
 Journal of Basic & Applied Sciences, 2012, 8, 187-195 187

 ISSN: 1814-8085 / E-ISSN: 1927-5129/12 © 2012 Lifescience Global

Association Rule Mining through Matrix Manipulation using
Transaction Patternbase

Shahid Kamal*,1,2, Roliana Ibrahim1 and Zia-ud-Din2

1Faculty of Computer Science and Information System, Universiti Teknologi, Malaysia, 81310 Skudai, Johor
Bahru, Malaysia

2ICIT, Gomal University Dera Ismail Khan, Pakistan
Abstract: In data mining studies, mining of frequent patterns in transaction databases has been a popular area of
research. Many approaches are being used to solve the problem of discovering association rules among items in large
databases. We also consider the same problem. We present a new approach for solving this problem that is
fundamentally different from the known techniques. In this study, we propose a transactional patternbase where
transactions with same pattern are added as their frequency is increased. Thus subsequent scanning requires only
scanning this compact dataset which increases efficiency of the respective methods. We have implemented this
technique by using two-dimensional matrix instead of using FP-Growth method, as used by most of the algorithms.
Empirical evaluation shows that this technique outperforms the database approach, implemented with FP-Growth, in
many situations and performs exceptionally well when the repetition of transaction patterns is higher. We have
implemented it using Visual Basic which has substantially reduced coding and computational cost. Success of this
method will open new directions.

Keywords: Association Rules, Frequent Patterns, Patternbase, Transaction Base, Matrix, Algorithm.

1. INTRODUCTION

Association rule mining, one of the most important
and well researched techniques of data mining, was
first introduced in [1]. It aims to extract interesting
correlations, frequent patterns, associations or casual
structures among sets of items in the transaction
databases or other data repositories [2].

Association rule mining is to find out association
rules that satisfy the predefined minimum support and
confidence from a given database. The problem is
usually decomposed into two sub problems. One is to
find those itemsets whose occurrences exceed a
predefined threshold in the database; those itemsets
are called frequent or large itemsets. The second
problem is to generate association rules from those
large itemsets with the constraints of minimal
confidence.

Different algorithms are used to generate
association rules. In many cases, the algorithms
generate an extremely large number of association
rules, often in thousands or even millions. Further, the
association rules are sometimes very large. It is nearly
impossible for the end users to comprehend or validate
such large number of complex association rules,
thereby limiting the usefulness of the data mining
results. Several strategies have been proposed to
reduce the number of association rules, such as

*Address corresponding to this author at the ICIT, Gomal University Dera
Ismail, Khan Pakistan; E-mail: skamaltipu@gmail.com

generating only “interesting” rules, generating only “no
redundant” rules, or generating only those rules
satisfying certain other criteria such as coverage,
leverage, lift or strength [2].

Hegland [8] reviews the most well known algorithm
for producing association rules - Apriori and discuss
variants for distributed data, inclusion of constraints
and data taxonomies.

The AIS algorithm was the first algorithm proposed
for mining association rule [1]. In this algorithm only
one item consequent association rules are generated,
which means that the consequent of those rules only
contain one item.

FP-Tree [7], frequent pattern mining, is another
milestone in the development of association rule
mining, which breaks the main bottlenecks of the
Apriori. The frequent itemsets are generated with only
two passes over the database and without any
candidate generation process. FP-tree is an extended
prefix-tree structure storing crucial, quantitative
information about frequent patterns. Only frequent
length-1 items will have nodes in the tree, and the tree
nodes are arranged in such a way that more frequently
occurring nodes will have better chances of sharing
nodes than less frequently occurring ones.

