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Abstract:  
 
Secretome released by plant cells into the extracellular space, play 
crucial roles during development, embryonic potential acquisition, nutrient 
backing and stress acclimation. The dynamic nature of the extracellular 
proteome presents the challenge of identifying an array of extracellular 
proteins involved in the regulation of somatic embryogenesis in 
embryogenic suspension cultures. Extracellular proteins produced by cell 
cultures are perceived here as a central node of overlapping regulator 
factor network of totipotent somatic embryo developmental process. This 
paper reviews in a morphogenetic aspect the biological processes 
associated with extracellular protein-derived plant cultured cells and 
explores their prospective biotechnological applications in laboratories 
and biofactories retated to cell signaling and metabolism, developmental 
process, and biotic / abiotic stress tolerance. The role of extracellular 
proteins in acquisition and maintenance of embryonic potential and their 
relevance are especially emphasized. 

DOI: https://doi.org/10.29169/1927-5129.2021.17.02 

 
*Corresponding Author 
 
E-mail: anisbenamar.cbbc@gmail.com 
 
 
© 2021 Anis Ben-Amar; Licensee SET Publisher. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction 
in any medium, provided the work is properly cited. 
 

 

 

 

 



Journal of Basic & Applied Sciences, 2021, Volume 17 

 

14 

INTRODUCTION  

The broad scientific and technical progress in the field 
of biotechnology, plant genetic engineering and 
molecular farming owes its success to the development 
of tissue culture mainly based on plant regeneration 
capacity. Besides culture on solid gelified media, 
culture in shacked liquid system provides a more 
suitable environment for better control of cell 
multiplication, interaction, synchronized cell-cluster 
development, increased relevant cell-cell signaling, and 
enhanced uptake of nutrients. When friable callus is 
placed into the appropriate liquid medium and agitated, 
single cells or small clumps of cells are released into 
the medium and continue to grow and divide, producing 
an established cell suspension. The inoculum used to 
initiate these suspension cultures should neither be too 
small to affect critical cell number no too large to 
generate toxic products or led stressed cells to lethal 
levels. Cell suspension is a very useful system for 
studying differentiation process in plants as it is 
suitable to build up an understanding of de novo organ 
or embryo formation . Two types of cell clusters can be 
found, embryogenic and non-embryogenic, showing 
distinct morpho-histological features and differential 
gene expression pattern explaining the disparity in 
embryogenic competence of clusters [1,2]. During 
developmental reprogramming, somatic cells de-
differentiate to generate non-embryogenic cells which 
can further differentiate to produce somatic embryos 
through pro-embryogenic cells [3].  

CELL TOTIPOTENCE AND EMBRYOGENIC 
COMPETENCE: MORPHOGENETIC VIEW  

Plant cells display an exceptional feature of indefinite 
growth and developmental plasticity, as they have 
conserved during evolution besides meristematic zones 
acting as stem cell generator, a multi-level cell 
dedifferentiation capacity producing undifferentiated 
competent somatic cells. Moreover, embryogenesis 
takes places in the ovule after fusion of the female and 
male gametes with the formation of the unicellular 
zygote. Zygotic embryo resulting from sexual 
fertilization appears as an extremely totipotent bipolar 
structure to be capable to give an entire individual. 
Although due to high level of totipotency differentiated 
plant cells are able to induce dedifferentiation and bud 
neoformation through organogenesis, but it is too 
difficult to process as a zygotic embryo. Conversely, 
cells derived from somatic macrospore mother cell 
layers and flower tissues (i.e. ovaries and anthers) are 
more disposed to go back to an ultimate juvenile phase 

