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1. INTRODUCTION 

The Toda chain [1] is a simple model for a nonlinear 
one-dimensional crystal that describes the motion of a 
chain of particles with exponential interactions of the 
nearest neighbors. The equation of motion for such a 
system is given by 

d 2un
dt 2

= exp un!1 !un( )! exp un !un+1( ) , n ! Z , 

where un (t)  the coordinate of the n th atom in a lattice. 
Using Flaschka’s variables [2] 

an =
1
2
exp un !un+1

2
"

#
$

%

&
' , 

 
bn =

1
2
!an , 

the Toda equation can be rewritten in the form 

   

!an = an(bn ! bn+1),
!bn = 2(an!1

2 ! an
2 ), n" Z.

#
$
%

&%
 

This equation has different practical applications. 
For example, the Toda lattice model of DNA in the field 
of biology [3]. Moreover, one important property of the 
Toda lattice type equations is the existence of so called 
soliton solutions. There is a close relation between the 
existence of soliton solutions and the integrability of 
equations: the known research results show that all the 
integrable systems have soliton solutions [4]. Soliton 
solutions of the Toda lattice are obtained in the works 
[2, 5]. Also, it is well known that the Toda lattice 
equation possesses rich families of solutions including 
rational solution, solitons, positons, negatons and 
soliton–positon, soliton–negaton, positon–negaton (see 
[6] for details). The periodic Toda lattice was 
considered in the works [7-10]. 
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Here, we consider N -periodic Toda-type chain with 
self-consistent source 

   

!an = an(an+1
2 ! an!1

2 )+ an(bn+1
2 ! bn

2 )+ an
""N+1(#i ,t) ( fn+1

i )2 ! ( fn
i )2$

%
&
'

i=1

2 N

( +

+an
""N+1(#,t)[)n+1

! (#,t))n+1
+ (#,t)!)n

!(#,t))n
+(#,t)]

E
* d#,

!bn = 2an
2(bn+1+ bn )! 2an!1

2 (bn + bn!1)! 2 ""N+1(#i ,t) fn
i (an fn+1

i ! an!1 fn!1
i )

i=1

2 N

( +

+an
""N+1(#,t)[)n

!(#,t))n+1
+ (#,t)+)n+1

! (#,t))n
+(#,t)]d#

E
* !

! an!1
""N+1(#,t)[)n

!(#,t))n!1
+ (#,t)+)n!1

! (#,t))n
+(#,t)]d#

E
* ,

an!1 fn!1
i + bn fn

i + an fn+1
i = #i fn

i ,

an+N = an , bn+N = bn , ( fn+N
i )2 = ( fn

i )2 , i =1,2,...,2N , an > 0, n+ Z , t + R,

,
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             (1) 

and the initial conditions 

  an(0) = an
0 , bn(0) = bn

0 , n! Z ,          (2) 

with the given N -periodical sequences an
0  and 

bn
0, n ! Z . In system (1), function sequences 
{an (t)}!"

" , {bn (t)}!"
" , { fn

1(t)}!"
" , { fn

2 (t)}!"
" , … , 

{ fn
2N (t)}!"

" , {!n
±(",t)}#$

$  – are unknown vector-
functions, besides, { fn

i (t)}!"
"  and {!n

±(",t)}#$
$  are the 

Floquet-Bloch solutions for the discrete Hill's equation  

L(t)y( )n ! an"1yn"1 +bnyn + anyn+1 = #yn ,         (3) 

normalized by conditions 

!1
±(",t)=1 , f1

i (t)=1, i =1, 2, ..., 2N .         (4) 

The eigenvalues !i  of the Hill’s equation are 
solutions of equation 

!2 (")# 4 = 0 , 
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where !(")= #N (",t)+$N+1(",t) , and !n (",t) , n ! Z  and 
!n (",t) , n ! Z  are solutions of equation (3) under the 
initial conditions 

!0 (",t)=1, !1(",t)= 0, #0 (",t)= 0, #1(",t)=1 . 