The following is a formal statement of the problem
[1]: Let I ={i1, i2, . . ., im} be a set of literals, called items.
Let D be a set of transactions, where each transaction T
is a set of items such that T⊆ I. Associated with each

188 Journal of Basic & Applied Sciences, 2012 Volume 8 Kamal et al.

transaction is a unique identifier, called its TID. We say
that a transaction T contains X, a set of some items in
I, if X ⊆ T. An association rule is an implication of the
form X⇒ Y, where X ⊂ I, Y ⊂ I, and X ∩ Y =∅ ;. The
rule X⇒Y holds in the transaction set D with confidence
c if c% of transactions in D that contain X also contain
Y. The rule X ⇒ Y has support s in the transaction set
D, if s% of transactions in D contain X∪Y.

Given a set of transactions D, the problem of mining
association rules is to generate all association rules
that have support and confidence greater than the
user-specified minimum support (called minsup) and
minimum confidence (called minconf) respectively. Our
discussion is neutral with respect to the representation
of D. For example, D could be a data file, a relational
table, or the result of a relational expression.

In this paper we have tried to reduce the
computational cost by:

• Reducing the number of passes over the
database. For this purpose we used Transaction
Patternbase instead of transaction database for
generating association rules.

• Introducing Two-Dimensional matrix for
generating required association rules instead of
FP-Tree.

2. THE PROPOSED METHOD

The computational cost of association rules mining
can be reduced by reducing the number of passes over
the database. In order to achieve this objective, we
develop the transactional patternbase which is
substantially smaller than the transactional database
without loss of any information.

In order to obtain required transactional patternbase
we sort every transaction of D to prune the transactional
base. This pruned transactional base is then converted
to Transactional Patternbase, presented in section 2.1.
Construction of Patternbase is described in section 2.2.
Section 2.3 describes the construction of base matrix.
In section 2.4, we describe how required association
rules are generated.

2.1. Transactional Patternbase

Information from transactional databases is
essential for generating association rules. If we can
construct transactional patternbase from the
transaction database in the first scan, it may reduce
frequent scanning of database due its compact size as

compared to transactional database which contain
redundant transactional pattern.

2.1.1. Transactional Pattern

A transactional database TDB is a set of
transactions. A transaction T = (tid, X) is a tuple where
tid is a transaction-id and X is an itemset. The itemset
is called transactional pattern which has tid in the
transactional database. The itemsets Y and Z (such
that Y ! X ! Z) are not transactional pattern if they
do not have their own tid in TDB. A pattern may belong
to multiple transactions with different tid’s. Example is
given in the Table 1. We selected 20 tuples in the
sample transactional Database from [1].

Table 1. Sample Transactional Database

Tid Items

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 5 9 14 19 23 27 32 37
1 5 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
3 5 9 14 19 23 27 36 38
1 8 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 32 37
1 5 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 34 37
1 5 9 14 19 23 27 32 38
1 5 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 34 37
1 8 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 32 37
1 5 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 34 37

We find the transactional patterns from the
transactional database during the first scan of the
database, while generating the frequent items list.
Transactional patterns found from the example dataset
given in Table 1 are displayed in Table 2.

Table 2: Sample Transactional Patterns

Transactional Patterns

1 5 9 14 19 23 27 32 37
1 5 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
3 5 9 14 19 23 27 36 38
1 8 9 14 19 23 27 32 38
2 8 12 14 19 24 27 35 38
1 5 9 14 19 23 27 34 37

Association Rule Mining through Matrix Manipulation Journal of Basic & Applied Sciences, 2012 Volume 8 189

2.1.2. Observation of Transactional Patternbase

We have designed a compact data structure called
transactional patternbase which is based on the
following observations.

1. Transactional patterns are repeating in the
transactional database.

2. If multiple transactions share the transactional
patterns it is possible to just count the frequency
of each transactional pattern in transactional
database.

3. A subset or superset of transactional pattern
may or may not be a transactional pattern if it
has its own transactional id in transactional
database.

4. If we store the frequency information of
transactional pattern in the transactional
patternbase it may be possible to avoid the
massive transactional database scanning during
the FP Tree construction.