(embryonic stage) and undergo a somatic 
embryogenesis (SE) process. These both regeneration 
pathways, namely organogenesis and SE, differ in 
terms of at which level the cell could be able to return 
in the differentiation way to be so close to the starting 
embryonic stage that it can trigger an embryogenic 
program. During this somatic-to-embryogenic 
transition, cells have to dedifferentiate, reset their 
biological clock by remodeling their nuclear chromatin 
and reorganizing their gene expression patterns [4]. 
The fully totipotence that a somatic plant cell can 
acquire, outside the case of zygotic embryo, when 
cultured in an artificial medium under specific hormonal 
balance still that of SE, which provides an unique 
model to understand the molecular and cellular bases 
of developmental plasticity in plants. Application of 
stress treatment or exogenous auxin can induce SE, an 
intriguing process that illustrates plant cell totipotency 
expression [5]. Embryo induced via SE goes through 
specific-cell division and histo-differentiation programs 
under the same morphologically adopted 
developmental stage sequence (globular, heart, 
torpedo) of zygotic embryos [6] as illustrated in Figure 
1. 

EMBRYOGENIC CELL SUSPENSION PLATFORM : 
IMPLEMENTATION AND RELEVANCE 

SE is already known as the most appropriate 
regeneration system based on the exceptional 
totipotency of pro-embryonic masses (PEMs) giving 
rise to hundred of somatic embryos able to regenerate 
into plants. Several explants have been used to induce 
PEMs including immature flower tissues [7], anthers 
[7,8], ovaries [7,9], microspores [10], mature and 
immature zygotic embryos [9,11], cotyledons [12,13], 
hypocotyls [13], petioles [14], root tip [15,16], shoot 
apex [17] and leaf explants [16,18]. Somatic embryos 
developed over the surface of embryogenic callus 
(indirect SE) or occasionally, directly from explants 
without intervening calls phase (direct SE).  

Cell suspension cultures are able of regenerating 
plants via SE and were first reported in carrot liquid 
culture more than 25 years ago [19]. So far, anther-
derived friable embryogenic callus has been commonly 
used to initiate embryogenic cell suspension (ECS) 
cultures in liquid medium supplemented with growth 
regulators, essentially auxins and cytokinins.  

Crop improvement through genetic engineering 
depends mostly on the availability of embryogenic 
material, the development of ECS and the proficiency 
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of reliable in vitro regeneration process. A highly 
efficient and well-synchronized regeneration system is 
greatly requested for investigation in tissue culture, 
developmental biology and cell manipulation including 
protoplast isolation, gene transfer, somaclonal 
variation, clonal selection, directed mutagenesis, 
cryopreservation, and metabolite production [20-23]. 

IMPORTANCE OF EXTRACELLULAR PROTEIN 
PATTERN FOR ESTABLISHMENT OF 
EMBRYOGENIC SUSPENSION CULTURES 

The transfer of embryogenic cultures into liquid 
medium represents a tricky step for initiation of a new 
starting ECS before being established. Basically, PEMs 
were initiated in erlenmeyer flask containing 4 to 6-
week old yellow well-growing PEMs at high cell density 
in liquid medium supplemented with specific growth 
regulators and grown under continuous agitation on a 
rotary shaker, at 22-26°C in darkness. Numerous 
attempts to initiate ECS were unsuccessful due to the 
lack of cell signaling factors modulating cell interactions 
and developmental morphogenesis. Proliferation of 
dispersed plant cells in culture is strictly dependent on 
cell density, and cells in a low-density culture can only 
grow in the presence of conditioned medium (CM), in 

which cells have been grown previously. No known 
plant hormones have been able to substitute for CM 
[24]. It was already shown that the cellular 
environment, determined by the dynamics of the cell 
wall matrix, as a source of extracellular proteins (EPs) 
play a crucial role in cell nursing, signaling, and 
supporting young PEMs transferred into liquid system. 
Besides hormones known to stimulate embryo 
formation, other classes of molecules have been 
identified as embryo-stimulating factors, especially 
those secreted into the CM [25]. Thus, over the last 
three decades, several research groups investigated in 
optimizing the initiation and maintenance of these ECS 
by studying the effect of donor material, cell density, 
subculture period, phytohormones or growth factors, 
and substances involved in ECS establishment. 
Embryogenic potential in carrot (Daucus carota L.), 
revealed by the number of PEMs present, slowly 
increased in starting cultures over a period of six 
weeks. Addition of excreted, high-molecular-weight, 
heat-labile cell factors from an established 
embryogenic culture considerably accelerated the 
acquisition of embryogenic potential in starting cultures 
[26]. A battery of EPs produced by embryogenic 
material and released into the medium could constitute 

