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Abstract: In data mining studies, mining of frequent patterns in transaction databases has been a popular area of 
research. Many approaches are being used to solve the problem of discovering association rules among items in large 
databases. We also consider the same problem. We present a new approach for solving this problem that is 
fundamentally different from the known techniques. In this study, we propose a transactional patternbase where 
transactions with same pattern are added as their frequency is increased. Thus subsequent scanning requires only 
scanning this compact dataset which increases efficiency of the respective methods. We have implemented this 
technique by using two-dimensional matrix instead of using FP-Growth method, as used by most of the algorithms. 
Empirical evaluation shows that this technique outperforms the database approach, implemented with FP-Growth, in 
many situations and performs exceptionally well when the repetition of transaction patterns is higher. We have 
implemented it using Visual Basic which has substantially reduced coding and computational cost. Success of this 
method will open new directions. 
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1. INTRODUCTION 

Association rule mining, one of the most important 
and well researched techniques of data mining, was 
first introduced in [1]. It aims to extract interesting 
correlations, frequent patterns, associations or casual 
structures among sets of items in the transaction 
databases or other data repositories [2]. 

Association rule mining is to find out association 
rules that satisfy the predefined minimum support and 
confidence from a given database. The problem is 
usually decomposed into two sub problems. One is to 
find those itemsets whose occurrences exceed a 
predefined threshold in the database; those itemsets 
are called frequent or large itemsets. The second 
problem is to generate association rules from those 
large itemsets with the constraints of minimal 
confidence. 

Different algorithms are used to generate 
association rules. In many cases, the algorithms 
generate an extremely large number of association 
rules, often in thousands or even millions. Further, the 
association rules are sometimes very large. It is nearly 
impossible for the end users to comprehend or validate 
such large number of complex association rules, 
thereby limiting the usefulness of the data mining 
results. Several strategies have been proposed to 
reduce the number of association rules, such as 
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generating only “interesting” rules, generating only “no 
redundant” rules, or generating only those rules 
satisfying certain other criteria such as coverage, 
leverage, lift or strength [2]. 

Hegland [8] reviews the most well known algorithm 
for producing association rules - Apriori and discuss 
variants for distributed data, inclusion of constraints 
and data taxonomies. 

The AIS algorithm was the first algorithm proposed 
for mining association rule [1]. In this algorithm only 
one item consequent association rules are generated, 
which means that the consequent of those rules only 
contain one item. 

FP-Tree [7], frequent pattern mining, is another 
milestone in the development of association rule 
mining, which breaks the main bottlenecks of the 
Apriori. The frequent itemsets are generated with only 
two passes over the database and without any 
candidate generation process. FP-tree is an extended 
prefix-tree structure storing crucial, quantitative 
information about frequent patterns. Only frequent 
length-1 items will have nodes in the tree, and the tree 
nodes are arranged in such a way that more frequently 
occurring nodes will have better chances of sharing 
nodes than less frequently occurring ones. 

The following is a formal statement of the problem 
[1]: Let I ={i1, i2, . . ., im} be a set of literals, called items. 
Let D be a set of transactions, where each transaction T 
is a set of items such that T⊆ I. Associated with each 
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transaction is a unique identifier, called its TID. We say 
that a transaction T contains X, a set of some items in 
I, if X ⊆ T. An association rule is an implication of the 
form X⇒ Y, where X ⊂ I, Y ⊂ I, and X ∩ Y =∅ ;. The 
rule X⇒Y holds in the transaction set D with confidence 
c if c% of transactions in D that contain X also contain 
Y. The rule X ⇒ Y has support s in the transaction set 
D, if s% of transactions in D contain X∪Y.  

Given a set of transactions D, the problem of mining 
association rules is to generate all association rules 
that have support and confidence greater than the 
user-specified minimum support (called minsup) and 
minimum confidence (called minconf ) respectively. Our 
discussion is neutral with respect to the representation 
of D. For example, D could be a data file, a relational 
table, or the result of a relational expression. 