2.1.3. Definition of Transactional Patternbase

A transactional database TDB is the set of
transactions consisting of set of items I. A transaction T
= (tid,X) is a tuple where tid is a transaction-id A TPB is
a set of patterns P. A Pattern P = (pid, X, f) is a tuple
where pid is a pattern id, X is a transactional Pattern
and f is the frequency of the transactional pattern,
where f is the frequency of the respective pattern in the
transactional database.

f = Frequency(X, TDB) := count{ tid | (tid, X) ∈ TDB ,
X ⊆ I }

It is observed that the number of the transactions in
the transactional database is equal to the sum of
frequencies of the transactional patternbase. All
transactional patterns in the transactional patternbase
will be unique.

In order to construct Transaction Patternbase, best
suited for our base matrix, we pruned the Table 1. This
pruning is performed by sorting items in ascending
order with respect to descending order of their
frequencies.

During first scan the frequencies of items are listed
in Table 3.

The table after pruning the input Table 1, is
presented in Table 4. With 20% support items 3, 36
and 34 are discarded. In this table items with same
frequencies are sorted in ascending order in each

transaction with respect to descending order of
frequencies.

Table 3: Item Frequencies without Threshold

Item Frequency

1
5
9
14
19
23
27
32
37
38
2
8
12
24
35
3
36
34

13
12
14
20
20
14
20
10
6
14
6
8
6
6
6
1
1
3

Table 4: Sorted Table after Excluding Less Frequent
Items

Tid Items

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

14 19 27 9 23 1 5 32 37
14 19 27 9 23 38 1 5 32
14 19 27 38 8 2 12 24 35
14 19 27 9 23 38 5
14 19 27 9 23 38 1 32 8
14 19 27 38 8 2 12 24 35
14 19 27 9 23 1 5 32 37
14 19 27 9 23 38 1 5 32
14 19 27 38 8 2 12 24 35
14 19 27 9 23 1 5 37
14 19 27 9 23 38 1 5 32
14 19 27 9 23 38 1 5 32
14 19 27 38 8 2 12 24 35
14 19 27 9 23 1 5 37
14 19 27 9 23 38 1 32 8
14 19 27 38 8 2 12 24 35
14 19 27 9 23 1 5 32 37
14 19 27 9 23 38 1 5 32
14 19 27 38 8 2 12 24 35
14 19 27 9 23 1 5 37

Table 4 is used for the construction of transactional.

patternbase we have constructed the transactional
patternbase from the pruned transactional database by
excluding repetition of redundant pattern but including

190 Journal of Basic & Applied Sciences, 2012 Volume 8 Kamal et al.

frequencies of those repeated transactions. This
Transactional Patternbase is shown in the Table 5.

Table 5: Transactional Patternbase

Pid Transactional Patterns f

1
2
3
4
5
6

14 19 27 9 23 1 5 32 37
14 19 27 9 23 38 1 5 32
14 19 27 38 8 2 12 24 35
14 19 27 9 23 38 5
14 19 27 9 23 38 1 32 8
14 19 27 9 23 1 5 37

3
5
6
1
2
3

2.2. Construction of Transactional Patternbase

Information from transaction databases is
necessary for mining frequent patterns. If we can
calculate the frequencies of pruned transactions from
pruned database and use them instead of individual
transactions in Matrix population, it will reduce
substantial amount of calculation time. Motivated by
this thinking, we develop a compact data structure,
called transactional patternbase.

We build transactional patternbase from pruned
transactional database to reduce the cost of scanning
the massive transactional database. We use this data
structure, which is smaller in size from the transactional
database, but we have the same impact as
transactional database.

2.2.1. Data Structure Being Used for Transactional
Patternbase

We transform the transactional database to a
compact data structure called transactional
patternbase. Transactional patternbase consists of pid,
itemset X and frequency f of the patterns. Where pid is
the unique identifier each pattern X and frequency is
the number of occurrences of the itemset X in the

transactional database, where from we construct
transactional patternbase.

