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Reformulation of Adams-Moulton Block Methods as a Sub-Class of

Two Step Runge-Kutta Method
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Abstract: Adams-Moulton methods for k = 2 and k = 3 were constructed together with their continuous forms using
multi-step collocation methods. The continuous forms were then evaluated at various grid points to produce the block

Adams-Moulton methods.

The block methods were then reformulated as a sub-class of two step Runge-Kutta methods (TSRK). Both the Adams
and the reformulated methods were applied to solve initial value problems and the reformulated methods proved

superior in terms of stability.
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INTRODUCTION

The method for the numerical solution of Initial
Value Problem (IVP) is as important as the solution
itself. There several methods adopted for the numerical
solution of IVP viz:Adams- Multon, Runge-Kutta Euler’s
rule etc. They all have their inherent advantages and
disadvantages. The Euler’s rule is known explicit, one-
step method and being a one-step method it requires
no additional starting values. Its low order makes it of
limited practical value.

Linear multi-step methods achieve higher order by
sacrificing the one-step nature while retaining linearity

wrt, ¥,.;f.;-J =0,1,...k . Higher order can be can also

be achieved by sacrificing linearity but preserving the
one-step nature. This is the philosophy behind the
method proposed by Runge and subsequently
developed by Kutta and Heun.

Chollom, J.P [1] (Africa Journal online) vol. 2
number 3 (2007) “on some properties of block linear
multi-step methods” worked on the properties of block
linear multi-step methods and its application to IVPs.
Also in 2003, Chollom, J.P and Jackiewicz, Z [2]
worked on the construction of two-step Runge-Kutta
methods with large region of absolute stability. In their
work, they showed that Adams-Moulton block methods
can be reformulated as a sub-class of two-step Runge-
Kutta method.

In this work | considered block k = 2 and k = 3 and
using the same reformulation technique applied the
scheme to the solution of IVP. The block Adams-
Moulton methods were constructed using the multi-step
collocation.
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1. DERIVATION OF ADAMS-MOULTON
Methods with Continuous Coefficients

Consider the discrete schemes of Adams-Moulton
method for K = 2 and K = 3 given by.

h
yn+2 _yn+l = E[Sf;HZ + 8-f;1+l _f;z] 110

h
yn+3_yn+2:Z[9+19ﬁ1+1_5ﬁ1+1+fn] 1.1.1

The continuous scheme of equations 1.1.0 and
1.1.1. are more desirable from both practical and
theoretical considerations. In development of N a linear
multistep method with continuous coefficients by the
use of multistep collocation (Onumanyi et al. 1994) [3]
we considered an extended set:

Q = {xn ’xn+l "er—k } v {‘xn+k—l ’xn+k—2 LA "xn+1<}
From which to select the collocation points.

The necessary collocation and interpolation
conditions were then employed directly by the use of
matrix inversion without any involvement of integration
process. We let

m=1

K-1
YO = X o (%), +h| DB (0 f (e )y (L) 112
Jj=0 Jj=0

k+m—1

oj(x)= Z Qi ik
i=0
k+m—1

hﬂi('x)z 2 hﬂi,iﬂ,k

x,.; are assumed polynomials and r(0<r<k) are
chosen interpolation points.
C ,x,) are collocation points taken from Q.

(X, penenee X, and
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To determine the «;(x) and B;(x) in equations
1.1.2 and 1.1.3, conditions

y('xn+j)=yn+j’jE[O’l""’k_l] 1.1.4
and
y'(x)=flx;yx)Lj=1,....m 1.1.5

Satisfy the polynomial equation 1.1.3

Form the interpolation conditions of 1.1.4 and 1.1.5
the expression in y(x) in equation 1.1.3 has the

following conditions imposed on «;(x) and S;(x).

0,(x,,)=6,{j=0,1,...ck=1, i=0,...k—1} 1.1.6

hB,(x,, )=0,{j=01,cc.om=1,  i=0,2...k=1} 1.1.7

Writing equation 1.1.6 and 1.1.7 in matrix equation
form:-

DC=1 1.1.8

Where | is the identity matrix of dimension K+ M .

Letting
M=K+1K>0 and t=1 and
X; =X, 05 = L., K+1 the left hand side of equation

1.1.8 becomes.

Lox, e x3+k—| x::llc

0 1 2x, k+ 1xk
DC=| . . .

