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Abstract: The purpose of this article is to determine the monogenity of families of certain biquadratic fields K and cyclic
bicubic fields L obtained by composition of the quadratic field of conductor 5 and the simplest cubic fields over the field
Q of rational numbers applying cubic Gau sums. The monogenic biquartic fields K are constructed without using the

integral bases. It is found that all the bicubic fields L over the simplest cubic fields are non-monogenic except for the
conductors 7 and 9. Each of the proof is obtained by the evaluation of the partial differents &-&* of the different
9y (&) with F=K or L of acandidate number &, which will or would generate a power integral basis of the fields F.

Here p denotes a suitable Galois action of the abelian extensions F/Q and d,,,(&) is defined by n
p

(E-§7),

0EG\{1}

where G and ¢ denote respectively the Galois group of F/ Q and the identity embedding of F.
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INTRODUCTION

Let F be an algebraic number field over the field
Q of rational numbes with the extension degree

n=[F:Q]. Then the ring Z, of integers in F has an
integral basis {w ;},_,_, such that Z, is the Z -module
Zw+---+Zw, of rank n. If there exists a suitable
number EEF such that Z, = Z-1+--+ Z:E"", then it
is said that Z, has a power integral basis or F is

monogenic. It is known as Dedekind-Hasse’s problem
to determine whether an algebraic number field is
monogebnic or not [7, 5]. Let Ind.(§) denote the index

/dFdLé:) of an integer & in F with the discriminant
F

d.(§) of a number & and the field disciminant d, of
the field F. This value coincides  with
\/ The volume of the parallelotope spanned by {&},_,.,., x 4(quadrants)

The volume of the parallelotope spanned by {w },_,_, x 4(quadrants)
for n=2. Then itis enough for the monogenity of F to
find a number & in F such that the value Ind.(§) is

equal to 1. On the other hand, to show the non-
monogenity we must prove that Ind.(§)>1 for every

number & in F.
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Let £, be an nth root of unity and k, be the nth
cyclotomic field Q(£,) with the extension degree
¢(n), where ¢ is the Euler totient function. Let G be

the Galois group of k,/ O and G the character group

of G. For a character y& G, the Gaul sum 7
attached to y is defined by the sum

E,rEGX(X)C -

Then 7, belongs to the field k, -k, with the degree
mlgp(n) of x. We find two phenomena.

Theorem 1.1. Let A, be a biquadratic character of
conductor /. Let K be a biquadratic field QO(z, .7, ),
where 7,, is the quadratic Gault sum attached to 4.
Then

(1) K is non-monogenic, if m=n=1(mod 4) and
(m,n)=1.

(2) There exist infinitely many monogenic biquadratic
fields K, if m=0( mod 4),

n=1(mod 4) and (m,n)=1 or m=n=0(mod 4) and
(m,n)=4 or 8.

The proof is obtained without using any integral
basis of a field Q(z, .7, ). This result is a
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genaralization of the previous work and gives the
cardinality to Corollary 1.3 in [24].

Theorem 1.2. There does not exist any monogenic
sextic bicubic fields Q(z,,.n, ) with the quadratic
GauB sum 7, and the cubic Gaul} period n, attched
to the quadratic character A, and the cubic one v,
with the coprime conductors 5 and n, respectively,
where the Gaull period 7, is determined by

(-1)"+t, +T ,)/3 with the cubic Gaull sum 7,6 and
n Yy n

the number r of distinct prime factors of n, when n is
square free and the fields O(n,,) range over the
simplest cubic fields of conductor n=a”+3a+9 except
for n=7 of a=-1and 9 of a=0.

In the case of the prime conductor p of quadratic
character A , with prime discriminant p*=(-1)"""p

p
and cubic one y,, the monogenity of the sextic field
o(r, *’”w,,) has been determined by the first and the
p

third authors such that there does not exist any cyclic
sextic fields O(t, | ’"w,,) except for the prime power
V4

conductors 7,3 and 13 [12].

There are related works on the abelian; pure sextic
and octic extensions F/Q [11, 23, 17, 15, 16, 6, 14,

3];[4,9,2,1, 8].
Proof of Theorem 1.1.

The next lemma is fundamental to simplify the
proof.

Lemma 2.1. Assume that Z, = Z[&] for a number
E=a+fw with apEQ(r;, ), w&€Q(r, ) and field
discriminants m and n. Then

(1) B isaunitin Oo(z,, ).

(2) B and o are units in
rspectively, if a=0.

