The Gauß Sum and its Applications to Number Theory

Nadia Khan ${ }^{1, *}$, Shin-Ichi Katayama ${ }^{2}$, Toru Nakahara ${ }^{3}$ and Hiroshi Sekiguchi ${ }^{4}$
${ }^{1}$ National University of Computer \& Emerging Sciences Lahore campus, Pakistan
${ }^{2}$ University of Tokushima, Japan
${ }^{3}$ Saga University, Japan
${ }^{4}$ Daiichi Tekkou Co., 5 Chome-3 Tokaimachi, Tokai, Aichi Prefecture 476-0015, Japan

Abstract

The purpose of this article is to determine the monogenity of families of certain biquadratic fields K and cyclic bicubic fields L obtained by composition of the quadratic field of conductor 5 and the simplest cubic fields over the field Q of rational numbers applying cubic Gauß sums. The monogenic biquartic fields K are constructed without using the integral bases. It is found that all the bicubic fields L over the simplest cubic fields are non-monogenic except for the conductors 7 and 9. Each of the proof is obtained by the evaluation of the partial differents $\xi-\xi^{\rho}$ of the different $\partial_{F / Q}(\xi)$ with $F=K$ or L of a candidate number ξ, which will or would generate a power integral basis of the fields F. Here ρ denotes a suitable Galois action of the abelian extensions F / Q and $\partial_{F / Q}(\xi)$ is defined by $\prod_{\rho \in G \backslash\{ \}}\left(\xi_{-\xi} \xi^{\rho}\right)$, where G and ι denote respectively the Galois group of F / Q and the identity embedding of F.

Keywords: Monogenity, Biquadratic field, Simplest cubic field, Cyclic sextic field, Discriminant, Integral basis.

INTRODUCTION

Let F be an algebraic number field over the field Q of rational numbes with the extension degree $n=[F: Q]$. Then the ring Z_{F} of integers in F has an integral basis $\left\{\omega_{j}\right\}_{1 \leq j \leq n}$ such that Z_{F} is the Z-module $Z \cdot \omega_{1}+\cdots+Z \cdot \omega_{n}$ of rank n. If there exists a suitable number $\xi \in F$ such that $Z_{F}=Z \cdot 1+\cdots+Z \cdot \xi^{n-1}$, then it is said that Z_{F} has a power integral basis or F is monogenic. It is known as Dedekind-Hasse's problem to determine whether an algebraic number field is monogebnic or not $[7,5]$. Let $\operatorname{Ind}_{F}(\xi)$ denote the index $\sqrt{\frac{d_{F}(\xi)}{d_{F}}}$ of an integer ξ in F with the discriminant $d_{F}(\xi)$ of a number ξ and the field disciminant d_{F} of the field F. This value coincides with $\sqrt{\frac{\text { The volume of the parallelotope spanned by }\left\{\xi^{j}\right\}_{0 \leq j \leq n-1} \times 4 \text { (quadrants) }}{\text { The volume of the parallelotope spanned by }\left\{\omega_{j} j_{1 \leq \leq \leq n} \times 4 \text { (quadrants) }\right.}}$ for $n=2$. Then it is enough for the monogenity of F to find a number ξ in F such that the value $\operatorname{Ind}_{F}(\xi)$ is equal to 1 . On the other hand, to show the nonmonogenity we must prove that $\operatorname{Ind}_{F}(\xi)>1$ for every number ξ in F.

[^0]Let ζ_{n} be an nth root of unity and k_{n} be the nth cyclotomic field $Q\left(\zeta_{n}\right)$ with the extension degree $\phi(n)$, where ϕ is the Euler totient function. Let G be the Galois group of k_{n} / Q and \widehat{G} the character group of G. For a character $\chi \in \widehat{G}$, the Gauß sum τ_{χ} attached to χ is defined by the sum

$$
\sum_{x \in G} \chi(x) \zeta_{n}^{x}
$$

Then τ_{χ} belongs to the field $k_{m} \cdot k_{n}$ with the degree $m \mid \phi(n)$ of χ. We find two phenomena.

Theorem 1.1. Let λ_{ℓ} be a biquadratic character of conductor ℓ. Let K be a biquadratic field $Q\left(\tau_{\lambda_{m}}, \tau_{\lambda_{n}}\right)$, where $\tau_{\lambda_{\ell}}$ is the quadratic Gauß sum attached to λ_{ℓ}. Then
(1) K is non-monogenic, if $m \equiv n \equiv 1(\bmod 4)$ and $(m, n)=1$.
(2) There exist infinitely many monogenic biquadratic fields K, if $m \equiv 0(\bmod 4)$,
$n \equiv 1(\bmod 4)$ and $(m, n)=1$ or $m \equiv n \equiv 0(\bmod 4)$ and $(m, n)=4$ or 8 .