2.2.2. Algorithm for the Construction of
Transactional Patternbase

Algorithm for the construction of the transactional
patternbase that takes transactional database and
minimum-support as input and generate transactional
patternbase and frequent items list is given in algorithm
as follow.

INPUT: Transactional Database, Min-Sup.

OUTPUT: Transactional Patternbase, Frequent Items
List

METHOD: Transactional Patternbase is constructed as
follow.

1) Set the Transactional Patternbase empty.

2) Scan the transactional database until last
transaction reached

a) For each item that is occurring in this
transaction.

i. If the item does not exist in the frequent items
list, insert this item in it and set its count
equal to 1.

ii. If the item exists in the frequent items list,
increase its count.

b) Check nth transactional Pattern of the
transaction database in the transactional
Patternbase. If it does not exist, then insert it into
Transactional Patternbase and set its frequency
to one.

c) If transactional Pattern does exists in the
transactional Patternbase then do not insert it

Table 6:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PID 14 19 27 9 23 38 1 5 32 8 2 12 24 35 37

1 3 3 3 3 3 3 3 3 3

2 5 5 5 5 5 5 5 5 5

3 6 6 6 6 6 6 6 6 6

4 1 1 1 1 1 1 1

5 2 2 2 2 2 2 2 2 2

6 3 3 3 3 3 3 3 3

Net 20 20 20 14 14 14 13 12 10 8 6 6 6 6 6

Association Rule Mining through Matrix Manipulation Journal of Basic & Applied Sciences, 2012 Volume 8 191

into transactional Patternbase but only increase
its frequency by 1 in the transactional
Patternbase.

d) Sort frequent items list in support descending
order.

2.3. Construction of Base Matrix

The base matrix is MxN matrix where M represents
pruned transactions and N represents Number of
items. Frequency of each transaction is populated into
this matrix against each item. The sum of each column
will represent the frequency of that particular item.

2.4. Generation of Association Rules

In order to generate association rules, we have
used Listbox control in Visual Basic, instead of storing
each rule in a separate array. These rules have bee
generated as string containing transactions
concatenated with comma. The generated rule’s
frequency is compared against confidence level, if its
confidence level is greater than minimum support, it is
added to the output text box, from where it can be
stored in a text file.

2.4.1. Algorithm for generating Association Rules

Algorithm for generating Association Rules of the
desired confidence level is subdivided into two
modules. The first module Generate Rule uses a list
box where Association rules are generated for next
item in base matrix, whereas second module
Transaction Frequency is used to calculate minimum
frequency of the rule in each transaction. The sum of
all frequencies is frequency of the rule.

a. Generate Rule

INPUT: TotItems (Number of items), Min-Sup
(Minimum Support), TotTrans (Total Transactions)

OUTPUT: Set of association rules with desired
confidence level

METHOD: Association Rules are generated as follows

1. Clear the List Box

2. Repeat through step 11 varying I from 1 by 1
until (I > TotI tems)

3. Determine the List Count
 LC=ListBox.ListCount-1

4. Add Item Number in List Box

 List Box. AddItem (I)

5. Repeat through step 11 varying J from 0 by 1
until (J > LC)

6. Generate New Rule String
 New Rule=Str(I) + “,” + List Box. List(J)

7. Add NewRule to List Box

8. Initialize Frequency for New Rule

 RF=0

9. Calculate Frequency by repeating through step
10 varying K from 1 by 1 until (T > TotTrans)

10. Update Rule’s Frequency
 RF=RF + Transaction Frequency (New Rule, T)

11. Check for confidence level
 If (Rule Freq>Min Sup)

 Add Rule alongwith frequency to Output List

b. Transaction Frequency

INPUT: BTab (Table 6), New Rule (Rule String Passed
as Parameter), T (Transaction Number)