In this paper we have tried to reduce the 
computational cost by: 

• Reducing the number of passes over the 
database. For this purpose we used Transaction 
Patternbase instead of transaction database for 
generating association rules. 

• Introducing Two-Dimensional matrix for 
generating required association rules instead of 
FP-Tree. 

2. THE PROPOSED METHOD 

The computational cost of association rules mining 
can be reduced by reducing the number of passes over 
the database. In order to achieve this objective, we 
develop the transactional patternbase which is 
substantially smaller than the transactional database 
without loss of any information.  

In order to obtain required transactional patternbase 
we sort every transaction of D to prune the transactional 
base. This pruned transactional base is then converted 
to Transactional Patternbase, presented in section 2.1. 
Construction of Patternbase is described in section 2.2. 
Section 2.3 describes the construction of base matrix. 
In section 2.4, we describe how required association 
rules are generated.  

2.1. Transactional Patternbase 

Information from transactional databases is 
essential for generating association rules. If we can 
construct transactional patternbase from the 
transaction database in the first scan, it may reduce 
frequent scanning of database due its compact size as  

compared to transactional database which contain 
redundant transactional pattern. 

2.1.1. Transactional Pattern 

A transactional database TDB is a set of 
transactions. A transaction T = (tid, X) is a tuple where 
tid is a transaction-id and X is an itemset. The itemset 
is called transactional pattern which has tid in the 
transactional database. The itemsets Y and Z (such 
that Y !  X !  Z) are not transactional pattern if they 
do not have their own tid in TDB. A pattern may belong 
to multiple transactions with different tid’s. Example is 
given in the Table 1. We selected 20 tuples in the 
sample transactional Database from [1]. 

Table 1. Sample Transactional Database 

Tid Items 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 5 9 14 19 23 27 32 37 
1 5 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
3 5 9 14 19 23 27 36 38 
1 8 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 32 37 
1 5 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 34 37 
1 5 9 14 19 23 27 32 38 
1 5 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 34 37 
1 8 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 32 37 
1 5 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 34 37 

 

We find the transactional patterns from the 
transactional database during the first scan of the 
database, while generating the frequent items list. 
Transactional patterns found from the example dataset 
given in Table 1 are displayed in Table 2. 

Table 2: Sample Transactional Patterns 

Transactional Patterns 

1 5 9 14 19 23 27 32 37 
1 5 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
3 5 9 14 19 23 27 36 38 
1 8 9 14 19 23 27 32 38 
2 8 12 14 19 24 27 35 38 
1 5 9 14 19 23 27 34 37 
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2.1.2. Observation of Transactional Patternbase  

We have designed a compact data structure called 
transactional patternbase which is based on the 
following observations. 

1. Transactional patterns are repeating in the 
transactional database. 

2. If multiple transactions share the transactional 
patterns it is possible to just count the frequency 
of each transactional pattern in transactional 
database. 

3. A subset or superset of transactional pattern 
may or may not be a transactional pattern if it 
has its own transactional id in transactional 
database. 

4. If we store the frequency information of 
transactional pattern in the transactional 
patternbase it may be possible to avoid the 
massive transactional database scanning during 
the FP Tree construction. 

2.1.3. Definition of Transactional Patternbase 

A transactional database TDB is the set of 
transactions consisting of set of items I. A transaction T 
= (tid,X) is a tuple where tid is a transaction-id A TPB is 
a set of patterns P. A Pattern P = (pid, X, f) is a tuple 
where pid is a pattern id, X is a transactional Pattern 
and f is the frequency of the transactional pattern, 
where f is the frequency of the respective pattern in the 
transactional database. 

f = Frequency(X, TDB) := count{ tid | (tid, X) ∈ TDB , 
X ⊆ I } 

It is observed that the number of the transactions in 
the transactional database is equal to the sum of 
frequencies of the transactional patternbase. All 
transactional patterns in the transactional patternbase 
will be unique. 

In order to construct Transaction Patternbase, best 
suited for our base matrix, we pruned the Table 1. This 
pruning is performed by sorting items in ascending 
order with respect to descending order of their 
frequencies.  