In system (1), E  is spectrum of the operator L(0) , 
and the factor  

!!N+1(",t)  is defined from the equality 

 

!!N+1(",t)= (" #µ j (t))
j=1

N#1

$ , where µ1(t),µ2 (t), ...,µN!1(t)  are 

the roots of the equation !N+1(",t)= 0 .  

Currently, the nonlinear evolution equations with 
self-consistent sources arouse active interest because 
of different physical applications. Usually, the right-
hand side of nonlinear evolution equations with a self-
consistent source integrable by the inverse spectral 
transform method consists of terms multiplied by 
integral factors depending on all the dynamical 
variables. They have important applications in plasma 
physics, hydrodynamics, solid-state physics, etc. [7-
13]. For example, the KdV equation, which is included 
an integral type self-consistent source, was considered 
in [14]. By this type equation the interaction of long and 
short capillary-gravity waves can be described [15]. 
Other important soliton equations with self-consistent 
source are the nonlinear Schrodinger equation which 
describes the nonlinear interaction of an ion acoustic 
wave in the two component homogeneous plasma with 
the electrostatic high frequency wave [16]. Different 
techniques have been used to construct their solutions, 
such as inverse scattering [12, 13, 17, 18], Darboux 
transformation [20-23] or Hirota bi-linear methods [24–
26]. Other aspects on integration of nonlinear periodical 
systems are presented in [27, 28, 29,30, 31, 32, 33, 34, 
35]. 

The purpose of this paper consists on develop the 
scattering method for the periodic Toda-type chain 
equation with a self-consistent source. An effective 
method of integration of the Toda-type chain with a 
self-consistent source is presented. 

The considered new system, similarly to [36, 37], 
can be used in some models of special types of electric 
transmission line. 

2. THE BASIC INFORMATION ABOUT THE THEORY 
OF DIRECT AND INVERSE SPECTRAL PROBLEM 
FOR THE DISCRETE HILL'S EQUATION 

In this section we give basic information about the 
theory of direct and inverse spectral problem for the 
discrete Hill's equation [1, 29]. 

We start with the following discrete Hill's equation 

Ly( )n ! an"1yn"1 +bnyn + anyn+1 = #yn ,         (5) 

an+N = an , bn+N = bn , n ! Z ,  

with spectral parameter ! , and with period N > 0 . Let 
!n (") , n ! Z  and !n (") , n ! Z  be the solutions of 
equation (5) under the initial conditions 

!0 (")=1, !1(")= 0, #0 (")= 0, #1(")=1 . 

Let !1, !2, ..., !2N  be the roots of equation  

!2 (")# 4 = 0 . 

We define the auxiliary spectrum µ1,µ2, ...,µN!1  as 
the roots of equation 

!N+1(")= 0 . 

As it is known (see. [1]), all !i , i =1, 2, ..., 2N  and 
µ j , j =1, 2, ..., N !1  are real, the roots µ j  are simple, but 
among the roots !i  may occur the roots of multiplicity 
two. 

It is easy to show, that 

!2 (")# 4 = aj
j=1

N

$
%

&
''

(

)
**

#2

(" #" j )
j=1

2N

$ , 

!N+1(")= #a0 aj
j=1

N

$
%

&
''

(

)
**

#1

(" #µ j )
j=1

N#1

$ . 

We shall introduce 

! j = sign "N (µ j )#
1

"N (µ j )

$

%
&
&

'

(
)
)

, j =1, 2, ..., N !1 . 

Definition 1. The set of the numbers µ j , 
j =1, 2, ..., N !1  and sequences of signs ! j , 
j =1, 2, ..., N !1  is called spectral parameters of the 

discrete Hill's equation (5). 

Definition 2. System of spectral parameters 
µ j ,! j{ } j=1

N"1
 and numbers !i , i =1, 2, ..., 2N  is called 

spectral data of the discrete Hill's equation (5).  

It is easy to see that the following statement is true. 

Lemma 2. If !
!")}({ #nx  and !