 
Figure 1: Flow-chart illustrating the main developmental pathways of somatic cells and their transfer in liquid system. Cell 
suspension establishment is mostly relied on several extracellular proteins released into the culture medium and act as plant 
growth factors. 
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an inducing environment which maintain the potential 
of PEMs and boost newly initiated ECS (Figure 1), thus 
making the big difference with non-embryogenic 
cultures [27,28]. The pattern of EPs was reported to 
reflect the embryo morphology and to control the 
morphogenetic pathway that will be taken by somatic 
cell lines in Picea abies [29]. The CM contains a 
mixture of EPs with embryonic signature involved in the 
attenuation of stress response and maintenance of 
highly proliferating embryogenic cell lines in grapevine 
cell cultures [28,30]. In zucchini (Cucurbita pepo), EP-
derived highly embryogenic cell lines have been proven 
to enhance a lower-performing line, suggesting their 
effect as PEM-stimulating factors [31]. In fact, these 
EPs serve for the conditioning of the medium, in which 
fresh cells will grow efficiently and faster in liquid 
culture system (Figure 1).  

In contrast, PEMs from which somatic embryos 
develop going through consecutive developmental 
stages could be feasible under conditions of low cell 
density in the absence of phytohormones. EP 
expression patterns have been associated with 
induction of SE in grapevine cultured cells that allowed 
somatic embryo emergence under particular subculture 
frequency [28,32].  

MAJOR EXTRACELLULAR PROTEINS AND THEIR 
BIOTECHNOLOGICAL APPLICATIONS  

EPs released into the medium of ECS cultures are 
regarded as one of the key morphogenesis-oriented 
factors that control cell division and differentiation as 
well as further development of PEMs in cell culture. 
The pioneer group of plant EP of Sacco C. de Vries 
and coll. (Wageningen-Netherlands) firstly described 
an EP1 only secreted by non-embryogenic cells [33], 
then they reported an EP2, identified as a lipid transfer 
protein produced by carrot embryogenic cells [34], and 
later an endochitinase EP3 that rescue proliferation of 
somatic embryos of mutant carrot cell line [35,36]. 
Studies have revealed that suspensions of somatic 
embryo masses secrete a vast array of proteins that 
could be involved in SE [30,37]. Some of these 
molecules have been suggested to work as inductors 
and others as inhibitors of this process. In this context, 
profiling of this extracellular proteome has been 
described and to date the widely documented EPs 
include: Arabinogalactan proteins (AGPs), 
Endochitinases/ Glucanases/ Pathogen-related (PR) 
proteins, Lipid transfer protein (LTP), Xyloglucan 
transglycosylases (XTGs), Heat shock proteins (HSPs), 
Late embryogenesis abundant proteins (LEA), 

Phytosulfokines (PSKs), Germin-like proteins (GLPs), 
Citrins, and Lectins, (Table 1) among others [38]. 
Investigations focused on functional characterization 
studies of these EPs have opened impressive field of 
their applications starting from cell growth and 
proliferation, embryo differentiation and maturation, to 
defense-related mechanisms during biotic and abiotic 
stresses with secondary metabolite production (Figure 
2). The putative functions and potential 
biotechnological applications of these EPs are listed in 
Table 1. 