During first scan the frequencies of items are listed 
in Table 3. 

The table after pruning the input Table 1, is 
presented in Table 4. With 20% support items 3, 36 
and 34 are discarded. In this table items with same 
frequencies are sorted in ascending order in each 

transaction with respect to descending order of 
frequencies. 

Table 3: Item Frequencies without Threshold 

Item Frequency 

1 
5 
9 
14 
19 
23 
27 
32 
37 
38 
2 
8 
12 
24 
35 
3 
36 
34 

13 
12 
14 
20 
20 
14 
20 
10 
6 
14 
6 
8 
6 
6 
6 
1 
1 
3 

 

Table 4: Sorted Table after Excluding Less Frequent 
Items 

Tid Items 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

14 19 27 9 23 1 5 32 37 
14 19 27 9 23 38 1 5 32 
14 19 27 38 8 2 12 24 35  
14 19 27 9 23 38 5  
14 19 27 9 23 38 1 32 8 
14 19 27 38 8 2 12 24 35 
14 19 27 9 23 1 5 32 37 
14 19 27 9 23 38 1 5 32 
14 19 27 38 8 2 12 24 35  
14 19 27 9 23 1 5 37 
14 19 27 9 23 38 1 5 32 
14 19 27 9 23 38 1 5 32 
14 19 27 38 8 2 12 24 35 
14 19 27 9 23 1 5 37 
14 19 27 9 23 38 1 32 8 
14 19 27 38 8 2 12 24 35 
14 19 27 9 23 1 5 32 37 
14 19 27 9 23 38 1 5 32 
14 19 27 38 8 2 12 24 35 
14 19 27 9 23 1 5 37 

 
Table 4 is used for the construction of transactional. 

patternbase we have constructed the transactional 
patternbase from the pruned transactional database by 
excluding repetition of redundant pattern but including 
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frequencies of those repeated transactions. This 
Transactional Patternbase is shown in the Table 5. 

Table 5:  Transactional Patternbase 

Pid Transactional Patterns f 

1 
2 
3 
4 
5 
6 

14 19 27 9 23 1 5 32 37 
14 19 27 9 23 38 1 5 32 
14 19 27 38 8 2 12 24 35  
14 19 27 9 23 38 5  
14 19 27 9 23 38 1 32 8 
14 19 27 9 23 1 5 37 

3 
5 
6 
1 
2 
3 

 
2.2. Construction of Transactional Patternbase  

Information from transaction databases is 
necessary for mining frequent patterns. If we can 
calculate the frequencies of pruned transactions from 
pruned database and use them instead of individual 
transactions in Matrix population, it will reduce 
substantial amount of calculation time. Motivated by 
this thinking, we develop a compact data structure, 
called transactional patternbase.  

We build transactional patternbase from pruned 
transactional database to reduce the cost of scanning 
the massive transactional database. We use this data 
structure, which is smaller in size from the transactional 
database, but we have the same impact as 
transactional database. 

2.2.1. Data Structure Being Used for Transactional 
Patternbase 

We transform the transactional database to a 
compact data structure called transactional 
patternbase. Transactional patternbase consists of pid, 
itemset X and frequency f of the patterns. Where pid is 
the unique identifier each pattern X and frequency is 
the number of occurrences of the itemset X in the 

transactional database, where from we construct 
transactional patternbase. 

2.2.2. Algorithm for the Construction of 
Transactional Patternbase 

Algorithm for the construction of the transactional 
patternbase that takes transactional database and 
minimum-support as input and generate transactional 
patternbase and frequent items list is given in algorithm 
as follow. 

INPUT: Transactional Database, Min-Sup. 

OUTPUT: Transactional Patternbase, Frequent Items 
List 

METHOD: Transactional Patternbase is constructed as 
follow. 

1) Set the Transactional Patternbase empty. 