!")}({ µny  are 

solutions of equations xLx !=  and yLy µ= , 
respectively. Then the identity 
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(µ !")xn (")yn (µ)=W {xn ("), yn (µ)}
!W {xn!1("), yn!1(µ)}, n # Z

, 

holds, where W {xn (!), yn (µ)} = an[xn (!)yn+1(µ)  
! xn+1("), yn (µ)] . 

3. EVOLUTION OF SPECTRAL PARAMETRS 

In this section, we prove the basic result of this 
paper. 

Theorem 1. If the functions an (t) , bn (t) , { fn
i (t)}!"

" , 
!n
±(",t) , n ! Z  are solutions of the problem (1)-(4), 

then the spectrum of discrete Hill operator (3) is 
independent of t , and spectral parametrs µ j (t) , 
j =1, 2, ..., N !1 , satisfy the system of equations 

   

!µ j (t) = !2
" j (t) # (µ j (t)!$k (t))

k=1

2 N

%

(µ j (t)!µk (t))
k=1
k& j

N!1

%
#

b1(t)+µ j (t)+
"'N+1($i ,t)
$i !µ j (t)i=1

2 N

( +
"'N+1($,t)
$ !µ j (t)

d$
E
)

*
+
,

-,

.
/
,

0,

.        (6) 

where  

b1(t)=
!1 +!2N
2

+
1
2

!2k +!2k+1 " 2µk (t)( )
k=1

N"1

# . 

Proof. Let y j (t)= (y0
j (t), y1

j (t), ..., yN
j (t))T , 

j =1, 2, ..., N !1  denote the orthonormalized 
eigenvectors for the corresponding eigenvalues 
! =µ j (t) , j =1, 2, ..., N !1 , associated with the following 
boundary problem 

(L(t)y)n ! an"1yn"1 +bnyn + anyn+1 = #yn , 1$ n $ N
y1 = 0, yN+1 = 0.

%
&
'

('
 

In [11], was shown that 

 
!µ j (t)= (2 !an (t)yn

jyn+1
j + !bn (t)(yn

j )2 )
n=1

N

! . 

Using (1), the last equality can be rewritten as 
follows 

   
!µ j (t) = 2[an(an+1

2 ! an!1
2 )+ an(bn+1

2 ! bn
2 )]yn

j yn+1
j +

n=1

N

"  

  
+ [2an

2(bn+1+ bn )! 2an!1
2 (bn + bn!1)]( yn

j )2

n=1

N

" +  

 
+ [2an !!N+1("i ,t)(( fn+1

i )2 # ( fn
i )2 )yn

jyn+1
j ]

i=1

2N

$
%
&
'

(
)
*
+

n=1

N

$  

   
+ 2an

!!N+1("i ,t)( fn
i fn+1

i )( yn
j )2 # 2an#1

!!N+1("i ,t)( fn#1
i fn

i )( yn
j )2$

%
&
'

i=1

2 N

(
)
*
+

,+

-
.
+

/+n=1

N

( +  

   
+ 2an

!!N+1(",t)[#n+1
$ (",t)#n+1

+ (",t)$#n
$(",t)#n

+(",t)]
E
% d"

&
'
(

)(

*
+
(

,(n=1

N

- yn
j yn+1

j +  

   
+ an

!!N+1(",t)
E
# [$n

%(",t)$n+1
+ (",t)+$n+1

% (",t)$n
+(",t)]d"

&
'
(

)(

*
+
(

,(n=1

N

- ( yn
j )2 %  

   
! an!1

!"N+1(#,t)
E
$ [%n

!(#,t)%n!1
+ (#,t)+%n!1

! (#,t)%n
+(#,t)]d#

&
'
(

)(

*
+
(

,(n=1

N

- ( yn
j )2 . 