0 1 22X, (k+ l)xmk

From equation 1.1.8, the columns of c=pD™".

Gives the continuous coefficient of ¢,_(x) and

B;(x),j=0.l......k  and Adam-Moulton scheme of
order 1-5 are recovered.

1.2. Reformulation of ADAM-Moulton Scheme as a
Subclass of Two —Step Runge-Kutta Method

Recently, Z. Jackewicz and Tracogna [4] introduced
a promising class of two-step Runge-Kutta (TSRK)
methods for the numerical solution

o1 hﬂo hﬂk 1

(ak,l )k—1,2 hﬂo, h/ik 12
1.1.9

(akl)k+2 hﬁo,k+2 hﬁk,k+2

Of Ordinary Differential Equation (ODES)

Y= f(x),  x€(xy,x), y(x) =y, 2.0

With the exact solution denoted by Y(*) these
methods depend on stage values at two consecutive
steps and have the form

Yie =0y +(1=0)y, +hi(vjf(rj —i- 1)+ij(Yij)

J=1

2.1
Y) =uy,, + (1 -0y, + h Y (o kF (V2 )b kF (YY)
j=1
J=12,..8, I1=12,...N-1
. . X=Xy |
where N is an integer greater than zero, 7= N s

a fixed step size,

X, =x,+ih,i=0,1,.N is an approximation (possible of
lower order) to

y(x; +¢;h)

These methods generalized a class of (explicit)
pseudo Runge-Kutta formulae.

The equation 2.1 can be represented in a table
given below.

Uy ay %z - ayg by by o by

Up @ @22 = dps by bp oo by
UIA|B |= ¢ i : : : :

US Ug1 Qg3 - Uss bs1 bsz bss
6|V W

o Vi Vo o VoW W, .o W

2. DERIVATION OF THE BLOCKS METHODS

The block methods are derived by evaluating the
derivative of the continuous schemes obtained from the
matrix inversion technique at x=x,,x,,,,....... . In

this research, the cases of k = 2 and k = 3 are
considered. Thus for k = 2 the matrix D is given by

1 xn+1 xn+l ‘xrt+1

0 1 2x,  3x
D =

0 1 2x 3x.,

0 l 2xn+2 3‘xn+2

Since DC =1 in 1.1.8, we use the following formula
to obtain the elements of C™' thus.

d;
U,=—:;L,=d,;

y
1i
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L.=d,-ZL,U,, etc.

y

Hence
C =1,C, = —2x,f+112—h fhxnzﬂ = x,i]l—z Zilx,fﬂ = 31%3;12 ;22)611
€. =0,C, = x3+1;hilxn+1 G,y = h22—h)2€n2+1 Gy = x5+12_h1;'“x3+] ’
C, =0,C, =_h;7hzzx"“,c33 :%,CM = h:éf”*‘ :
C, =0,C,, :#,C“ :ilz,,c44 :#

To derive the continuous form of Adams —Moulton
method for k = 2, we represent the general form of the
two-step method as

Y(X)= 0, (%)Y, +hLBy (), + B () [y + By (X) 0] 31
where

o,(x)=C, +Cx+C,x" +C,x°
B,(x)=C,, +Cpx+Cy,x* +C,,2x°
B,(x)=C,, + Cpox+ Cyyx” + C,32x°
B,(x)=C,, +C,,x+Cy,x" +C,,2x°

3.2

On substituting the elements of C™' into 3.2 yields
the following;

o, (x)=1
_ 2()C Xt )3 - 3h2 ()C Xt )2 .
By x)= 12h°
_—x—x,, )’ = 3h*(x— Xye1)
B,(x)= 7 33
— ('x B xn+1 )3 - 3h('x B 'xn+1 )2
B ()= 120

Substituting the value of 3.3 into 3.1 yields the
following as the continuous form of Adams-Moulton
method for k = 2

2(x—x,,,) = 3h(x—x,,,)
121

+ (x xn+1 ) 3h ('x xn+l ):|f;7+] 34

yx)=yn+1+

3h°
2(x—x,,, ) —3h(x - X, )?
+
124°

Evaluating 3.4 at x=x, and x=ux,, we obtained

the following two schemes respectively.

h
yn+l _yn :E[_f;HZ + 8-](;14—1 +5-f;1]

h
yn+2 - yn+l = E[S-fn-ﬂ + 8f;l+l - -f;l]

