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Reformulation of Adams-Moulton Block Methods as a Sub-Class of 
Two Step Runge-Kutta Method 
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Abstract: Adams-Moulton methods for k = 2 and k = 3 were constructed together with their continuous forms using 
multi-step collocation methods. The continuous forms were then evaluated at various grid points to produce the block 

Adams-Moulton methods. 

The block methods were then reformulated as a sub-class of two step Runge-Kutta methods (TSRK). Both the Adams 
and the reformulated methods were applied to solve initial value problems and the reformulated methods proved 

superior in terms of stability. 
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INTRODUCTION 

The method for the numerical solution of Initial 
Value Problem (IVP) is as important as the solution 
itself. There several methods adopted for the numerical 
solution of IVP viz:Adams- Multon, Runge-Kutta Euler’s 
rule etc. They all have their inherent advantages and 
disadvantages. The Euler’s rule is known explicit, one-
step method and being a one-step method it requires 
no additional starting values. Its low order makes it of 
limited practical value. 

Linear multi-step methods achieve higher order by 
sacrificing the one-step nature while retaining linearity 

wrt, 
 
yn+ j , fn+ j , j = 0,1,…k . Higher order can be can also 

be achieved by sacrificing linearity but preserving the 
one-step nature. This is the philosophy behind the 
method proposed by Runge and subsequently 
developed by Kutta and Heun. 

Chollom, J.P [1] (Africa Journal online) vol. 2 
number 3 (2007) “on some properties of block linear 
multi-step methods” worked on the properties of block 
linear multi-step methods and its application to IVPs. 
Also in 2003, Chollom, J.P and Jackiewicz, Z [2] 
worked on the construction of two-step Runge-Kutta 
methods with large region of absolute stability. In their 
work, they showed that Adams-Moulton block methods 
can be reformulated as a sub-class of two-step Runge-
Kutta method.  

In this work I considered block k = 2 and k = 3 and 
using the same reformulation technique applied the 
scheme to the solution of IVP. The block Adams-
Moulton methods were constructed using the multi-step 
collocation. 
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1. DERIVATION OF ADAMS-MOULTON 

Methods with Continuous Coefficients  

Consider the discrete schemes of Adams-Moulton 
method for K = 2 and K = 3 given by. 

yn+2 yn+1 =
h

12
5 fn+2 + 8 fn+1 fn[ ]      1.1.0 

yn+3 yn+2 =
h

24
9 +19 fn+1 5 fn+1 + fn[ ]     1.1.1 

The continuous scheme of equations 1.1.0 and 
1.1.1. are more desirable from both practical and 
theoretical considerations. In development of N a linear 
multistep method with continuous coefficients by the 
use of multistep collocation (Onumanyi et al. 1994) [3] 
we considered an extended set: 

 
Q = xn , xn+1, xn+k{ } xn+k 1, xn+k 2 ,…xn+k{ }

 

From which to select the collocation points. 

The necessary collocation and interpolation 
conditions were then employed directly by the use of 
matrix inversion without any involvement of integration 
process. We let 

y(x) = j (x)yn+1 + h
j=0

K 1

j (x) f (x j+1 )y(xi+1 )
j=0

m 1

   1.1.2 

j(x) = i,i+1,k
i=0

k+m 1

h i (x) = h i,i+1,k
i=0

k+m 1       1.1.3 

xn+ j  are assumed polynomials and r(0 r k)  are 

chosen interpolation points. 
 