For convenience, let us put 

   
Gi

j (!,t) = !"N+1(!i ,t) 2an[( fn+1
j )2 # ( fn

j )2]yn
j yn+1

j +{
n=1

N

$  

+2an ( fn
i fn+1

i )(yn
j )2 ! 2an!1( fn!1

i fn
i )(yn

j )2} , 

F j (!,t)= 2an["n+1
# (!,t)"n+1

+ (!,t)#"n
#(!,t)"n

+(!,t)]{ }
n=1

N

$ yn
jyn+1

j +  

+ an[!n
"(#,t)!n+1

+ (#,t)+!n+1
" (#,t)!n

+(#,t)]{ }
n=1

N

$ (yn
j )2 "  

! an!1["n
!(#,t)"n!1

+ (#,t)+"n!1
! (#,t)"n

+(#,t)]{ }
n=1

N

$ (yn
j )2 , 

  Hn = 2[an(an+1
2 ! an!1

2 )+ an(bn+1
2 ! bn

2 )]yn
j yn+1

j +  

  +[2an
2(bn+1+ bn )! 2an!1

2 (bn + bn!1)]( yn
j )2 . 

We will find sequences un , that un+1 !un = Hn . We 
seek for un  as follows 

un = An (yn
j )2 + 2Bnyn

jyn+1
j +Cn (yn+1

j )2 ,         (7) 

where An = An (t,µ j ), Bn = Bn (t,µ j )  and Cn =Cn (t,µ j )  are 
unknown coefficients yet. 

Due to 

yn+2
j =

1
an+1

[(µ j !bn+1)yn+1
j ! anyn

j ]  
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we have 

  

( An+1 !Cn )( yn+1
j )2 ! An( yn

j )2 ! 2Bn yn
j yn+1

j

+
2Bn+1

an+1

yn+1
j [(µ j ! bn+1)yn+1

j ! an yn
j ]+

 

+
Cn+1

an+1
2 (µ j !bn+1)

2 (yn+1
j )2 ! 2Cn+1

an+1
2

an (µ j !bn+1)yn
jyn+1

j +
Cn+1

an+1
2 an

2 (yn
j )2 = Hn

.         (8) 

From the equality (8) we get 

  
!Bn !

an

an+1

Bn+1 !
an(µ j ! bn+1)

an+1
2 Cn+1 = an(an+1

2 ! an!1
2 )+ an(bn+1

2 ! bn
2 ) , (9) 

  

!Cn!1+
2(µ j ! bn )

an

Bn +
(µ j ! bn )2

an
2 Cn +

an
2

an+1
2 Cn+1

= 2an
2(bn+1+ bn )! 2an!1

2 (bn + bn!1)

.      (10) 

It is easy to check that 

Cn = 2an
2 (µ j +bn ) , Bn = an (an!1

2 ! an
2 +bn

2 !µ j
2 )  

are solutions to the system (9) and (10). By virtue of 
(7), we obtain 

   
!µ j (t) = 2[an(an+1

2 ! an!1
2 )+ an(bn+1

2 ! bn
2 )]yn

j yn+1
j

n=1

N

" +  

   

+ [2an
2(bn+1+ bn )! 2an!1

2 (bn + bn!1)]( yn
j )2

n=1

N

"

+ Gi
j

i=1

2 N

" (#,t)+ !$N+1(#,t) F j (#,t)d#
E
% =

 

   

=CN+1( yN+2
j )2 !C1( y2

j )2 + Gi
j

i=1

2 N

" (#,t)

+ !$N+1(#,t) F j (#,t)d#
E
% =

 

   

= 2a0
2(µ j (t)+ b1(t))[( yN

j )2 ! ( y0
j )2]

+ Gi
j

i=1

2 N

" (#,t)+ !$N+1(#,t) F j (#,t)d#
E
%

.       (11) 

Using the form of   Gi
j (!,t)  and F j (!,t) , we find that 

   

Gi
j (!,t) = !"N+1(!i ,t)

2an fn+1
i yn+1

j ( yn
j fn+1

i # yn+1
j fn

i )+ 2an fn
i yn

j ( yn
j fn+1

i # fn
i yn+1

j )$
%

&
'

n=1

N

( =
 

 

= !!N+1("i ,t) 2 fn+1
i yn+1

j Tn
n=1

N

# + 2 fn+1
i yn+1

j Tn+1
n=0

N

#
$

%
&

'

(
)