ForK=3
2 3 3
1 xn+2 'xn+l 'xn+2 'xn+2
D= 0 1 2x, 3x  4x
2 3
0 1 2'xn+l 3'xn+1 4'xn+1
3 3
O 1 2'xn+2 3'Xn+2 4'xn+2

Also by similar obtained the

elements of C' as:

procedure, we

x* —8h’x) —24h’x, — 8h*

C,=1, C,= 121 ’
3x* +20hx] +36h%x. — 32h*
Cn= 3 ’
24h
—3x} —16hx] —18h’x. —8h* xF+hxl +4R°x]
Ciy= 3 »L1s = 3
12h 24h
x) +6hx> +11h%x, —-x) —5hx. —6h°x’
€y =0,Cp =~ Oy =— : >

6h’ 2’

_x)+2hx; +30°x]

. —x —3hx> - 2h’x,
Cy = Gy =

2n’ 6h’ ’
2.2 2 2 2
€, =0,C, = (3x; +12h):n +11h ),C33 _3x, +10hx; +6h ’
12n 12h
—(3x> + 8hx, +3h%) 3x] + 6hx, +2h’
Gy = 3 Cys = 3 ’
4h 12h
x, +2h —(3x, +5h) 3x,+4h
C41:0’C42: 6h° ’C43: 6h° Ly = 6n°
—(x,+h)
-1 1 1
om0 G Co T O T

Also, the general form for the continuous form is
given as:

Y(X) =0, (X)Y,,, +hL By (X)f, + By (X) fi1 + By () frin + By () f,15]
35

Also by similar procedure, we have that,

—(x—x, ) +8h(x— X, ) —22h* (x— X, V4240 (x— X,)— 8h'
24n*
3(x—x,)" —20h(x—x,) +36h°(x—x,)* - 32h*
24hn°
-3(x—x,)* +16h(x—x,)’ — 184> (x—x,)* — 8h*
24n°
(x—xn)4 +4h()c—xn)3 —4hz(x—xn)2
24n°

By(x)=

Bi(x)=

ﬁz (x)=

By (x)=
3.6
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On substituting 3.6 into 3.5 we have the continuous
form of the Adams-Moulton method for K = 3 as

YX)=y,,, +[—(x—x,)" +8h(x—x,)’ —22h* (x—x,)* +24h* (x—x,)— 8h*]f,
+[3(x—x,)" —20h(x—x,) +36h%(x—x,)* —32h*1f,,,
+[-3(x—x,)* +16h(x—x,)’ —18h* (x—x,)* —8h*1f.,,
+(x—x,) +4h(x—x,)’ —4h* (x—x,)*1f,

3.7

Evaluating 3.7 at x=x,,,x,,, and x, , yields the

following three discrete schemes.

h

yn+3 _yn+2 = a[g-ﬁﬁ—f{ + 19-f;1+2 _5ﬁ1+1 +f;l]
h

Y3 = Vo1 = i[_f;l+3 + 13f;1+2 - 13f;1+1 _f;’l]

h
Y3 = Va :S[frwz +4f;z+l +fn]

3. REFORMULATION OF ADAMS-MOULTON
METHODS AS A SUBCLASS OF TWO- STEP
RUNGE-KUTTA METHOD

The reformulation equation is given in 2.1, thus we
define

—_ym —_ym —_ym — y-D
yn+3_Y3 ’yn+2_Y2 ’yn+l_Yl ’andyn_Y ’

Fork =2, we have y,,, =, =<=[~f,. +8/,,+5/]

h
Ynt2 = Vurl :E[Sﬁwz +8f;1+1 _-f;i]

Reformulating, y» =y, +£[_f(yz<“>)+f(yl(">)+f(y<”-'>)]

V= [ SFOL)+ 810 = F0r )]

h 1
Yuz = Yot ¥ 5[5f<Y;'”)+ 8 (") - f(Y" )]

S 8 -1

1 12 0 12 12
! -1 0 8 s
12 12 12

8 -1

-1 12 12

1 o 0 8 s
12 12

For k = 3, we have

h

yn+3 _yn+2 = £[9ﬁ1+3 + 19-f;1+2 - Sf;ﬁ—l +f;1]
h

Ytz = V1 = a[_‘fnﬁ + 13fn+2 - 13fn+l _fn]

h
yn+3 _yn :5[‘]‘;14—2 +4f;z+l +f;1]

Reformulating, v =y + g[f(Y;”’)+ AfE )+ fre ]
Y=y, + %[9 SO+ 1B FE) = 13f¥ )= f(r" )]
Y =y, + %[9f(Y§"))+ 19f(r") =5 f¥") = f¥" )]

h n n n n—1
Yors = Yoz + o [OF O HI9F ) =S PO = F(r ) ]

Its table is given below.