O(r, ) and O(t, ),

Proof of Lemma 2.1. Since K = O(r, ) O(t, ), there
exist a.,pe o(t;,) and w€& o(t;,) such that
E=a+fw. By Ind (§)=1, it holds that
d 0y, = d(§)  ==N(9,(5)

dK:dem)-d
with ¢ =lecm[m,n], where the different 9,(§) of a

o, )

number & with respect to K/Q is defined by
(E-E7)E-ET)E-EY") [25]. The Galois group
coincides with <o,T> with

G(K/ Q)

G(0Q(t,, )/ Q)=<0> and G( O(t;, )/ Q)=<t>, where
<0 ,-,0 > Wwith (o in G means the subgroup

generated by {o;},_,, ofagroup G. Then it holds that

a:\/ZH—x/Z, Jnn and r:x/Zl—n/;,

Jn s —Jn.

(1) Thus we have that &-&"=B(w-w")=0d ,- Then

or;
p=1. Here for numbers y,0 and an ideal ¢ in an
algebraic number field F, y=6 or y= ¢ means that
both sides are equal to (y)=(6) or (y)=¢ as ideals,
respectively, where (y,,---yy,) with y €F denots the
ideal Z. -y +---+Z.-y, of F.

(2) Let 9,, denote the field different of an algebraic
number field M. Since it is deduced that
§-57=(B-B°)w= aQ(r/l ) and E-E"=p(w-w")

EaQ(u,,)’ w and f areunitsin K.

Proof of Theorem 1.1. (1) Suppose that Z, = Z[§]

with  E=a+fow, afEQ(7, ) and o€ O(t, ). (i)
Assume that a=0. Put /5=S+t2\/Z and w=”+;\/;.
Then by E-£°=t/mw=m, t=x1 holds. By

E-E"=BvVnw=+/n, v==1 holds. Thus it is deduced

S+ivm u+v\/;

that NK/Q(T}Lm)(E_EUT) =NK/Q(T}L"1)( ) )
s—t mu—v\/; 1 3 3 1
- =—(- + (¢ =—(-(x4-m)n
5 2 ) 4((SV)n (tu)"m) 4(( )
+(zx4 —n)m) =xn+m=0( mod 2), which is a

contradiction to &-£°"=1. (i) Assume that a=0.
Without loss of generality we may put &=a+w as

BE=B " a+w. £-£°7=
a+o—(a " +w) =2/m =\n. N o, ,(E=E7T)

=m-n=0( mod 4), which contradicts to &§-§77=1.
Therefore K is non monogenic.

Then we have
Thus

(2) Let m=4(4t-1) and n=4(4t+3) with a square
free number (47-1)(47+3). Then the biquadratic fields
K=0(t; .7,) coincides with Q(a,8) with a=~m
and /3=\/;. Thus by the Hasse’s Conductor-
Discriminant Theorem, the field discriminant d, is
m-n-mn/4*=2*-(4r-1-4r+3)* [25].

Nar-1+v4t+3 a+f
2 4

equal to

Choose a number as &. By
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TK/Q(TM)(:E):ﬁ/Z and NK/Q(‘:A )(E)z(—a2+ﬁ2)/4=1,

& belongs to the ring Z, Dbecause of

KNZ ow;,,)=2Z, where Zry means the

Ko integral
closure of the ring Z, of algebraic integers in a field F,
and for a relative field extension M /F of finite degree
of algebraic number fields M and F, T,,.(E) and
N,,,-(§) ofanumber & in M denote the relative norm
and the relative trace, respectively. By the definition, it
follows that dy, o (&)= (=D)*""2 N (9,(8))

=Ny o (a/2-B/2-(a+f)/4)=d,. Thus we obtain
ZK = Z[17§’§2’§3]'

On the cardinality of the monogenic fields K the
following lemma is available.

Lemma 2.2. There exist infinitely many square-free
numbers 16¢° -8t -3 for t € Z.

Proof of Lemma 2.2 See [18], [21] or use the slightly
modified Lemma 8.5 in 1" ed. of [20] with the value of
£(2) and prime number theorem [19]. Moreover on the
density of

#{D=16t>-8t-3=(4t-1Y-4;D: squre-free,

D = x} we have C\/;+0(€/;logx), where
— 1 2

C= an;oddpr,m(l -21/p*) and hence

el 122 3.1 00 holds by

>_
41_§2J§—1 3\/3-1;(3)

1—%>1—£‘;7 for any prime number p=5 [10, 13].
p

p

Proof of Theorem 1.2.