The proof is obtained without using any integral basis of a field $Q\left(\tau_{\lambda_{m}}, \tau_{\lambda_{n}}\right)$. This result is a
genaralization of the previous work and gives the cardinality to Corollary 1.3 in [24].

Theorem 1.2. There does not exist any monogenic sextic bicubic fields $Q\left(\tau_{\lambda_{5}}, \eta_{\psi_{n}}\right)$ with the quadratic Gauß sum $\tau_{\lambda_{5}}$ and the cubic Gauß period $\eta_{\psi_{n}}$ attched to the quadratic character λ_{5} and the cubic one ψ_{n} with the coprime conductors 5 and n, respectively, where the Gauß period $\eta_{\psi_{n}}$ is determined by $\left((-1)^{r}+\tau_{\psi_{n}}+\tau_{\psi_{n}^{2}}\right) / 3$ with the cubic Gauß sum $\tau_{\psi_{n}}$ and the number r of distinct prime factors of n, when n is square free and the fields $Q\left(\eta_{\psi_{n}}\right)$ range over the simplest cubic fields of conductor $n=a^{2}+3 a+9$ except for $n=7$ of $a=-1$ and 9 of $a=0$.

In the case of the prime conductor p of quadratic character $\lambda_{p^{*}}$ with prime discriminant $p^{*}=(-1)^{(p-1) / 2} p$ and cubic one ψ_{p}, the monogenity of the sextic field $Q\left(\tau_{\lambda_{p^{*}}}, \eta_{\psi_{p}}\right)$ has been determined by the first and the third authors such that there does not exist any cyclic sextic fields $Q\left(\tau_{\lambda_{p^{*}}}, \eta_{\psi_{p}}\right)$ except for the prime power conductors $7,3^{2}$ and 13 [12].

There are related works on the abelian; pure sextic and octic extensions $F / Q[11,23,17,15,16,6,14$, 3]; [4, 9, 2, 1, 8].

Proof of Theorem 1.1.

The next lemma is fundamental to simplify the proof.

Lemma 2.1. Assume that $Z_{K}=Z[\xi]$ for a number $\xi=\alpha+\beta \omega$ with $\alpha, \beta \in Q\left(\tau_{\lambda_{m}}\right), \quad \omega \in Q\left(\tau_{\lambda_{n}}\right)$ and field discriminants m and n. Then
(1) β is a unit in $Q\left(\tau_{\lambda_{m}}\right)$.
(2) β and ω are units in $Q\left(\tau_{\lambda_{m}}\right)$ and $Q\left(\tau_{\lambda_{n}}\right)$, rspectively, if $\alpha=0$.

Proof of Lemma 2.1. Since $K=Q\left(\tau_{\lambda_{m}}\right) \cdot Q\left(\tau_{\lambda_{n}}\right)$, there exist $\alpha, \beta \in Q\left(\tau_{\lambda_{m}}\right)$ and $\omega \in Q\left(\tau_{\lambda_{n}}\right)$ such that $\xi=\alpha+\beta \omega$. By $\operatorname{Ind}_{K}(\xi)=1$, it holds that $d_{K}=d_{Q\left(\tau_{\lambda_{m}}\right.} \cdot d_{Q\left(\tau_{\lambda_{n}}\right.} \cdot \quad d_{Q\left(\tau_{\lambda_{\ell}}\right)}=d_{K}(\xi) \quad= \pm N_{K}\left(\partial_{K}(\xi)\right)$ with $\ell=\operatorname{lcm}[m, n]$, where the different $\partial_{K}(\xi)$ of a number ξ with respect to K / Q is defined by $\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)$ [25]. The Galois group $G(K / Q)$ coincides with $<\sigma, \tau>$ with
$G\left(Q\left(\tau_{\lambda_{m}}\right) / Q\right)=\left\langle\sigma>\right.$ and $G\left(Q\left(\tau_{\lambda_{n}}\right) / Q\right)=\langle\tau>$, where $\left\langle\sigma_{1}, \cdots, \sigma_{s}\right\rangle$ with σ_{j} in G means the subgroup generated by $\left\{\sigma_{j}\right\}_{1 \leq j \leq s}$ of a group G. Then it holds that $\sigma: \sqrt{m} \mapsto-\sqrt{m}, \quad \sqrt{n} \mapsto \sqrt{n} \quad$ and $\quad \tau: \sqrt{m} \mapsto \sqrt{m}$, $\sqrt{n} \mapsto-\sqrt{n}$.
(1) Thus we have that $\xi-\xi^{\tau}=\beta\left(\omega-\omega^{\tau}\right) \cong \partial_{Q\left(\tau_{\lambda_{n}}\right.}$. Then $\beta \cong 1$. Here for numbers γ, δ and an ideal \mathfrak{C} in an algebraic number field $F, \gamma \cong \delta$ or $\gamma \cong \mathfrak{C}$ means that both sides are equal to $(\gamma)=(\delta)$ or $(\gamma)=\mathfrak{C}$ as ideals, respectively, where $\left(\gamma_{1}, \cdots, \gamma_{t}\right)$ with $\gamma_{j} \in F$ denots the ideal $Z_{F} \cdot \gamma_{1}+\cdots+Z_{F} \cdot \gamma_{t}$ of F.
(2) Let ∂_{M} denote the field different of an algebraic number field M. Since it is deduced that $\xi-\xi^{\sigma}=\left(\beta-\beta^{\sigma}\right) \omega \cong \partial_{Q\left(\tau_{\lambda_{m}}\right)} \quad$ and $\quad \xi-\xi^{\tau}=\beta\left(\omega-\omega^{\tau}\right)$ $\cong \partial_{Q\left(\tau_{\lambda_{n}}\right)}, \omega$ and β are units in K.