Table 1:

L o 4 1

1 3 3 3

0 -l o -3 131
24 24 24 24
1 —
1oy 51909
24 24 24 24

| LI S99
24 24 24 24

4. CONVERGENT ANALYSIS

The necessary and sufficient condition for a linear
multistep method (LMM) to be convergent are that it be
zero stable and consistent. (Fundamental theorem of
Daliquist on LMM) [5].

Convergent analysis was carried out on both K = 2
and K = 3 and were found to be convergent and zero-
stable. Their order and error constants are given in the
table below

Table 2:
Evaluation Point Order Error Constant
¥(x,.,) 3 -0.041666667
y(x,) 3 -0.041666667
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Their regions of absolute stability are

Table 3:
y(xn+2) (-6,0)
y(x,) (0,6)

Table 4:

Evaluation Point Order Error Constant
y(x,.5) 4 -0.026388889
y(x,.,) 4 -0.015277778

y(x,) 4 -0.001111111

The region of absolute stability for the above is
given below

Table 5:
y(x71+3) (-3’0)
y(x)H—l ) (-3’0)
y(x,) (3.0

For the reformulated schemes, their stability regions
are: K=2,(0,8) and K = 2, (0,4.5).

5. NUMERICAL EXAMPLES

The block Adams-Moulton methods and the
reformulated two-step Runge-Kutta method were used
to solve the following initial value problems (IVP)
considering various step sizes.

y'=-60y+10x
1 1 con 5.0.1
=—, y(x)=—[x+e
Yo 6 y(x) 6[ ]
y'=1+x-2y
5.0.2

1
Yo=2, yx)= Z[2x+ Te +1]
Now solving 5.0.1 using the block K =2

h
Ynt2 = Vuri :E[Sﬁwz +8f;1+1 _-f;i]

h
Y2 =™ Vu :E[_ﬁl+2 +8f;:+1 +5f;1]

For h=0.05
Solving the following values were obtained.

y, = 000416666666, y, =0.016666666,
y,=0045535714,  y, =0.0630952338,
¥ =0.077699829,  y, =0.095493197,
y,=0.111116689,  y, =0.128893474,
Yo =0.144444035,  y,, =0.162221894,

Now solving the same problem using a step size of
0.1, we have.

y, =-0.032456140, y, =0.075438596,
y,=0031902123,  y, = 0045337027
5 =0.080174466,  y, =0.037755747,
y, =0.122520417,  y, =0.03847416,

¥, =0.1626829611, y,, =0.042243855,

Using the block for K = 3, h = 0.05, the following
values were obtained.

y,=-0.004131911, y, =0.041361789
y,=0023526423,  y, =0.055498339,
y5 =0.089003321,  y, =0.123035024,
y, =0.102639390,  y, =0.144721221
¥, =0.129307559  y,, =0.151114450

for h = 0.1, the results are

y, =0015807560, 'y, =0.053264605,
vy, =0.003436426, y, =0.071562688,
y5 =0.074687356, y, =0.110312807,
v, =0.111594664, y, =0.132309964,
¥, =0.143308542, y,, =0.16457492.