1. Endo-Chitinases, Endo-Glucanases, and 
Pathogen-Related Proteins 

Endo-chitinases (32-kDa) and β-1,3-D-glucanases (38-
kDa) are well-known pathogenesis-related (PR) 
proteins that are constitutively expressed at low levels 
in plants, but are dramatically expressed upon 
pathogen infection. Both of these EPs have a plant 
hydrolase enzymatic activity catalyzing respectively the 
degradation of N- acetylated-glucosamine residues 
(chitin unit) and β -1,3/1,4-glucans. Enhanced 
accumulation of β-1,4-glucanase mRNA transcript level 
in suspension-cultured poplar (Populus alba) cells was 
reported by addition of 2,4-dichlorophenoxyacetic acid 
(2,4-D) in the presence of sucrose and was correlated 
with solubilization of cello-oligosaccharides and 
xyloglucan [39]. In ECS cultures, endochitinases are 
differentially expressed and accumulated only in PEMs 
and not in the developing somatic embryos. The 
endochitinase secreted in the CM has been well 
documented in carrot cell suspensions. Extra-cellular 
glycosylated acidic class IV endochitinase secreted into 
culture medium of ECS exclusively and known as 
extracellular protein 3 (EP3) was shown to be 
responsible for the transition from globular to heart-
shaped stage in carrot embryogenic cultures [35]. This 
endochitinase is also able to rescue proliferation and to 
lift the arrest of somatic embryos of mutant carrot cell 
line ts11 at non-permissive temperatures [35]. 
Glucanase transcripts were induced, from very low 
basal levels, with similar kinetics to chitinase transcripts 
in elicitor-treated cell suspension cultures [40]. 
Chitinases and glucanases are shown to generate 
signal oligosaccharide molecules acting as 
messengers regulating developmental programs and 
likely involved in cell proliferation [30]. Zhong et al. [41] 
reported that mutation of chitinase-like gene causes an 
alteration of developmental process and cellular 
senescence by ectopic deposition of lignin, aberrant 
cell shapes and overproduction of ethylene. 
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Figure 2: Biotechnological applications of secretome-derived suspension-cultured cells. 

Conversely, exogenous addition of purified chitinase or 
its substrate resulted in an increase of cell population 
and restored multiplication rate in ECS cultures through 
promotion of highly dividing cells of PEMs [30,42]. Cell 
death, induced by withdrawal of plant growth 
regulators, can be suppressed by extra supply of lipo-
chito-oligosaccharides (LCOs), which are most likely 
produced by extracellular chitinases [43]. 

2. Arabino-Galactan Proteins (AGPs) 

AGPs represent the most highly glycosylated hydroxy-
prolin-rich proteoglycans (>90% of carbohydrates) 
found in cell walls, plasma membranes, and 
extracellular secretions [44]. Recent research has led 
to the identification of the glycosyl-transferases 
responsible for the biosynthesis of two of the most 
functionally abundant families of plant cell wall proteins, 
extensins and AGPs [45]. AGPs have been suggested 
to play a key role in plant development since AGP 
epitopes are known to display developmentally 
regulated patterns of expression in several plant 
tissues [46]. Their complexity arises from the diversity 
of their carbohydrate extensions. SE is regulated by 
AGPs as well as by EP3-endochitinases. AGPs are 
detected by specific antibodies [47] or by precipitation 
with Yariv-reagent [48] which bind to AGPs producing a 
red complex, resulting in an inhibition of their function. 
AGPs have been identified in cell culture medium of 
carrot, grapevine and squash [28,31,49], microspores 
haploid cell cultures of maize and barley [50,51]. 
Therefore, AGPs are supposed to have a central role in 

embryo formation [25] and mainly involved in cell 
proliferation and attenuation of stress response during 
cell culture and differentiation [28,30,31]. Addition of 
AGPs to culture medium, even at nanomolar 
concentrations, significantly improves the efficiency of 
cellular proliferation of PEMs, even when the initial cell 
population is far below the critical density [28]. 