Proof of Theorem 1.1. (1) Suppose that $Z_{K}=Z[\xi]$ with $\xi=\alpha+\beta \omega, \quad \alpha, \beta \in Q\left(\tau_{\lambda_{m}}\right) \quad$ and $\quad \omega \in Q\left(\tau_{\lambda_{n}}\right)$. (i) Assume that $\alpha=0$. Put $\beta=\frac{s+t \sqrt{m}}{2}$ and $\omega=\frac{u+v \sqrt{n}}{2}$. Then by $\xi-\xi^{\sigma}=t \sqrt{m} \omega \cong \sqrt{m}, \quad t= \pm 1$ holds. By $\xi-\xi^{\tau}=\beta v \sqrt{n} \omega \cong \sqrt{n}, \quad v= \pm 1$ holds. Thus it is deduced that $\quad N_{K / Q\left(\tau \lambda_{m}\right)}\left(\xi-\xi^{\sigma \tau}\right) \quad=N_{K / Q\left(\tau \lambda_{m}\right)}\left(\frac{s+t \sqrt{m}}{2} \frac{u+v \sqrt{n}}{2}\right.$ $\left.-\frac{s-t \sqrt{m}}{2} \frac{u-v \sqrt{n}}{2}\right)=\frac{1}{4}\left(-(s v)^{2} n+(t u)^{2} m\right)=\frac{1}{4}(-(\pm 4-m) n$ $+(\pm 4-n) m) \quad \equiv \pm n \pm m \equiv 0(\bmod 2)$, which is a contradiction to $\xi-\xi^{\sigma \tau} \cong 1$. (ii) Assume that $\alpha \neq 0$. Without loss of generality we may put $\xi=\alpha+\omega$ as $\beta^{-1} \xi=\beta^{-1} \alpha+\omega$. Then we have $\xi-\xi^{\sigma \tau}=$ $\alpha+\omega-\left(\alpha^{\sigma}+\omega\right)= \pm \sqrt{m} \pm \sqrt{n}$. Thus $\quad N_{K / Q\left(\tau_{\lambda_{m}}\right)}\left(\xi-\xi^{\sigma \tau}\right)$ $=m-n \equiv 0(\bmod 4)$, which contradicts to $\xi-\xi^{\sigma \tau} \cong 1$. Therefore K is non monogenic.
(2) Let $m=4(4 t-1)$ and $n=4(4 t+3)$ with a square free number $(4 t-1)(4 t+3)$. Then the biquadratic fields $K=Q\left(\tau_{\lambda_{m}}, \tau_{\lambda_{n}}\right)$ coincides with $Q(\alpha, \beta)$ with $\alpha=\sqrt{m}$ and $\beta=\sqrt{n}$. Thus by the Hasse's ConductorDiscriminant Theorem, the field discriminant d_{K} is equal to $m \cdot n \cdot m n / 4^{2}=2^{4} \cdot(4 t-1)^{2} \cdot(4 t+3)^{2} \quad$ [25]. Choose a number $\frac{\sqrt{4 t-1}+\sqrt{4 t+3}}{2}=\frac{\alpha+\beta}{4}$ as ξ. By
$T_{K / Q\left(\tau_{\lambda_{n}}\right)}(\xi)=\beta / 2$ and $N_{K / Q\left(\tau_{\lambda_{n}}\right)}(\xi)=\left(-\alpha^{2}+\beta^{2}\right) / 4=1$, ξ belongs to the ring Z_{K} because of $K \cap \tilde{Z}_{Q\left(\tau_{\lambda_{n}}\right)}=Z_{K}$, where \tilde{Z}_{F} means the integral closure of the ring Z_{F} of algebraic integers in a field F, and for a relative field extension M / F of finite degree of algebraic number fields M and $F, T_{M / F}(\xi)$ and $N_{M / F}(\xi)$ of a number ξ in M denote the relative norm and the relative trace, respectively. By the definition, it follows that $d_{K / Q}(\xi)=(-1)^{4(4-1) / 2} N_{K}\left(\partial_{K}(\xi)\right)$ $=N_{K / Q}(\alpha / 2 \cdot \beta / 2 \cdot(\alpha+\beta) / 4)=d_{K}$. Thus we obtain $Z_{K}=Z\left[1, \xi, \xi^{2}, \xi^{3}\right]$.