= !!N+1("i ,t) 2 fn+1
i yn+1

j (Tn +Tn+1)
n=1

N

#
$

%
&

'

(
)=

 

 

= 2 !!N+1("i ,t)
1

"i #µ j (t)
(Tn+1 #Tn )(Tn+1 +Tn )

n=1

N

$

=
2 !!N+1("i ,t)
"i #µ j (t)

(TN+1
2 #T1

2 )

, 

where Tn = an (yn
j fn+1

i ! yn+1
j fn

i ) . Thus, we get 

 
   
Gi

j (!,t) = 2 !"N+1(!i ,t)a0
2( f1

i )2

!i #µ j (t)
[( yN

j )2 # ( y0
j )2] , 

F j (!,t)= 2a0
2

! "µ j (t)
[(yN

j )2 " (y0
j )2 ] .        (12) 

Substituting (12) in (11), we derive 

   

!µ j (t) = 2a0
2[( yN

j )2 ! ( y0
j )2]

µ j (t)+ b1(t)+
""N+1(#i ,t)
#i !µ j (t)i=1

2 N

$ +
""N+1(#,t)
# !µ j (t)

d#
E
%

&
'
(

)(

*
+
(

,(

.     (13) 

By virtue of the equalities 

! j 2
= (!n

j )2
n=1

N

" = aN!N
j (!N+1

j #) $=µ j
, (! j ") = d!

j

d#
, 

(y0
j )2 = (!0

j )2

! j 2 , (yN
j )2 = (!N

j )2

! j 2 , 

we can write the equation (13) in the form 

   

!µ j (t) =

2a0 !N
j (µ j (t),t)"

1
!N

j (µ j (t),t)

#

$
%
%

&

'
(
(

(!N+1
j ))

*=µ j (t )

+

µ j (t)+ b1(t)+
"!N+1(*i ,t)
*i "µ j (t)i=1

2 N

, +
"!N+1(*,t)
* "µ j (t)

d*
E
-

.
/
0

10

2
3
0

40

.      (14) 

It is easy to check that 

!N
j (µ j (t),t)"

1
!N
j (µ j (t),t)

=# j (t) $2 (µ j (t))" 4 ,      (15) 

!"N+1(#) #=µ j (t )
= $a0 ak

k=1

N

%
&

'
(

)

*
+

$1

(µ j (t)$µk (t))
k=1
k, j

N$1

% ,      (16) 



Solving the Periodic Toda-Type Chain with a Self-Consistent Source Journal of Basic & Applied Sciences, 2020, Volume 16      47 

where ! j (t)= sign "N
j (µ j (t),t)#$N+1

j (µ j (t),t)( ) , j =1, 2, ..., N !1 . 

Substituting (15) and (16) in (14) we obtain equality 
(6). 

We now show that !k (t)  is independent of t . Let 

gn
k (t){ }  be the normalized eigenfunction of the operator 

L(t)  corresponding to the eigenvalue !k (t) , 
k =1, 2, ..., 2N , i.e. 

an!1gn!1
k +bngn

k + angn+1
k = "kgn

k . 

By differentiating the last identity with respect to t , 
multiplying by gn

k  and summing over n  we get 

 

d!k

dt
= 2 !an (t)gn

kgn+1
k + !bn (t) gn

k( )2( )
n=1

N

" .       (17) 

Using the equation (1), we can write the equality 
(17) as 

 

!!k (t)= 2 [an (an+1
2 " an"1

2 )+ an (bn+1
2 "bn

2 )]gn
kgn+1

k

n=1

N

# +  

   

+ [2an
2(bn+1+ bn )! 2an!1

2 (bn + bn!1)](gn
k )2

n=1

N

"

+ Gi
j

i=1

2 N

" (#,t)+ !$N+1(#,t) F j (#,t)d#
E
%

.       (18) 

Similarly to (13), from the equality (18) we get 

 
!!k (t)= 0 . The theorem is proved. 