Table6: h=0.1

X Exact Solution K=2 K=3

0.1 0.017079792 -0.032456140 0.015807560
0.2 0.033334357 0.075438596 0.015807560
0.3 0.050000002 0.031902123 0.003436326
0.4 0.066666667 0.045337027 0.071562688
0.5 0.083333333 0.080174466 0.074687356
0.6 0.100000000 0.037755747 0.110312807
0.7 0.116666667 0.1225201416 0.111594664
0.8 0.133333333 0.038471416 0.132309964
0.9 0.150000000 0.162682961 0.143308542
1.0 0.166666667 0.042243855 0.164574792
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Table 7: Error Table, h=0.1 we have forh =0.1
x Error K =2 Error K =3 12y =12y [5(1+x=2y)+8(1+x—2y)+(1+1x—2y)]
Yns2 Vst y y y
0.1 4.9535932 x 1072 1.272232 x 10°°
= > Hence
0.2 -4.2104239 x 10 -1.9930248 x 10
0.3 1.8.97879 x 107 4.6563576 x 10 13y, — 10y, =1.78 5.0.10
0.4 2.1329639 x 107 -4.896021 x 107
05 3.158867 x 107 8.645977 x 107 similarly
0.6 6.2244253 x 107 -1.0312807 x 1072
0.7 -5.853751 x 10 5.072003 x 10~ —0.2y, +13y,=23.26 5.0.11
0.8 9.4861917 x 107 1.023369 x 10°° . .
— — Solving equations 5.0.10 and 5.0.11
0.9 -1.2682961 x 10 6.691458 x 10
1.0 1.244228115 x 10 2.091875 x 107° Simultaneously we have

y, =1.732692308, 'y, = 1523076923,
Table 8: h =005 y, =1360376162, y, =1.236348267,
ys =1.143768636,  y, =1.07711256,

X Exact Solution K=2 K=3
y, =1.031537206, 1y, =1.003339189,

0.1 0.017079792 0.004166667 0.004131911
0.2 0.033334357 0.016666667 0.041361789 Yo = 0.989272193, Yo = 0.986853742.
0.3 0.050000002 0.045535714 0.023526423 K=3 h=0.1
0.4 0.066666667 0.063095238 0.055498339 ' '
0.5 0.083333333 0.077699829 0.089003321 h ]
0.6 0.100000000 0.095493197 0.123035024 Ynes ™ Vne2 = a[9fﬂ+3 + 9f”+2 h Sf’l“ + f"]
0.7 0.116666667 0.11116689 0.102639390
0.8 0.133333333 0.128893474 0.144721221 h

Vo3 = Vo1 = _[_f;'l+3 + 13f;1+2 - 13f;1+1 _f;’l]
0.9 0.150000000 0.144444035 0.129307559 24
1.0 0.166666667 0.162221894 0.151114450

h
Y3 = Va :S[fwz +4f;z+l +fn]

Table 9: Error Table, h =0.1
Solving we have matrix as

X Error K =2 Error K =3
= = -1 202 2587 [y, 26
0.1 1.2913125 x 10 1.2947881 x 10
- - -21 266 02 ¥, |=]3.16
0.2 1.666769 x 10” -8.027432 x 10
08 32 0 y,| 1626
0.3 4.464288 x 10°° 2.647358 x 107°
0.4 3.571429 x 10°° 1.1168328 x 10°° Evaluating the matrix, we have
0.5 5.633504 x 10°° -5.669988 x 107
K=2 — - y, =1.732768925, 'y, = 1523076923,
0.6 4.506803 x 10 -2.3035024 x 10
- = v, =1.360408367, y, =1.236304537,
0.7 5.549978 x 10 1.4027277 % 10
. - ys =1.143774937,  y, =1.077072736,
0.8 4.439859 x 10 -1.1387888 x 10”
- - y, =1.031527678, ys =1.003306725,
09 | 5595965x10 20692441 x 10 v, =0.9892600378, y,, =0.9868244531.
1.0 4.444773 x 10°° 1.5552217 x 107

Now solving equation 5.0.2 using the reformulated

scheme, the values of the free parameters

s — 7 1:£[5f 48— ] a,,a,,...,a,, and b, ,b,,...,b, are substituted into the
RS A e continuous TSR-K method as thus, for S=2.

h . =0y, —0)y. )
yn+2_yn :_[_ﬁl+2 +8f;l+1 +5](;1] y1+l 9y1+| +(1 e)yl +h[‘/lf(YI1—l)
12 W)+ VL f (X )+ W, f(Y,)]
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Table 10: h =0.1

yi(3> =U,y,_, +1-Uy)y + h[aSIf(Yi—l )+ a32f(Y2(i—l))