2) Scan the transactional database until last 
transaction reached 

a) For each item that is occurring in this 
transaction. 

i. If the item does not exist in the frequent items 
list, insert this item in it and set its count 
equal to 1. 

ii. If the item exists in the frequent items list, 
increase its count. 

b) Check nth transactional Pattern of the 
transaction database in the transactional 
Patternbase. If it does not exist, then insert it into 
Transactional Patternbase and set its frequency 
to one. 

c) If transactional Pattern does exists in the 
transactional Patternbase then do not insert it 

Table 6:  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PID 14 19 27 9 23 38 1 5 32 8  2 12 24 35 37 

1 3 3 3 3 3  3 3 3      3 

2 5 5 5 5 5 5 5 5 5       

3 6 6 6   6    6 6 6 6 6  

4 1 1 1 1 1 1  1        

5 2 2 2 2 2 2 2  2 2      

6 3 3 3 3 3  3 3       3 

Net 20 20 20 14 14 14 13 12 10 8 6 6 6 6 6 
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into transactional Patternbase but only increase 
its frequency by 1 in the transactional 
Patternbase. 

d) Sort frequent items list in support descending 
order. 

2.3. Construction of Base Matrix 

The base matrix is MxN matrix where M represents 
pruned transactions and N represents Number of 
items. Frequency of each transaction is populated into 
this matrix against each item. The sum of each column 
will represent the frequency of that particular item. 

2.4. Generation of Association Rules 

In order to generate association rules, we have 
used Listbox control in Visual Basic, instead of storing 
each rule in a separate array. These rules have bee 
generated as string containing transactions 
concatenated with comma. The generated rule’s 
frequency is compared against confidence level, if its 
confidence level is greater than minimum support, it is 
added to the output text box, from where it can be 
stored in a text file. 

2.4.1. Algorithm for generating Association Rules 

Algorithm for generating Association Rules of the 
desired confidence level is subdivided into two 
modules. The first module Generate Rule uses a list 
box where Association rules are generated for next 
item in base matrix, whereas second module 
Transaction Frequency is used to calculate minimum 
frequency of the rule in each transaction. The sum of 
all frequencies is frequency of the rule. 

a. Generate Rule 

INPUT: TotItems (Number of items), Min-Sup 
(Minimum Support), TotTrans (Total Transactions)  

OUTPUT: Set of association rules with desired 
confidence level 

METHOD: Association Rules are generated as follows 

1. Clear the List Box 

2. Repeat through step 11 varying I from 1 by 1 
until (I > TotI tems) 

3. Determine the List Count 
 LC=ListBox.ListCount-1 

4. Add Item Number in List Box 

 List Box. AddItem (I) 

5. Repeat through step 11 varying J from 0 by 1 
until (J > LC) 

6. Generate New Rule String 
 New Rule=Str(I) + “,” + List Box. List(J) 

7. Add NewRule to List Box 

8. Initialize Frequency for New Rule 

 RF=0 

9. Calculate Frequency by repeating through step 
10 varying K from 1 by 1 until (T > TotTrans) 

10. Update Rule’s Frequency 
 RF=RF + Transaction Frequency (New Rule, T) 

11. Check for confidence level 
 If (Rule Freq>Min Sup) 

 Add Rule alongwith frequency to Output List 

b. Transaction Frequency 

INPUT: BTab (Table 6), New Rule (Rule String Passed 
as Parameter), T (Transaction Number)  

OUTPUT: Calculated frequency of the Transaction 

METHOD: Minimum frequency is calculated as follows 

1. Split Rule string into Array 
 Item[ ]=Split(New Rule,”,”) 

2.  Initialize Frequency 
 TFreq=BTab[T,Item[0]) 

3. Calculate Minimum Frequency by repeating 
through step 4 varying N from 1 by 1 until 
(N>UBound(Item)) 

4. Check for Minimum Frequency 
 If (TFreq>BTab(T,Item[N]) 
 Tfreq= BTab(T,Item[N]) 

5. Return(TFreq) 

2.4.1. Example for Generation of Association Rules 

As we are using List box to populate Association 
Rules, generated for next items, thus a sample of the 
generated rules is presented in Table 7. This List box 
will contain all the rules generated for specified items. 
The maximum number of rules will be 2n-1, where n is 
number of items. 