OUTPUT: Calculated frequency of the Transaction

METHOD: Minimum frequency is calculated as follows

1. Split Rule string into Array
 Item[]=Split(New Rule,”,”)

2. Initialize Frequency
 TFreq=BTab[T,Item[0])

3. Calculate Minimum Frequency by repeating
through step 4 varying N from 1 by 1 until
(N>UBound(Item))

4. Check for Minimum Frequency
 If (TFreq>BTab(T,Item[N])
 Tfreq= BTab(T,Item[N])

5. Return(TFreq)

2.4.1. Example for Generation of Association Rules

As we are using List box to populate Association
Rules, generated for next items, thus a sample of the
generated rules is presented in Table 7. This List box
will contain all the rules generated for specified items.
The maximum number of rules will be 2n-1, where n is
number of items.

Rules satisfying minimum support will be populated
in an output text box. A sample is presented in Table 8.

192 Journal of Basic & Applied Sciences, 2012 Volume 8 Kamal et al.

For our input database in Table 1, the total number of
rules, generated, is 1135. A summary of these rules is
presented in Table 9.

Table 7: A Sample of the Generated Rules

1
2
2,1
3
3,1
3,2
3,2,1
4
4,1
4,2
4,2,1
4,3
4,3,1
4,3,2
4,3,2,1
 :

Table 8: A Sample of Rules Satisfying Min Support

[1] {14}=20
[2] {19}=20
[2,1] {19 14}=20
[3] {27}=20
[3,1] {27 14}=20
[3,2] {27 19}=20
[3,2,1] {27 19 14}=20
[4] {9}=14
[4,1] {9 14}=14
[4,2] {9 19}=14
[4,2,1] {9 19 14}=14
[4,3] {9 27}=14
[4,3,1] {9 27 14}=14
[4,3,2] {9 27 19}=14
[4,3,2,1] {9 27 19 14}=14
 :

3. RESULTS AND DISCUSSION

In this section we present the computational
performance comparison of this approach with the FP
Tree approach using the transactional database.

3.1. Environments of the Comparison

All the experiments are performed on a 1.8 GHz
Pentium PC machine with 512 megabytes main
memory, running on Microsoft Windows XP. All the

programs for this technique are written in Visual Basic
6.0 Service Pack 6 whereas programs for FP Tree are
written in JDK 1.5.0_02.

Code for FP-Tree processing has been downloaded
from LUCS-KDD Software Library, Liverpool University,
Computer Science Knowledge discovery in Datas [10].

Not only our synthetic dataset presented in Table 1
was tested, but real datasets, downloaded from [10]
were also tested. The following datasets were
downloaded from [10] and they were renamed as:

Actual Name Renamed

chessKRvK.D58.N28056.C18.num First.num

nursery.D32.N12960.C5.num Second.num

pima.D38.N768.C2.num Pima.num

3.2. Execution Time

1. Our Synthetic Dataset (Table 1)

No. of Transactions = 20

Minimum Support = 20%

Confidence = 80%

Table 9: No of Rules for EACH ITEM

S. No Item No of Rules Generated

1 14 1

2 19 2

3 27 4

4 9 8

5 23 16

6 38 32

7 1 64

8 5 128

9 32 256

10 8 16

11 2 32

12 12 64

13 24 128

14 35 256

15 37 128

Total 1135

Association Rule Mining through Matrix Manipulation Journal of Basic & Applied Sciences, 2012 Volume 8 193