(xn ,……, xn+k 1 )  and 

 
(xi ,……, xn )  are collocation points taken from Q . 
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To determine the j (x)  and j (x)  in equations 

1.1.2 and 1.1.3, conditions 

 
y(xn+ j ) = yn+ j , j [0,1….,k 1]      1.1.4 

and  

 
y '(x j ) = f [x j , y(x j )], j = 1,…,m      1.1.5 

Satisfy the polynomial equation 1.1.3 

Form the interpolation conditions of 1.1.4 and 1.1.5 
the expression in y(x)  in equation 1.1.3 has the 

following conditions imposed on j (x)  and i (x) . 

 
j (xn+ j ) = j ,{ j = 0,1,…..,k 1, i = 0,…..,k 1}    1.1.6 

 
h i (xn+ j ) = 0,{ j = 0,1,…..,m 1, i = 0,2…,k 1}  1.1.7 

Writing equation 1.1.6 and 1.1.7 in matrix equation 
form:- 

DC = I         1.1.8 

Where I is the identity matrix of dimension K + M . 

Letting 

M = K +1.K > 0  and t = 1  and 

x j = xn+ j 1, j = 1,….,K +1  the left hand side of equation 

1.1.8 becomes.  

 

DC =

1 xn+k 1 xn+k 1
2 xn+k

k+1

0 1 2xn k +1xk

0 1 2xn+k 1 (k +1)xn+k
k

 

From equation 1.1.8, the columns of C = D 1 . 

Gives the continuous coefficient of k 1(x)  and 

 
j (x), j = 0,1……,k  and Adam-Moulton scheme of 

order 1-5 are recovered. 

1.2. Reformulation of ADAM-Moulton Scheme as a 
Subclass of Two –Step Runge-Kutta Method 

Recently, Z. Jackewicz and Tracogna [4] introduced 
a promising class of two-step Runge-Kutta (TSRK) 
methods for the numerical solution 

k 1,1 h 0 h k ,1

( k 1 )k 1,2 h 0 ,2 h k 1,2

( k 1 )k + 2 h 0 ,k + 2 h k ,k + 2

    1.1.9 

Of Ordinary Differential Equation (ODEs) 

y(x) = f (y(x), x (x0 , x)), y(x0 ) = y0        2.0 

With the exact solution denoted by y(x)  these 

methods depend on stage values at two consecutive 
steps and have the form 

yi+1 = yi 1 + (1 )yi + h vjf (r j i 1)+ wj f (Yi
j( )

j=1

s

Yi
j
= u j yi 1 + (1 uj)yi + h jkf (Yi u

k )bjkf (Yi
k( )

j=1

s     2.1 

J = 1,2,…,S, I = 1,2,…..,N 1
 

where N  is an integer greater than zero, h =
x x0
N

 is 

a fixed step size,  

xi = x0 + ih, i = 0,1,..N  
is an approximation (possible of 

lower order) to  

y(xi + cjh)  

These methods generalized a class of (explicit) 
pseudo Runge-Kutta formulae. 

The equation 2.1 can be represented in a table 
given below. 

 

2. DERIVATION OF THE BLOCKS METHODS 

The block methods are derived by evaluating the 
derivative of the continuous schemes obtained from the 

matrix inversion technique at 
 
x = xn , xn+1,……., xn+6 . In 

this research, the cases of k = 2 and k = 3 are 
considered. Thus for k = 2 the matrix D is given by 

D =

1 xn+1 xn+1
2 xn+1

3

0 1 2xn 3xn
2

0 1 2xn+1 3xn+1
2

0 1 2xn+2 3xn+2
2

 

Since DC = I  in 1.1.8, we use the following formula 

to obtain the elements of C 1  thus. 

Uij =
dij
L1i
;Li1 = dij '  
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Lij = di1 LikUik ,  etc. 