On the cardinality of the monogenic fields K the following lemma is available.

Lemma 2.2. There exist infinitely many square-free numbers $16 t^{2}-8 t-3$ for $t \in Z$.

Proof of Lemma 2.2 See [18], [21] or use the slightly modified Lemma 8.5 in $1^{\text {st }}$ ed. of [20] with the value of $\zeta(2)$ and prime number theorem [19]. Moreover on the density of

$$
\#\left\{D=16 t^{2}-8 t-3=(4 t-1)^{2}-4 ; D: \quad \text { squre-free },\right.
$$ $D \leq x\} \quad$ we have $\quad C \sqrt{x}+O(\sqrt[3]{x} \log x)$, where $C=\frac{1}{4} \prod_{p: \text { odd primes }}\left(1-\left(2 / p^{2}\right)\right) \quad$ and \quad hence $C>\frac{1}{4} \frac{1}{1-\frac{2}{9}} \frac{2 \sqrt{2}}{2 \sqrt{2}-1} \quad \frac{3 \sqrt{3}}{3 \sqrt{3}-1} \frac{1}{\zeta\left(\frac{3}{2}\right)}>0 \quad$ holds by $1-\frac{2}{p^{2}}>1-\frac{\sqrt{p}}{p^{2}}$ for any prime number $p \geqq 5[10,13]$.

Proof of Theorem 1.2.