a) Matrix Method

Construction of patternbase = 0.01 sec

Construction of matrix = 0.03 sec

Generation of Association Rules = 0.34 sec

Total Time = 0.38 sec

b) FP-Tree

Construction of FP-Tree = 0.04 sec

Generation of Association Rules = 0.55 sec

Total Time = 0.59 sec

2. First.num

No. of Transactions = 28056

Minimum Support = 20%

Confidence = 80%

a) Matrix Method

Construction of patternbase = 28.02 sec

Construction of matrix = 0.25 sec

Generation of Association Rules = 622.34 sec

Total Time = 650.61 sec

b) FP-Tree

Construction of FP-Tree = 53.02 sec

Generation of Association Rules = 771.34 sec

Total Time = 824.36 sec

3. Second.num

No. of Transactions = 12960

Minimum Support = 20%

Confidence = 80%

c) Matrix Method

Construction of patternbase = 4.38 sec

Construction of matrix = 0.21 sec

Generation of Association Rules = 192.34 sec

Total Time = 196.99 sec

d) FP-Tree

Construction of FP-Tree = 6.02 sec

Generation of Association Rules = 248.41 sec

Total Time = 254.43 sec

4. Pima.num

No. of Transactions = 768

Minimum Support = 20%

Confidence = 80%

e) Matrix Method

Construction of patternbase = 0.631 sec

Construction of matrix = 0.11 sec

Generation of Association Rules = 14.45 sec

Total Time = 15.17 sec

f) FP-Tree

Construction of FP-Tree = 0.84 sec

Generation of Association Rules = 21.31 sec

Total Time = 22.15 sec

As seen from the result shown in above, the time
taken by our proposed method is smaller in all cases.

The compactness of the transactional patternbase
will leads to the less number of tree nodes updates and
less time consumption for tree construction. We
perform the experiments using the above said datasets
and found the following results.

3.3. Storage Requirements

The proposed method consumes more memory
than the FP-Tree method because general rules are
created first and then only those rules are selected
which meet confidence level. Therefore the storage
requirements are directly proportional to the number of
items, as number of general rules, generated will be
equal to 2n, where n represents number of items.

3.3. Scalability Study

We also perform the experiments for the efficiency
of the FP Tree construction for the recurrence of the

194 Journal of Basic & Applied Sciences, 2012 Volume 8 Kamal et al.

transactional pattern in the transactional database. We
observed that higher frequency of transactional pattern
in the transactional database results in higher efficiency
as compared to FP Tree method. We have simply
copied the same transaction 2,3, and 4 times in these
tables. As FP-Tree scans tree for each transaction to
update the nodes, therefore the execution time
requirement are very high in FP-Tree method. In our
proposed method same patternbase will be constructed
with different frequencies and association rules
generation will take exactly same time in all cases,
therefore there is very small increase in execution time.

Figures 1 to 4 shows comparison of both methods
for all four files with different supports.

0

200

400

600

800

1000

1200

1400

28056

56112

84168

112224

No of Transactions

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Matrix

Metod

FP Tree

Figure 1: Comparison of FP Tree and Matrix Method with
more repetitions in First.num.

0

50

100

150

200

250

300

350

400

450

500

12960

25920

38880

51840

No of Transactions

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Matrix

Metod

FP Tree

Figure 2: Comparison of FP Tree and Matrix Method with
more repetitions in Second.num.

0

5

10

15

20

25

30

35

40

45

768

1536

2304

3072

No of Transactions

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Matrix

Metod

FP Tree

Figure 3: Comparison of FP Tree and Matrix Method with
more repetitions in Pima.num.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20 40 60 80

No of Transactions

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Matrix

Metod

FP Tree

Figure 4: Comparison of FP Tree and Matrix Method with
more repetition in transactional patterns in the example
dataset given in Table 1.

4. CONCLUSIONS

We have proposed a novel technique, it uses the
algorithm that transforms the transactional database to
a compressed form called transactional patternbase
and also generate frequent items list in support
descending order.