Hence 

C11 = 1,C12 =
2xn+1

3 3hxn+1
2

12h2
,C13 =

xn+1
3 3hxn+1

2

12h2
,C14 =

3hxn+1
3 2xn+1

3

12h2

C21 = 0,C22 =
xn+1
2

+ hxn+1
2h2

,C23 =
h2 xn+1

2

2h2
,C24 =

xn+1
2 hxn+1

3

2h2
,

C31 = 0,C32 =
h 2xn+1
4h2

,C33 =
xn+1
h2
,C34 =

h 2xn+1
4h2

,

C41 = 0,C42 =
1

6h2
,C43 =

1

3h2 '
,C44 =

1

6h2 '

 

To derive the continuous form of Adams –Moulton 
method for k = 2, we represent the general form of the 
two-step method as 

y(x) = 1(x)yn+1 + h[ 0 (x) fn + 1(x) fn+1 + 2 (x) fn+1 ]        3.1 

where  

1(x) = C11 +C12x +C31x
2
+C41x

3

0 (x) = C21 +C22x +C32x
2
+C42 2x

3

1(x) = C31 +C23x +C33x
2
+C432x

3

2 (x) = C41 +C24x +C34x
2
+C44 2x

3

              3.2 

On substituting the elements of C 1  into 3.2 yields 
the following; 

1(x) = 1  

0 (x) =
2(x xn+1 )

3 3h2 (x xn+1 )
2

12h2

1(x) =
(x xn+1 )

3 3h2 (x xn+1 )

3h2

2 (x) =
(x xn+1 )

3 3h(x xn+1 )
2

12h2

        3.3 

Substituting the value of 3.3 into 3.1 yields the 
following as the continuous form of Adams-Moulton 
method for k = 2 

y(x) = yn +1+
2(x xn+1 )

3 3h(x xn+1 )
2

12h2

+
(x xn+1 )

3 3h2 (x xn+1 )

3h2
fn+1

+
2(x xn+1 )

3 3h(x xn+1 )
2

12h2

       3.4 

Evaluating 3.4 at x = xn  and x = xn+2  we obtained 

the following two schemes respectively. 

yn+1 yn =
h

12
[ fn+2 + 8 fn+1 + 5 fn ]  

yn+2 yn+1 =
h

12
[5 fn+2 + 8 fn+1 fn ]  

For K = 3 

D =

1 xn+2 xn+1
2 xn+2

3 xn+2
3

0 1 2xn 3xn
2 4xn

3

0 1 2xn+1 3xn+1
2 4xn+1

3

0 1 2xn+2 3xn+2
3 4xn+2

3

 

Also by similar procedure, we obtained the 

elements of C 1  as: 

C11 = 1, C12 =
x2 8h2xn

2 24h2xn 8h4

12h3
,  

C13 =
3x4 + 20hxn

3
+ 36h2xn

2 32h4

24h3
,  

C14 =
3xn

4 16hxn
3 18h2xn

2 8h4

12h3
,C15 =

xn
4
+ hxn

3
+ 4h2xn

2

24h3
 

C21 = 0,C22 =
xn
3
+ 6hxn

2
+11h2xn

6h3
,C23 =

xn
3 5hxn

2 6h2xn
2

2h3
,  

C24 =
xn
3
+ 2hxn

2
+ 3h2xn

2

2h3
,C25 =

xn
3 3hxn

2 2h2xn
6h3

,  

C31 = 0,C32 =
(3xn

2
+12hxn +11h

2 )

12h3
,C33 =

3xn
2
+10hxn + 6h

2

12h3
,  

C34 =
(3xn

2
+ 8hxn + 3h

2 )

4h3
,C35 =

3xn
2
+ 6hxn + 2h

2

12h3
,  

C41 = 0,C42 =
xn + 2h

6h3
,C43 =

(3xn + 5h)

6h3
,C44 =

3xn + 4h

6h3
,  

C45 =
(xn + h)

6h3
,  

C51 = 0,C52 =
1

24h3
,C53 =

1

8h3
,C55 =

1

24h3
,  

Also, the general form for the continuous form is 
given as: 

y(x) = 2 (x)yn+2 + h[ 0 (x) fn + 1(x) fn+1 + 2 (x) fn+2 + 3(x) fn+3 ]

            3.5 

Also by similar procedure, we have that, 

0 (x) =
(x xn )

4
+ 8h(x xn )

3 22h2 (x xn )
2
+ 24h3(x xn ) 8h4

24h3

1(x) =
3(x xn )