X Exact Solution K=2 K=3 +a33f(Y3(i—]))+ b}lf(Yi—l)+b]
0.1 1.732778818 1.732692308 1.732768925 Thus solving 5.0.2, the following results were
0.2 1523060081 1523076923 1523057769 obtained as contained in Table 7.
0.3 1.360420363 1.360376162 1.360408367 Table 12: {h = 0.1}, Reformulated Scheme
0.4 1.236325687 1.236348267 1.236304537
05 1.143789022 1.143768636 1.143774937 X Exact Solution K=2 K=3
0.6 1.077089871 1.077112560 1.077072736 0 2.000000000 2.000000000 2.000000000
0.7 1.031544687 1.031537206 1.031527678 0.1 1.732778818 1.700000000 1.700000000
0.8 1.003318906 1.003339189 1.003306725 0.2 1.523960081 1.451748148 1.641084610
0.9 0.989273054 0.989272193 0.989260038 0.3 1.360420363 1.308771208 1.448463233
1.0 0.986836746 0.986853742 0.986824453 0.4 1.236325687 1.203082244 1.304033029
0.5 1.143789022 1.281327248 1.192758695
0.6 1.077089871 1.077321208 1.112191440
Table 11: Errorh =0.1
0.7 1.031544687 1.045801716 1.056080923
X K=2 K=3 0.8 1.003318906 1.029687970 1.019872305
0.1 8.651 x 10°° 9.893 x 10°° 0.9 0.989273054 1.025879662 0.999759807
0.2 -1.6842 x 10°° 2312 x 10°° 1.0 0.986836745 1.031900258 0.992681275
0.3 4.4201 % 10°° 1.1996 x 10°°
0.4 -2.258x 107° 2.115x10°° Table 13: Error Reformulated Scheme (h = 0.1)
0.5 2.0386x 107° 1.4085x 10°°
X K=2 K=3
0.6 -2.2689 x 10°° 1.7135x 10°
0 0.000000000 0.000000000
0.7 7.481x10°° 1.7009 x 10°° > >
0.1 3.2778818 x 10 3.2778818 x 10
0.8 -2.0283x107° 1.2181 x 10™° S )
0.2 7.2211933 x 10 -1.17124529 x 10
0.9 8.61x 107 1.3016 x 10™° S >
0.3 5.1649155 x 10 -8.804287 x 10
1.0 -1.6996 x 10™° 1.22929 x 107 S >
0.4 3.3243443 x 10 -6.7707342 x 10
0.5 -1.37538226 x 107" -4.8969673 x 107
yW=Uy, , +(0-U)y, +hla,f¥, ) 0.6 -2.31337x 10 -3.5101569 x 107
+b, f(Y)+anf(Yy )+, f(Y),)] 0.7 -1.4257029 x 10 24536236 x 1072
0.8 -2.6369064 x 107 -1.6553399 x 107
2
yi =U,y,  +(A=U,)y, +h[a21f(Yli—l) ) )
0.9 -3.6606608 x 10 -1.0486753 x 10~
+apn f(Yy ) +ay, f(Y,)+ by, f(Y,)]
1.0 -4.5063513 x 107 -5.84453 x 107°
S=3

Yirr =0y, + (1=0)y, + AV, f (¥, )+ W f(¥))
VW )+ W f () + Vo f(Y5)]

y[(1> =Uy +(A=U)y, +hla, fX_)+b,f(Yy_))
a5, f V3i)) + b, f(Y,) + b]

yi(2> =Uy, +(A=U,)y, +hla, f(Y,,.)+ ay, f(Yy )
by f(Y, )+ by, f(Y,_)+ D]

| made use of the block two-step and three-step
Adam Moulton methods reformulated as a subclass of
two-step Runge-Kutta method. The block methods
were derived by evaluating Adam-Moulton continuous

schemes at x=x,,x,,, and x

n+l n+3 "

The methods are of degree K and order k+1 and
their blocks are also stable. However, the reformulated
methods have gained stability because for k = 2 it is A-
stable and k = 3 is now A_ - stable.
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The block for k = 3 shows it is a better scheme than
the k = 2 as demonstrated by their errors in the solved
numerical examples. The block k = 3 also yielded an
equivalent Simpson’s scheme which is the most
accurate linear multistep method (LMM) i.e.

h
yn :yn+2 +§{f;l+2 +4fn+l +fn} :

CONCLUSION

The block methods were shown to have lower
errors than their conventional schemes and exhibited
similar characteristic convergent properties to their
respective discrete schemes usually applied singularly.

The advantage of this approach is that it reduces
computational efforts and speeds up computation. Also
by the gain in stability, the reformulated schemes are
better numerical methods.
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