Let k be a real quadratic field $Q\left(\tau_{\lambda_{5}}\right)$ and K the simplest cubic fields which is defined by the cubic equation; $\quad x^{3}=a x^{2}+(a+3) x+1 \quad$ with $d_{K}=\left(a^{2}+3 a+9\right)^{2}=d_{K}(\eta)$ for the field discriminant d_{K} and the discriminant $d_{K}(\eta)$ of a solution η of the equation $x^{3}-a x^{2}-(a+3) x-1=0$ derived by D. Shanks [22]. The composite field $k \cdot K$ is denoted by L. Then the field L makes a sextic bicubic extension field over the field Q. Assume that $Z_{L}=Z[\xi]$ for an integer ξ in L. Let σ and τ be generators of the Galois groups $G(K / Q)$ and $G(k / Q)$, respectively. Then we consider the following identity among the partial differents of a number ξ in L;
$\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau}-\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}$
$-\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\tau}=0 .(*)$
Since these three products of the differents are invariant by the action τ, they belong to the the cubic field K. By the assumption of $\operatorname{Ind}_{L}(\xi)=1$, it is deduced that $\partial_{L}(\xi)=\partial_{L}=\partial_{L / K} \partial_{K}=\partial_{k} \partial_{K}$ by $\operatorname{gcd}\left(\partial_{K}, \partial_{k}\right)=1$. Here $\partial_{M}(\xi)$ and $\partial_{M / L}$ denote the different of a number ξ and the relative field different with respect to L / K, respectively. For an ideal \mathfrak{C} and a number γ of a field $M, \mathfrak{C}^{2}=\gamma$ means that both ideals $\mathfrak{C}^{\mathfrak{c}}$ and (γ) are equal to each other in M. On the above identity, we explain the meaning for the case of a prime conductor p of K.
By $\partial_{L}(\xi)=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma^{2}}\right) \quad\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)$ $\left(\xi-\xi^{\sigma^{2} \tau}\right)=\partial_{L}$ it holds that $\left(\xi-\xi^{\tau}\right)=\left(\tau_{\lambda_{5}}\right),\left(\xi-\xi^{\sigma}\right)=\mathfrak{P}$ and $\left(\xi-\xi^{\sigma \tau}\right)=(1)$ for the ramified prime ideals $\left(\tau_{\lambda_{5}}\right)=(\sqrt{5})$ in k and \mathfrak{P} in K with $\left(\tau_{\lambda_{5}}\right)^{2}=(5)$ and $\mathfrak{P}^{3}=(p)$. Thus on the difference of the two products in (*) we obtain $N_{K}\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau}-\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}\right)$ $=N_{K}\left(\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\tau}\right)= \pm 1$, and hence $N_{K}\left(\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}\right)=((\sqrt{5})(-\sqrt{5}))^{3} \quad \equiv \pm 1(\bmod p)$, namely $5^{3}+1=2 \cdot 3^{2} \cdot 7 \equiv 0$ or $5^{3}-1=2^{2} \cdot 31 \equiv 0(\bmod p)$ holds. Since p is a conductor $a^{2}+3 a+9$ of a simplest cubic field, we obtain the simplest cubic fields K, which should coincide with the maximal real subfield k_{7}^{+}for $a=-1$ of 7 th cyclotomic k_{7} or k_{9}^{+}for $a=0$ of 9 th cyclotomic k_{9}. Since a sextic field L is a relative cubic extension over the quadratic subfield k, a candidate element ξ of $Z_{L}=Z[\xi]$ is represented by $\alpha+\beta \omega$ with an integer α, a unit $\beta \in K$ and a unit $\omega=\frac{1+\sqrt{5}}{2}$. In fact, for the case of k_{7}^{+}we can choose $\eta \omega$ as ξ with the Gauß period η attached to a cubic character ψ_{7} and for the case of k_{9}^{+}we can find $\eta+\omega$ as ξ with the period η attached to a cubic character ψ_{9}. For an integral basis $\left\{\xi_{j}\right\}_{1 \leq j \leq 6}$ of L, we have $\left\{\eta^{i} \omega^{j}\right\}_{0 \leq \leq \leq 2,0 \leq j \leq 1}$. The sextic field L is generated by $\xi=\eta \omega$, which satisfies $(\xi / \omega)^{3}+(\xi / \omega)^{2}-2(\xi / \omega)-1=0$, namely by $\xi^{3}-2 \xi-1=\left(-\xi^{2}+2 \xi+2\right) \omega$ it holds that $\left(\frac{\xi^{3}-2 \xi-1}{-\xi^{2}+2 \xi+2}\right)^{2}$ $-\frac{\xi^{3}-2 \xi-1}{-\xi^{2}+2 \xi+2}-1=0$. First we examine the fact for the sextic field L by PARI/GP, which is written in Section 4. Next since the fields K and k are linearly disjoint, that is $K \cap k=Q$ by $\operatorname{gcd}\left(d_{K}, d_{k}\right)=1$, the ring Z_{L} of the
composite field L coincides with $Z_{K} \cdot Z_{k}=Z\left[1, \eta, \eta^{2}\right] \cdot Z[1, \omega]=Z\left[1, \eta, \eta^{2}, \omega, \eta \omega, \eta^{2} \omega\right]$. Thus for $\xi=\eta \omega$ the representation matrix A of $\left\{1, \xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{5}\right\}$ with respect to $\left\{1, \eta, \eta^{2}, \omega, \eta \omega, \eta^{2} \omega\right\}$ is equal to
$\left({ }^{t}(1, \cdot \cdot 1,-2,9),{ }^{t}(\cdots 2,-2,15),{ }^{t}(\cdot 1,-1,6,12),{ }^{t}\right.$
$\left.(\cdots 2,-3,15),{ }^{t}(\cdot 1, \cdot 4,-3,-25),{ }^{t}(\cdot \cdot 1,-2,9,-20)\right)$,
which is equivalent to
${ }^{t}(1, \cdot, \cdot, \cdot, \cdot,)^{t}(\cdot, \cdot, \cdot, 2,-2,15),{ }^{t}\left(\cdot, \cdot, 1, \cdot, \cdot,{ }^{t}{ }^{t}\right.$
$\left.(\cdot, \cdot,, 2,-3,15),{ }^{t}(\cdot, 1, \cdot, \cdot, \cdot),{ }^{t}(\cdot, \cdot,-1,-3,-8)\right)$,
and hence whose determinant is equal to -1 , namely the matrix A belongs to $S L_{6}(Z)$, where \cdot means 0 and ${ }^{t} M$ for a matrix M denotes the transposed one. Thus the sectic field $L=k \cdot k_{7}^{+}$is actually monogenic.