Rules satisfying minimum support will be populated 
in an output text box. A sample is presented in Table 8. 
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For our input database in Table 1, the total number of 
rules, generated, is 1135. A summary of these rules is 
presented in Table 9. 

Table 7: A Sample of the Generated Rules 

1 
2 
2,1 
3 
3,1 
3,2 
3,2,1 
4 
4,1 
4,2 
4,2,1 
4,3 
4,3,1 
4,3,2 
4,3,2,1 
 : 

 
Table 8: A Sample of Rules Satisfying Min Support 

[1] {14}=20 
[2] {19}=20 
[2,1] {19 14}=20 
[3] {27}=20 
[3,1] {27 14}=20 
[3,2] {27 19}=20 
[3,2,1] {27 19 14}=20 
[4] {9}=14 
[4,1] {9 14}=14 
[4,2] {9 19}=14 
[4,2,1] {9 19 14}=14 
[4,3] {9 27}=14 
[4,3,1] {9 27 14}=14 
[4,3,2] {9 27 19}=14 
[4,3,2,1] {9 27 19 14}=14 
 : 

 

3. RESULTS AND DISCUSSION 

In this section we present the computational 
performance comparison of this approach with the FP 
Tree approach using the transactional database.  

3.1. Environments of the Comparison 

All the experiments are performed on a 1.8 GHz 
Pentium PC machine with 512 megabytes main 
memory, running on Microsoft Windows XP. All the  
 

programs for this technique are written in Visual Basic 
6.0 Service Pack 6 whereas programs for FP Tree are 
written in JDK 1.5.0_02.  

Code for FP-Tree processing has been downloaded 
from LUCS-KDD Software Library, Liverpool University, 
Computer Science Knowledge discovery in Datas [10]. 

Not only our synthetic dataset presented in Table 1 
was tested, but real datasets, downloaded from [10] 
were also tested. The following datasets were 
downloaded from [10] and they were renamed as: 

Actual Name Renamed 

chessKRvK.D58.N28056.C18.num First.num 

nursery.D32.N12960.C5.num Second.num 

pima.D38.N768.C2.num Pima.num 

 
3.2. Execution Time 

1. Our Synthetic Dataset (Table 1) 

No. of Transactions = 20 

Minimum Support = 20% 

Confidence = 80% 

 

Table 9: No of Rules for EACH ITEM 

S. No Item No of Rules Generated 

1 14 1 

2 19 2 

3 27 4 

4 9 8 

5 23 16 

6 38 32 

7 1 64 

8 5 128 

9 32 256 

10 8 16 

11 2 32 

12 12 64 

13 24 128 

14 35 256 

15 37 128 

Total  1135 
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a) Matrix Method 

Construction of patternbase  = 0.01 sec 

Construction of matrix = 0.03 sec 

Generation of Association Rules = 0.34 sec 

Total Time = 0.38 sec 

b) FP-Tree  

Construction of FP-Tree = 0.04 sec 

Generation of Association Rules = 0.55 sec 

Total Time  = 0.59 sec 

2. First.num 

No. of Transactions = 28056 

Minimum Support = 20% 

Confidence = 80% 

a) Matrix Method 

Construction of patternbase = 28.02 sec 

Construction of matrix = 0.25 sec 

Generation of Association Rules = 622.34 sec 

Total Time = 650.61 sec 

b) FP-Tree  

Construction of FP-Tree = 53.02 sec 

Generation of Association Rules = 771.34 sec 

Total Time = 824.36 sec 

3. Second.num 

No. of Transactions = 12960 

Minimum Support = 20% 

Confidence = 80% 

c) Matrix Method 

Construction of patternbase = 4.38 sec 

Construction of matrix = 0.21 sec 

Generation of Association Rules = 192.34 sec 

Total Time = 196.99 sec 

d) FP-Tree  

Construction of FP-Tree = 6.02 sec 

Generation of Association Rules = 248.41 sec 

Total Time = 254.43 sec 

4. Pima.num 

No. of Transactions = 768 

Minimum Support = 20% 

Confidence = 80% 

e) Matrix Method 

Construction of patternbase = 0.631 sec 

Construction of matrix = 0.11 sec 

Generation of Association Rules = 14.45 sec 

Total Time = 15.17 sec 

f) FP-Tree  

Construction of FP-Tree = 0.84 sec 

Generation of Association Rules = 21.31 sec 

Total Time = 22.15 sec 

As seen from the result shown in above, the time 
taken by our proposed method is smaller in all cases.  