Corollary. If N = 2p  and the number p  is the 

period of the initial sequences {an
0}  and {bn

0} , then all 
roots of the equation !(")+ 2 = 0  are double roots. 
Because the Lyapunov function corresponding to the 
coefficients an (t)  and bn (t)  coincides with !(") , 
according to the analogue of the Borg inverse theorem 
for the discrete Hill equation (see [38]), the number p  
is also the period of the solution an (t) , bn (t)  with 
respect to the variable n . 

4. CONCLUSION 

Theorem 1 provides the method for solving the 
problem (1)-(4). 

(i) Solving the direct spectral problem for the 
discrete Hill's equation with {an

0}  and {bn
0}  the 

spectral data   !i , i =1,2,...,2N  and 

  
µ j (0), ! j (0) , j =1,2,..., N "1  are obtained.  

(ii) Using the result of Theorem 1, we find the 

  
µ j (t), ! j (t) , j =1,2,..., N "1  

(iii) Using the algorithm which is presented in [29], 
we calculate  an(t) ,  bn(t)  and hence { fn

i (t)}!"
" , 

  !n
±(",t) . 

5. EXAMPLE 

Let us illustrate the application of the main theorem 
for solving problem (1) - (2) with the initial conditions  

(an
0 )2 = 5

2
! (!1)n 3

2
, bn

0 = 0 , n ! Z . 

In this case, 

N = 2, !1 = "3, !2 = "1, !3 =1, !4 = 3,
µ1(0)= 0, !1(0)=1 . 

Using steps of conclusion, we obtain  

an
2 (t)= 5

2
!
1
2
µ2 (t)! (!1)n "(t)

2
(µ2 (t)!1)(µ2 (t)! 9) , 

bn (t)= (!1)
nµ(t) , n ! Z , 

f0
k (t)= !k

2 "µ2 (t)"#(t) (µ2 (t)" 9)(µ2 (t)"1)
2a0 (t)(!k "µ(t))

,

f1
k (t)=1, k =1,2,3,4

, 

where µ(t)  can be determined from the equation 

dµ(t)
dt

= !12"(t) (1!µ2 (t))(9!µ2 (t)) , 

with the initial conditions µ(0)= 0 , !(0)=1 , and the 
function !(t)  changes sign in each collision of the point 
µ(t)  with the ends of the gap !1, 1[ ] . Introducing the 
transformation   µ(t) = sinx(t) , and using the equality 

sign !(t) " sign (cosx(t))=!(0) , 

we obtain 

an
2 (t)= 5

2
!
1
2
sin2 x(t)! (!1)n 3

2
cos x(t) 1! 1

3
"

#
$
%

&
'
2

sin2 x(t) , 

bn (t)= (!1)
n sin x(t) , n ! Z , 

f0
k (t)= !k

2 " sin2 x(t)" cosx(t) 9" sin2 x(t)
2a0 (t)(!k " sinx(t))

,

f1
k (t)=1, k =1,2,3,4

, 
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where x(t)  is the solution of the Cauchy problem 

 
!x(t)= !36 1! 1

3
"

#
$
%

&
'
2

sin2 x(t) ,
 

x(0)= 0 . 

It is known that (см. [39]) 

x(t)= am !36t, 1
3

"

#
$

%

&
' , 

here am  is the Jacobi amplitude function. Therefore, 

an (t)=
5
2
!
1
2
sn2 !36t, 1

3
"

#
$

%

&
'! (!1)n

3
2
cn !36t, 1

3
"

#
$

%

&
'dn !36t, 1

3
"

#
$

%

&
' , 

bn (t)= (!1)
n sn !36t, 1

3
"

#
$

%

&
' , 

f0
k (t)=

!k
2 " sn2 "36t, 1

3
#

$
%

&

'
(" 3cn "36t, 1

3
#

$
%

&

'
(dn "36t, 1

3
#

$
%

&

'
(

2a0 (t) !k " sn "36t, 1
3

#

$
%

&

'
(

)

*
+

,

-
.

,

f1
k (t)=1, k =1,2,3,4,

 

where sn , cn  and dn  are the Jacobi elliptic functions. 
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