In the case of $L=k \cdot k_{9}^{+}$, the choice $\xi=\eta \omega$ would be failed, where the Gauß period η is a root of $g(y)=y^{3}-3 y+1$. Then we select $\eta+\omega$ as a candidate ξ of a power integral basis; $Z[\xi]=Z_{L}$. Since the simplest cubic field is monogenic, $N_{K}\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma^{2}}\right)\right)$ $=N_{K}\left(\left(\eta-\eta^{\sigma}\right)\left(\eta-\eta^{\sigma^{2}}\right)\right)=p^{2}$ holds. Thus it follows that $N_{L / K}\left(N_{K}\left(\left(\eta-\eta^{\sigma}\right)\left(\eta-\eta^{\sigma^{2}}\right)\right)\right)=p^{4} \quad$ and $\quad N_{L / k}\left(N_{k}\left(\xi-\xi^{\tau}\right)\right)$ $=N_{L / k}\left(N_{k}\left(\omega-\omega^{\tau}\right)\right)=5^{3}$. On the other hand, by $\partial_{L}=\partial_{K} \partial_{k}$ it is deduced that $d_{L}=N_{L}\left(\partial_{K}\right) \quad N_{L}\left(\partial_{k}\right)$ $=d_{K}^{[L: K]} \cdot d_{k}^{[L ; k]}=\left(3^{4}\right)^{2} \cdot 5^{3}=3^{8} \cdot 5^{3}=820125$. Here for an ideal \mathfrak{P} in a field $M, N_{M}(\mathfrak{P})$ means the ideal norm of \mathfrak{F} with respect to M / Q. Then we must confirm that the partial factor $\xi-\xi^{\sigma \tau}$ and hence $\xi-\xi^{\sigma^{2} \tau}$ $=-\left(\xi-\xi^{\sigma \tau}\right)^{\sigma^{2} \tau}$ are not obstacle factors, namely they are units in L. We take the relative norm $N_{L / k}\left(\xi-\xi^{\sigma \tau}\right)=N_{L / k}\left(\eta_{0}-\eta_{1}+\tau_{\lambda_{5}}\right) \quad=\left(\eta_{0}-\eta_{1}+\sqrt{5}\right)$ $\left(\eta_{1}-\eta_{2}+\sqrt{5}\right)\left(\eta_{2}-\eta_{0}+\sqrt{5}\right) \quad=\left(\eta_{0}-\eta_{1}\right)\left(\eta_{1}-\eta_{2}\right)\left(\eta_{2}-\eta_{0}\right)$ $+\left\{\left(\eta_{0}-\eta_{1}\right)\left(\eta_{1}-\eta_{2}\right)+\left(\eta_{1}-\eta_{2}\right)\left(\eta_{2}-\eta_{0}\right)+\left(\eta_{2}-\eta_{0}\right)\left(\eta_{0}-\eta_{1}\right)\right\} \cdot \sqrt{5}$ $+\left\{\left(\eta_{0}-\eta_{1}\right)+\left(\eta_{1}-\eta_{2}\right)+\left(\eta_{2}-\eta_{0}\right)\right\} \cdot 5+5 \sqrt{5}$. On the first product, we obtain $-C+D$ with $C=\eta_{0} \eta_{2}^{2}+\eta_{1} \eta_{0}^{2}+\eta_{2} \eta_{1}^{2}$ and $D=\eta_{0}^{2} \eta_{2}+\eta_{1}^{2} \eta_{0}+\eta_{2}^{2} \eta_{1}$. By $\quad\left(\eta_{0} \eta_{1}+\eta_{1} \eta_{2}+\eta_{2} \eta_{0}\right)$ $\left(\eta_{2}+\eta_{0}+\eta_{1}\right)=C+D+3 N_{K}\left(\eta_{0}\right)$. it follows that $C+D=-3 N_{K}\left(\eta_{0}\right)=3$. We obtain $C \cdot D=B_{3}+3 \cdot N_{K}\left(\eta_{0}\right)^{2}$ $+S_{3} N_{K}\left(\eta_{0}\right)$. Here we use the relations

$$
B_{2} B_{1}=B_{3}+(D+C) N_{K}\left(\eta_{0}\right) \text { with } B_{j}=\left(\eta_{0} \eta_{1}\right)^{j}+\left(\eta_{1} \eta_{2}\right)^{j}
$$ $+\left(\eta_{2} \eta_{0}\right)^{j}, j=1,2,3$ and $S_{3}=\eta_{0}^{3}+\eta_{1}^{3}+\eta_{2}^{3}$. Then we have

$B_{3}=-24$ and $S_{3}=-3$, and hence $C \cdot D=-18$. Thus the set $\{C, D\}$ of values is equal to $\{-6,3\}$. Then it deduces for the derivative $g^{\prime}(y)$ of $g(y)$ that $N_{L / K}\left(\xi-\xi^{\sigma \tau}\right) \quad=-C+D+\left\{-g^{\prime}\left(\eta_{1}\right)-g^{\prime}\left(\eta_{2}\right)-g^{\prime}\left(\eta_{0}\right)\right\} \sqrt{5}$ $+0 \cdot 5+5 \sqrt{5} \quad= \pm 9-4 \sqrt{5}$, and hence $N_{k}\left(N_{L / k}\left(\xi-\xi^{\sigma \tau}\right)\right)=81-16 \cdot 5=1$.