Let & be a real quadratic field o(t,,) and K the
simplest cubic fields which is defined by the cubic
equation; X =ax’ +(a+3)x+1 with
d, =(a’+3a+9)’ =d,(n) for the field discriminant d,
and the discriminant d,(n) of a solution n of the
equation x’—ax*—(a+3)x-1=0 derived by D. Shanks
[22]. The composite field k-K is denoted by L. Then

the field L makes a sextic bicubic extension field over
the field Q. Assume that Z, = Z[§] for an integer &

in L. Let 0 and t be generators of the Galois groups
G(K/ Q) and G(k/ Q), respectively. Then we consider

the following identity among the partial differents of a
number & in L;

(E-E7)E-E7)" - (E-E")NE-ET)”
—(E-E7TNE-E"T)" =0. (¥)

Since these three products of the differents are
invariant by the action 7, they belong to the the cubic

field K. By the assumption of Ind, (§)=1, itis deduced
that 9,(§)=0,=9,,0,=9,0, by gcd(d,,9,)=1. Here
d,(&) and 4,, denote the different of a number &
and the relative field different with respect to L/K,
respectively. For an ideal ¢ and a number y of a field
M, @ =y means that both ideals ¢ and (y) are equal
to each other in M. On the above identity, we explain
the meaning for the case of a prime conductor p of K.
By 0,(8)=(E-E")E-E) (E-E")NE-E"T)
(E-E°"")=0, it holds that (E-E")=(r ,,), (E-E°)="P
and (§-£77)=() for the
(1,,)=(/5) in k and P in K with (7,,)* =(5) and
‘,I} *=(p). Thus on the difference of the two products in
(*) we obtain N (§-§7)E-57)" -(5-E")NE-E7)7)
=N (E-E°"NE-E77)")==1, and hence
N(E-E NE-E)*)=((/5)(—5))
namely 5°+1=2-3-7=0 or 5°-1=2-31=0( mod p)
holds. Since p is a conductor a’+3a+9 of a simplest
cubic field, we obtain the simplest cubic fields K,
which should coincide with the maximal real subfield
ky for a=-1 of 7th cyclotomic k, or k; for a=0 of 9th
cyclotomic k,. Since a sextic field L is a relative cubic

extension over the quadratic subfield k, a candidate
element & of Z, = Z[&] is represented by a+Bw with

1+\/§
2

ramified prime ideals

==1( mod p),

an integer «, a unit €K and a unit o= . In

fact, for the case of k; we can choose nw as & with
the Gaul® period n attached to a cubic character vy,
and for the case of k; we can find n+w as & with the
period 7 attached to a cubic character y,. For an
integral basis {& }_._, of L, we have {n'w’} 0.
The sextic field L is generated by &=nw, which
(Elw) +(Elw) -2(E/w)-1=0,

satisfies namely by

: e . gooe-1Y
E3-28-1 =(-E’+2E+2)w it holds that (_§2+2§+2)

E7-28-1
sextic field L by PARI/GP, which is written in Section
4. Next since the fields K and k are linearly disjoint,
that is KNk=Q by gcd(d;.d,)=1, thering Z, of the

-1=0. First we examine the fact for the
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composite field L coincides with
Z. Z,=ZIlnn’l Z[lw] =Z[lnn’ownon’w]. Thus
for &=nw the representation matrix A of
{1EE*EEEY with respect to {Inn’onon’w} is
equal to

(‘a,+1,-2,9),(--2,-2,15),'(--1,-1,6,12),

(---2,-3,15), (-1,4,-3,-25),/ (--1,-2,9,-20)),

which is equivalent to

(f(l’,,',',.’,)’f ('7"',27_2715)” ('7',17'7"‘),’

('9.’.327_3»15); (.’13'9.’.5.): (.’.513_133’_8))’

and hence whose determinant is equal to -1, namely
the matrix A belongs to SL;( Z), where * means 0 and

"M for a matrix M denotes the transposed one. Thus
the sectic field L =k-k; is actually monogenic.