There are several advantages of the proposed
method

1. Size of transactional patternbase is smaller than
the transactional database. This patternbase can
also be used for construction of FP-Tree which

Table 10: Summarizes Execution Times for Both of these Methods

Table No. Of Transactions Matrix Method Time(Sec) FP-Tree Time (Sec)

Synthetic 20 0.38 0.59

First.num 28056 650.61 824.36

Second.num 12960 196.99 254.43

Pima.num 768 15.17 22.15

Association Rule Mining through Matrix Manipulation Journal of Basic & Applied Sciences, 2012 Volume 8 195

will ultimately reduce the cost of FP Tree
construction. While using the transaction
patternbase, number of FP Tree nodes updates
decreases, which also leads to the efficiency of
the construction FP Tree.

2. The matrix, used to generate Association rules,
is very small in size as compared to FP Tree.
The rules are generated more quickly.

3. The size of matrix is not directly proportional to
the no of transactions. If frequency of
transactions is high, the size of matrix will be
even smaller.

We have implemented this technique and studied its
performance and found that this technique outperform
as compared to FP Tree construction using
transactional database.

We also observed that with increase in the
transactional repetition in transactional database, the
efficiency of the method will increase substantially.

It is important to note that the proposed method can
also suffer the problem of incompetence, particular to
the situation when there is no repetition of the
transactional patterns in the transactional database.

Success of transactional patternbase opens new
directions, it is interesting to re-examine and explore
the existing algorithms that uses transactional
databases and scan the database multiple times. In all
these situations, transactional patternbase should be
constructed during the first scan, and use that
transactional patternbase in all remaining scans. This
will also improve the efficiency of the algorithms. We

are trying to construct FP-Tree from Transaction
Patternbase instead of Transaction database.

REFERENCES

[1] Agrawal R. Imielinski T, Swami AN, Mining association rules
between sets of items in large databases. Proceedings of the
1993 ACM SIGMOD International Conference on
Management of Data, of SIGMOD Record, ACM Press 1993
volume 22(2): pp. 207-216.
http://dx.doi.org/10.1145/170035.170072

[2] Zaki MJ, Mining Non-redundant Association Rules, Data
Mining and Knowledge Discovery, 2004; 9: pp. 223-248.
http://dx.doi.org/10.1023/B:DAMI.0000040429.96086.c7

[3] Agrawal R, Srikant R. Fast algorithms for mining association
rules. Proceedings 20th International Conference on Very
Large Data Bases, Morgan Kaufmann 1994; pp. 487-499.

[4] Brin S, Motwani R, Ullman JD, Tsur S, Dynamic itemset
counting and implication rules for market basket data.
Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, of SIGMOD Record,
ACM Press, 1997; volume 26(2): pp. 255-264.
http://dx.doi.org/10.1145/253260.253325

[5] Pei J, Han J, Mao R, CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets, ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge
Discovery 2000, Dallas, TX, 2000; pp. 21-30.

[6] Han J, Pei J, Yin Y, Mining frequent patterns without
candidate generation. Proceeding of 2000 ACM SIGMOD Int.
Conf. Management of Data (SIGMOD’00), Dallas, TX, May
2000; pp. 1-12.

[7] Han J, Pei J, Yin Y, Mao R, Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data
Mining and Knowledge Discovery 2003.

[8] Markus Hegland, Lecture Notes in Computer Science 2003;
volume 2600: pp. 226-234.
http://dx.doi.org/10.1007/3-540-36434-X_7

[9] Zaki MJ, Hsiao C-J, CHARM: An efficient algorithm for closed
itemset mining. In R. Grossman. Proceedings of the Second
SIAM International Conference on Data Mining 2002.

[10] THE LUCS-KDD SOFTWARE LIBRARY (LIVERPOOL
UNIVERSITY COMPUTER SCIENCE KNOWLEDGE
DISCOVERY IN DATAS)
http://www.csc.liv.ac.uk/~frans/KDD/Software/FPgrowth/

Received on 17-02-2012 Accepted on 23-03-2011 Published on 07-04-2012

DOI: http://dx.doi.org/10.6000/1927‐5129.2012.08.30

© 2012 Kamal et al.; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

