root of unity, respectively and Fp  the finite field of p  

element. Let ! "  be the Gauß sum 
x!Fp

" #(x)$ n
x  

attached to the non-trivial character !  belonging to the 
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character group  Fp
!
!

 with the multiplicative group 

Fp
! = Fp \ {0}.  Let J(!," ) =

x,y#Fp ,x+y=1
$ !(x)"(y)  be the 

Jacobi sum attached to the non-trivial characters !  
and !.  Then the relation  

J(!," ) =
# ! # "

# ! "

 

of Gauß sum and Jacob sum is deduced [12]. Let 
!(x),B(x, y)  be the Gamma function  

0

!

" e#tt x#1dt  (!(x) > 0)  and Beta function 
0

1
! t x"1(1" t)y"1dt  

!(x),!(y) > 0,  respectively. Then the next reration is 
well known;  

B(x, y) = !(x)!(y)
!(x+ y)

.  

Thus find a suitable interpretation between Jacobi 
sum and Beta function. 
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