3. EXPERIMENTS AND FUTURE WORKS

To find new phenomena on Number Theory, experiments by PARI/GP are sometimes indispensable. Let L be the cyclic sextic field $Q(\eta, \omega)$ over the simplest cubic field with a root η of the cubic polynomial $x^{3}=a x^{2}+(a+3) x+\left.1\right|_{a=-1} \quad$ and \quad a unit $\omega=\frac{1+\sqrt{5}}{2}$ in the real quadratic field with prime discriminant 5 . Select a number $\eta+\omega$ as a candidate of integral power basis; $Z_{L}=Z[\xi]=Z\left[1, \xi, \cdots, \xi^{5}\right]$. PARI/GP gives an affirmative answer as follows.
llthen PARI/GP gives a power integral basis gp> nfbasis $\left(\left(x^{\wedge} 3-2^{*} x-1\right)^{\wedge} 2-\left(x^{\wedge} 3-2^{*} x-1\right)^{*}\left(-x^{\wedge} 2+2^{*} x+2\right)-(-\right.$
$\left.x^{\wedge} 2+2^{*} x+2\right)^{\wedge} 2$) \the field discriminant d_\{L\} of the sectic field $L \quad g p>\quad n f d i s c\left(\left(x^{\wedge} 3-2^{*} x-1\right)^{\wedge} 2-\left(x^{\wedge} 3-2^{*} x-1\right)^{*}(-\right.$ $\left.\left.x^{\wedge} 2+2^{*} x+2\right)-\left(-x^{\wedge} 2+2^{*} x+2\right)^{\wedge} 2\right)$ \land the prime number decomposition of d_\{L\} gp> factor(300125) IInamely d_\{L\}=5^3\cdot $7^{\wedge} 4=d _\{k\}^{\wedge}\{[L: k]\} \mid c d o t d _\{K\}^{\wedge}\{[L: K]\}$ with d_\{k\}=5 and d_\{K\}=7^2.

Since the fields $Q\left(\tau_{\lambda_{5}}\right)=Q(\sqrt{5})$ and the simplest cubic field $Q(\eta)$ with $\eta^{3}=-\eta^{2}+2 \eta+1$ are linearly disjoint, that is, $\left(\partial_{Q\left(\tau \lambda_{5}\right)}, \partial_{Q(\eta)}\right) \cong 1$, the set $\left\{\eta^{i} \omega^{j}\right\}_{0 \leq i \leq 2,0 \leq j \leq 1}$ makes an integral basis of L. Let A be the representation matrix of $\left\{\xi^{j}\right\}_{0 \leq j \leq 5}$ with respect to $\left\{\eta^{i} \omega^{j}\right\}_{0 \leq i \leq 2,0 \leq j \leq 1}$, then it turns out that A belongs to $S L_{6}(Z)$ in Section 3. Then for $\xi=\eta+\omega$ it is deduced that $Z[\xi]=Z_{L}$, namely the experiment is correct.

FUTURE WORKS

- Generalize Thorem 1.2 for the cyclic sextic fields $L=K \cdot k$ in which any simplest cubic field K and any real or imaginary quadratic field k with $\left(\partial_{K}, \partial_{k}\right) \cong 1$.
${ }^{2}$ Let p and ζ_{p} be a prime number and a p th root of unity, respectively and F_{p} the finite field of p element. Let τ_{χ} be the Gauß sum $\sum_{x \in F_{p}} \chi(x) \xi_{n}^{x}$ attached to the non-trivial character χ belonging to the
character group F_{p}^{\times}with the multiplicative group $F_{p}^{\times}=F_{p} \backslash\{0\}$. Let $J(\chi, \lambda)=\sum_{x, y \in F_{p}, x+=1=1} \chi(x) \lambda(y)$ be the Jacobi sum attached to the non-trivial characters χ and λ. Then the relation
$J(\chi, \lambda)=\frac{\tau_{\chi} \tau_{\lambda}}{\tau_{\chi \lambda}}$
of Gauß sum and Jacob sum is deduced [12]. Let $\Gamma(x), B(x, y)$ be the Gamma function
$\int_{0}^{\infty} e^{-t} t^{x-1} d t(\Re(x)>0)$ and Beta function $\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$ $\mathfrak{R}(x), \mathfrak{R}(y)>0$, respectively. Then the next reration is well known;
$B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
Thus find a suitable interpretation between Jacobi sum and Beta function.

ACKNOWLEDGEMENTS

The authors thank to the referee for his/her kind notices to Lemma 2.2 with the references [18] and [21].