In the case of L=k"k;, the choice E=nw would be
failed, where the Gaull period n is a root of

g(y)=y’-3y+1. Then we select n+w as a candidate
& of a power integral basis; Z[§]=Z,. Since the

simplest cubic field is monogenic, NK((§—§“)(§—§"2))
= N (-n")-n°") = p* holds. Thus it follows that
2 T
N, x(Ne(m-n")n-n° ) =p* and N, (N(E-E"))
=N, (N (w-07)) =5°. On the other hand, by
9,=0,0, it is deduced that d, =N,(,) N,©,)
=d*-d" =3y -5 =3"-5=820125. Here for an
ideal *]3 in a field M, N, (*]3) means the ideal norm of
q.? with respect to M/ Q. Then we must confirm that

T 0'2'[
§-&7 §-§
=—(§-§ *)*** are not obstacle factors, namely they
are units in L. We take the relative norm

Ny (E-E7)=Ny, (=1 +7 ;) =(y-—n 1+\/§)
1,-1+5)0 71+ V5) =(1,-1)(11,-1,)(10,-1,)
=1 )0,=1,)+ 0,710,071 )+ (11,1 )0~ )} N5
+HM=n )+ M =n,)+M,-n)}5 +5/5. On the first
product, we obtain -C+D with C=n,n3+n,n+n,n;
and  D=ngnq+ningnon,. By (on+m,m,40,m,)
My mym,) =C+D+3N,(1,). it follows that
C+D=-3N,(n,)=3. We obtain C-D=B,+3-N.(n,)’
+S;N(n,). Here we use the relations

the partial factor and hence

B,B =B;+(D+C)N(n,) with B,=(n,n) +mn,)’
+(m,m,)’, j=1,2,3 and S,=n;+n+n;. Then we have

B,=-24 and S,=-3, and hence C-D=-18. Thus the
set {C,D} of values is equal to {-6,3}. Then it

the derivative g(y) of g(y) that
N E-E7T)  =-C+D+{-g(m)-gm,)-g M5
+0-5+54/5 =+9-44/5, and
N, (N, (E-E“)=81-16-5=1.

deduces for

hence

3. EXPERIMENTS AND FUTURE WORKS

To find new phenomena on Number Theory,
experiments by PARI/GP are sometimes
indispensable. Let L be the cyclic sextic field Q(n,w)

over the simplest cubic field with a root 1 of the cubic
polynomial

1+/5
w=
2

¥’ =ax’+(a+3)x+1l_, and a unit

in the real quadratic field with prime

discriminant 5. Select a number n+w as a candidate of
integral  power  basis;  Z, =Z[E]=Z[1.§,--.&].
PARI/GP gives an affirmative answer as follows.

\Then PARI/GP gives a power integral basis gp>
nfbasis((x"3-2*x-1)"2-(x"3-2*x-1)*(-x"2+2*x+2)-(-
x"2+2*x+2)"2) \\the field discriminant d_{L} of the sectic
field L  gp> nfdisc((x*3-2*x-1)"2-(x"3-2*x-1)*(-
xA2+42*x+2)-(-x"2+2*x+2)*2) \\and the prime number
decomposition of d_{L} gp> factor(300125) \\namely
d_{L}=5"3\cdot 7*4=d_{k}{[L:k]}\cdot d_{K}{[L:K]} with
d_{k}=5 and d_{K}=7"2.

Since the fields Q(t,,)=Q(\/5) and the simplest
cubic field Q) with n’=-n’+2n+l
disjoint, that s, (0 Q(HS),G o) =1, the set

are linearly

{n'®'}.020.. Makes an integral basis of L. Let A be
the representation matrix of {e‘;f}og§5 with respect to
{n'®'}.00..+ then it turns out that A belongs to

SL,( Z) in Section 3. Then for &=n+w it is deduced
that Z[§]=Z,, namely the experiment is correct.

FUTURE WORKS

*, Generalize Thorem 1.2 for the cyclic sextic fields

L=K-k in which any simplest cubic field K and any
real or imaginary quadratic field k& with (9,,0,)=1.

*, Let p and £, be a prime number and a pth
root of unity, respectively and F, the finite field of p

element. Let 7, be the GauR sum Exepr(x)C;

attached to the non-trivial character x belonging to the
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character group F;
F*=F\{0}. Let J(X,)L)=2X’yepp,x+

Jacobi sum attached to the non-trivial characters x
and A. Then the relation

with the multiplicative group
1)((x))u(y) be the
V=

Iy =21t
T

XA

of Gaull sum and Jacob sum is deduced [12]. Let
I'(x),B(x,y) be the Gamma function

f:e"t“dt (R(x)>0) and Beta function f(;t*"(l—t)y"dt
R(x),N(y)>0, respectively. Then the next reration is
well known;

I'(x)I"
B(x,y) = L)

I'(x+y)

Thus find a suitable interpretation between Jacobi
sum and Beta function.
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