3. Lipid Transfer Proteins (LTPs) 

LTPs are a group of highly-conserved proteins found in 
higher plant tissues, and are responsible for shutting of 
phospholipids and other fatty acid groups between cell 
membranes. An EP of 10-kDa identified as lipid 
transfer protein (LTP) has been reported as produced 
by embryogenic cells in carrot cell lines [34], and 
grapevine ECS [32]. The level of LTP expression in 
cotton cell lines is high before induction of 
embryogenesis and during the globular stage, whereas 
it diminishes during post-globular stages [52]. Recently, 
using global scale transcriptome analysis, these LTPs 
are identified as differentially expressed genes involved 
in early SE and thus revealed to be greatly related to 
the SE process [53]. The finding that these proteins are 
located in the cell wall and can be secreted outside the 
cell has led to the suggestion that they are not required 
for intracellular lipid transport. Instead, they may be 
involved in cutin biosynthesis, pathogen-defense 
reactions, signaling or adaptation of plants to 
environmental changes [54]. Transcript accumulation of 
LTP genes occurs as a strategy to induce a tolerance 
mechanism under both biotic and abiotic stress 
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conditions in plants [55]. Studies on purified LTPs have 
confirmed their extracellular location as well as their 
anti-microbial functions [56] and roles in abiotic stress 
tolerance [57]. LTPs are accumulated upon water 
deficiency, most likely via up-regulation of genes 
encoding LTPs providing an adaptive mechanism 
through which cuticle thickness can be increased to 
minimize water loss [58]. In fact, LTPs are known to be 
pathogenesis-related proteins and may contribute in 
plant innate immune system as antibacterial, 
antifungal, antiviral and/or in vitro anti-proliferative [59]. 
The enzyme inhibitor members are thought to 
regulation plant development and seed germination, 
also to be involved in lipid metabolism and fruit ripening 
[59]. 

4. Xyloglucan Transglucosylases (XTGs) 

Huge structural changes were achieved in pro-
embryogenic cells to alter the mechanical properties of 
their extra-cellular matrix and change their cell-wall 
plasticity in order to prepare themselves for acquisition 
of competence. Thus, several cell wall-modifying 
enzymes, particularly those modifying the structure of 
xyloglucan chains, are differentially expressed and 
induction of SE is commonly accompanied by up-
regulation of xyloglucan endo-transglycosylases 
[60,61].  

5. Heat Shock Proteins (HSPs) 

Heat shock proteins (HSPs) have been identified for a 
long time in cellular biology as proteins, which 
concentration dramatically increases when cells are 
grown at higher temperatures. They play important role 
in cell signaling and immunity mediated by HSP 
specific-cell wall receptors [62]. While the identity and 
functions of intracellular heat stress-responsive 
proteins have been extensively studied, HSPs secreted 
to the extracellular matrix is unknown. Under heat 
stress, plants alter their gene expression reducing the 
synthesis of regular proteins, while promoting that of 
HSPs induced by diverse stress factors, including heat 
and other stresses. These stress-responsive bio-
molecules act as molecular chaperones most likely for 
thermoprotection of cellular structures enhancing 
membrane stability and detoxifying the reactive oxygen 
species (ROS), and thus play a pivotal role in 
conferring biotic and abiotic stress tolerance [63,64]. 
These responses require expression of stress-
responsive genes, which are regulated by a network of 
transcription factors, including heat stress transcription 
factors (HSFs) modulating the expression of HSPs [65]. 

The involvement of Ca2+-‐calmodulin in the expression 
of HSPs by activating of heat shock factor and signal 
transduction in wheat, maize and Arabidopsis has been 
documented [66-68]. Upon stress conditions, Mita et al. 
[69] revealed specific heat stress-induced protein 
accumulation in sunflower suspension cell cultures. 
Correspondingly, when exposed to 40 ◦C for 72 h, 
heat-sensitive Arabidopsis cell suspension cultures 
died, while sorghum cell cultures survived by activation 
of a transcriptional response characterized by the 
induction of HSP70 and HSP90 genes providing 
evidence that heat stress triggers differential protein 
accumulation in the extracellular matrix within the 
sorghum secretome [70].  

6. Late Embryogenesis Abundant Proteins (LEA) 

Late embryogenesis abundant (LEA) proteins 
constitute a large family of proteins that typically 
accumulate to high levels during seed dehydration, at 
the later stages of embryogenesis, and involved in 
development and abiotic stress responses [71]. 
Although firstly described as abundant in seeds and 
pollens, LEA proteins have been later found to protect 
against protein aggregation due to desiccation or 
osmotic stresses associated with freezing temperatures 
or high salinity which cause cellular water deficit [72]. 
LEA proteins are particularly protective of membranes 
against dehydration damage [73]. 