REFERENCES

[1] Ahmad S, Nakahara T, Hameed A. On certain pure sextic fields related to a problem of Hasse. International Journal of Algebra and Computation 2016; 26-3: 577-563.
[2] Ahmad S, Nakahara T, Husnine SM. Power integral bases for certain pure sextic fields. International Journal of Number Theory (Singapore) 2014; 10(8): 2257-2265.
https://doi.org/10.1142/S1793042114500778
[3] Akizuki S, Ota K. On power bases for ring of integers of relative Galois extensions. Bull London Math Soc 2013; 45: 447-452.
https://doi.org/10.1112/blms/bds112
[4] Dedekind R. Über die Zusammenhang zwischen der Theorie der Ideals und der Theorie der höhren Kongruenzen. Abh Akad Wiss Göttingen Math-Phys KI 1878; 23: 1-23.
[5] Gaál I. Diophantine equations and power integral bases, new computational methods, Birkhäuser Boston, Inc., Boston, 2002.
https://doi.org/10.1007/978-1-4612-0085-7
[6] Gras $\mathrm{M}-\mathrm{N}$, Tanoé F . Corps biquadratiques monogènes. Manuscripta Math 1995; 86: 63-77.
https://doi.org/10.1007/BF02567978
[7] Györy K. Discriminant form and index form equations, Algebraic Number Theory and Diophantine Analysis (F.

Halter-Koch and R. F. Tichy. Eds.), Walter de Gruyter, BerlinNew York, 2000; 191-214.
[8] Hameed A, Nakahara T. Integral basis and relative monogenity of pure octic fields. Bull Math Soc Sci Math Roumani 2015; 58-4: 419-433.
[9] Hameed A, Nakahara T, Husnine S, Ahmad S. On existing of canonical number system in certain class of pure algebraic number fields Journal of Prime Research in Mathematics 2011; 7: 19-24
[10] Katayama S-I. On the Class Numbers of Real Quadratic Fields of Richaud-Degest Type. J Math Tokushima Univ 1997; 31: 1-6.
[11] Khan N, Nakahara T, Katayama S-I, Uehara T. Monogenity of totally real algebraic extension fields over a cyclotomic field. Journal of Number Theory 2016; 158: 348-355 https://doi.org/10.1016/j.jnt.2015.06.018
[12] Khan N, Nakahara T. On the cyclic sextic fields of prime conductor related to a problem of Hasse. To be submitted.
[13] Montgomery L, Weinberger P. Real Quadratic Fields with Large Class Number. Math Ann 1977; 225: 173-176. https://doi.org/10.1007/BF01351721
[14] Motoda Y. Notes on quartic fields. Rep Fac Sci Engrg Saga U Math 2003; 32-1: 1-19. Appendix and Crrigenda to "Notes on Quartic Fields," ibid, 37-1 (2008) 1-8.
[15] Motoda Y, Nakahara T. Power integral basis in algebraic number fields whose galois groups are 2-elementry abelian. Arch Math (Basel) 2004; 83: 309-316. https://doi.org/10.1007/s00013-004-1077-0
[16] Motoda Y, Nakahara T, Shah SIA. On a problem of Hasse for certain imaginary abelian fields. J Number Theory 2002; 96: 326-334.
https://doi.org/10.1006/jnth.2002.2805
[17] Motoda Y, Nakahara T, Shah SIA, Uehara T. On a problem of Hasse, RIMS kokyuroku Bessatsu. Kyoto Univ B 2009; 12: 209-221.
[18] Nagell T. Zur Arithmetik der Polynome. Abh Math Sem Hamburg 1922; 1: 180-194. https://doi.org/10.1007/BF02940590
[19] Nakahara T. On cyclic biquadratic fields related to a problem of Hasse. Mh Math 1982; 94: 125-132.
https://doi.org/10.1007/BF01301930
[20] Narkiewicz W. Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, $1^{\text {st }}$ ed. 1974, $3^{\text {rd }}$ ed. Berlin-Heidelberg-New York; PWM-Polish Scientific Publishers, Warszawa 2007.
[21] Ricci G. Ricerche arithmetiche sur polinome. Rend Circ Mat Palermo 1933; 57: 433-475. https://doi.org/10.1007/BF03017586
[22] Shanks D. The simplest cubic fields. Mathematics of Computation 1974; 28-128: 1137-1152.
[23] Sultan M, Nakahara T. On certain octic biquartic fields related to a problem of Hasse. Monatshefte für Mathmatik 2014; 174(4): 153-162.
[24] Sultan M, Nakahara T. Monogenity of biquadratic fields related to Dedekind-Hasse's problem. Punjab University Journal of Mathematics 2015; 47(2): 77-82.
[25] Washington LC. Introduction to cyclotomic fields, Graduate texts in mathematics, $2^{\text {nd }}$ ed., Springer-Verlag, New York-Heidelberg-Berlin 1995; 83.
https://doi.org/10.6000/1927-5129.2018.14.35
© 2018 Khan et al.; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to this author at the National University of Computer \& Emerging Sciences Lahore Campus, Pakistan;
 E-mail: p109958@nu.edu.pk
 Mathematics Subject Classification (2010) 11R04, 11R11, 11 R16.