The compactness of the transactional patternbase 
will leads to the less number of tree nodes updates and 
less time consumption for tree construction. We 
perform the experiments using the above said datasets 
and found the following results. 

3.3. Storage Requirements 

The proposed method consumes more memory 
than the FP-Tree method because general rules are 
created first and then only those rules are selected 
which meet confidence level. Therefore the storage 
requirements are directly proportional to the number of 
items, as number of general rules, generated will be 
equal to 2n, where n represents number of items. 

3.3. Scalability Study 

We also perform the experiments for the efficiency 
of the FP Tree construction for the recurrence of the 
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transactional pattern in the transactional database. We 
observed that higher frequency of transactional pattern 
in the transactional database results in higher efficiency 
as compared to FP Tree method. We have simply 
copied the same transaction 2,3, and 4 times in these 
tables. As FP-Tree scans tree for each transaction to 
update the nodes, therefore the execution time 
requirement are very high in FP-Tree method. In our 
proposed method same patternbase will be constructed 
with different frequencies and association rules 
generation will take exactly same time in all cases, 
therefore there is very small increase in execution time. 

Figures 1 to 4 shows comparison of both methods 
for all four files with different supports. 
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Figure 1: Comparison of FP Tree and Matrix Method with 
more repetitions in First.num. 
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Figure 2: Comparison of FP Tree and Matrix Method with 
more repetitions in Second.num. 
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Figure 3: Comparison of FP Tree and Matrix Method with 
more repetitions in Pima.num. 
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Figure 4: Comparison of FP Tree and Matrix Method with 
more repetition in transactional patterns in the example 
dataset given in Table 1. 

4. CONCLUSIONS 

We have proposed a novel technique, it uses the 
algorithm that transforms the transactional database to 
a compressed form called transactional patternbase 
and also generate frequent items list in support 
descending order. 

There are several advantages of the proposed 
method 

1. Size of transactional patternbase is smaller than 
the transactional database. This patternbase can 
also be used for construction of FP-Tree which 

Table 10: Summarizes Execution Times for Both of these Methods 

Table No. Of Transactions Matrix Method Time(Sec)  FP-Tree Time (Sec) 

Synthetic 20 0.38 0.59 

First.num 28056 650.61 824.36 

Second.num 12960 196.99 254.43 

Pima.num 768 15.17 22.15 
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will ultimately reduce the cost of FP Tree 
construction. While using the transaction 
patternbase, number of FP Tree nodes updates 
decreases, which also leads to the efficiency of 
the construction FP Tree. 

2. The matrix, used to generate Association rules, 
is very small in size as compared to FP Tree. 
The rules are generated more quickly. 

3. The size of matrix is not directly proportional to 
the no of transactions. If frequency of 
transactions is high, the size of matrix will be 
even smaller. 

We have implemented this technique and studied its 
performance and found that this technique outperform 
as compared to FP Tree construction using 
transactional database. 

We also observed that with increase in the 
transactional repetition in transactional database, the 
efficiency of the method will increase substantially.  

It is important to note that the proposed method can 
also suffer the problem of incompetence, particular to 
the situation when there is no repetition of the 
transactional patterns in the transactional database. 

Success of transactional patternbase opens new 
directions, it is interesting to re-examine and explore 
the existing algorithms that uses transactional 
databases and scan the database multiple times. In all 
these situations, transactional patternbase should be 
constructed during the first scan, and use that 
transactional patternbase in all remaining scans. This 
will also improve the efficiency of the algorithms. We 

are trying to construct FP-Tree from Transaction 
Patternbase instead of Transaction database. 
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