7. Phytosulfokine Proteins (PSKs) 

Phytosulfokine (PSK), a 5-amino-acid sulfated peptide, 
acts as an extracellular ligand involved in the initial step 
of cellular dedifferentiation, proliferation and re-
differentiation. PSK was first purified from the CM of 
Asparagus cell culture based on its ability to promote 
cell division of Asparagus mesophyll cells incubated at 
low cell density [24]. PSKs play a role in intercellular 
signaling process and cell-cell comunications in 
meristematic cell lines [74]. Hanai et al. [75] 
demonstrated the presence of PSKs in CM of 
embryonic cell culture in carrot. Although PSK does not 
induce embryogenic competence but its stimulating 
action on embryo formation was proven. In fact, PSK 
which has been identified as peptide growth factor, had 
a dramatic stimulatory effect on the formation of 
somatic embryos in Cryptomeria japonica [76]. It was 
also reported to attenuate stress response during 
trans-differentiation of zinnia mesophyll cells [77] and 
to stimulate mitogenic activity in protoplast-derived cell 
culture [78]. PSKs contribute to drought stress 
tolerance and are found to be up-regulated in response 
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to osmotic stress in Arabidopsis with elevated 
expression of PSK as peptide signal for stress 
mitigation [79]. 

8. Germin-Like Proteins (GLPs) 

Germin-like proteins (GLPs) were first discovered in 
germinating wheat grains, but later found in different 
plant species, organs, tissues and cell lines as 
glycoproteins somehow associated to the extra-cellular 
matrix and involved in developmental modulation and 
response to diverse stress conditions [80]. GPLs 
belong to one of the most abundant groups of EPs 
found in embryogenic lines of Pinus caribaea [81]. 
Studies showed transcript up-regulation of GLP-
encoding genes in embryogenic lines of wheat [82] and 
increase of GLP level in the secretome of suspension-
cultured cells of sorghum [83]. GLP expression was 
strictly limited to embryogenic cells [61].  

9. Citrins  

Citrins are citrus seed storage proteins that show 
differential expression during embryogenesis. 
Transcripts of citrin-coding genes were found to 
accumulate during the later stages of somatic 
embryogenesis and released in the extracellular 
compartment [84]. 

10. Lectins  

Lectins are fundamental to plant life and have 
important roles in cell-to-cell communication, 
development and defense strategies. Specific 
glycoproteins, proteoglycans that bind these 
endogenous lectins, appear to play a role in shaping 
extracellular environment [85]. At the cell surface, 
lectins form the extracellular domains of receptor-like 
kinases (LecRLKs) and receptor-like proteins 
(LecRLPs) which constitute together a versatile 
recognition system at the cell wall surface [86]. 
Lectines are non-catalytic sugar-binding proteins, such 
as legume lectins contributing to the detection of 
symbionts and pathogens, and are relatively stable 
against heat denaturation and proteolytic digestion. 
Lectin-like protein was identified among released 
proteins in sunflower and immuno-localization assays 
confirmed its extracellular location [87]. Meanwhile, 
many interesting biological functions have been 
discovered and reviewed in lectins [88] originating from 
foods or foodstuffs, including immuno-modulating 
effects [89], selective cytotoxicity against cancer cells 
[90], antimicrobial and insecticidal activities [91]. 

CONCLUSION AND OUTLOOK 

Although research investigation in plant cell 
suspensions have been started since several decades, 
suspension cultures still a mystery to be decoded and 
deciphered. One of the most outstanding piece of 
evidence is the Secretome-derived cell suspensions 
with a wide diversity of extracellular proteins that could 
modulate development, signaling and defense system. 
These proteins released into the medium have 
numerous advantages and potential applications 
(Figure 2) in diverse sectors including fundamental 
studies on cell differentiation and totipotence, applied 
research for bioreactor cell culture, cold storage 
cryopreservation, production of secondary metabolites, 
regulation of immune system and production of 
bioactive anti-cancer/anti-pathogen substances, 
enhanced environmental stress tolerance and 
pathogen-acquired resistance, and potentially used in 
pharmaceutical biofactories. 
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