4 20h(x xn )
3
+ 36h2 (x xn )

2 32h4

24h3

2 (x) =
3(x xn )

4
+16h(x xn )

3 18h2 (x xn )
2 8h4

24h3

3(x) =
(x xn )

4
+ 4h(x xn )

3 4h2 (x xn )
2

24h3

            3.6 
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On substituting 3.6 into 3.5 we have the continuous 
form of the Adams-Moulton method for K = 3 as 

y(x) = yn+2 + [ (x xn )
4
+ 8h(x xn )

3 22h2 (x xn )
2
+ 24h3 (x xn ) 8h4 ] fn

+ [3(x xn )
4 20h(x xn )

3
+ 36h2 (x xn )

2 32h4 ] fn+1
+ [ 3(x xn )

4
+16h(x xn )

3 18h2 (x xn )
2 8h4 ] fn+2

+ [(x xn )
4
+ 4h(x xn )

3 4h2 (x xn )
2 ] fn+3

  

            3.7 

Evaluating 3.7 at x = xn+3, xn+2  and xn , yields the 

following three discrete schemes. 

yn+3 yn+2 =
h

24
[9 fn+3 +19 fn+2 5 fn+1 + fn ]  

yn+3 yn+1 =
h

24
[ fn+3 +13 fn+2 13 fn+1 fn ]  

yn+3 yn =
h

3
[ fn+2 + 4 fn+1 + fn ]  

3. REFORMULATION OF ADAMS-MOULTON 
METHODS AS A SUBCLASS OF TWO- STEP 
RUNGE-KUTTA METHOD 

The reformulation equation is given in 2.1, thus we 
define 

yn+3 = Y3
(n) , yn+2 = Y2

(n) , yn+1 = Y1
(n) , and yn = Y

(n 1) ,  

For k = 2, we have yn+1 yn =
h

12
[ fn+2 + 8 fn+1 + 5 fn ]  

yn+2 yn+1 =
h

12
[5 fn+2 + 8 fn+1 fn ]  

Reformulating, Y1
(n)

= yn +
h

12
f (Y2

(n) )+ f (Y1
(n) )+ f (Y (n 1) )  

Y2
(n)

= yn+1 +
h

12
5 f (Y2

(n) )+ 8 f (Y1
(n) ) f (Y (n 1) )  

yn+2 = yn+1 +
h

12
5 f (Y2

(n) )+ 8 f (Y1
(n) ) f (Y (n 1) )  

1

1
 

5

12
1

12

 
0

0
 

8

12

1

12
8

12

5

12

 

1  
1

12
 0  

8

12

1

12
8

12

5

12

 

 

For k = 3, we have 

yn+3 yn+2 =
h

24
9 fn+3 +19 fn+2 5 fn+1 + fn[ ]  

yn+3 yn+1 =
h

24
fn+3 +13 fn+2 13 fn+1 fn[ ]  

yn+3 yn =
h

3
fn+2 + 4 fn+1 + fn[ ]  

Reformulating, Y3
(n)

= yn +
h

3
f (Y2

(n) )+ 4 f (Y1
(n) )+ f (Y (n 1) )  

Y3
(n)

= yn+1 +
h

24
9 f (Y3

(n) )+13 f (Y2
(n) ) 13 f (Y1

(n) ) f (Y (n 1) )  

Y3
(n)

= yn+2 +
h

24
9 f (Y3

(n) )+19 f (Y2
(n) ) 5 f (Y1

(n) ) f (Y (n 1) )  

yn+3 = yn+2 +
h

24
9 f (Y3

(n) )+19 f (Y2
(n) ) 5 f (Y1

(n) ) f (Y (n 1) )  

Its table is given below. 

Table 1:  

1

0

1

 

1

3
0 0

1

24
0 0

1

24
0 0

 

4

3

1

3
0

13

24

13

24

1

24
5

24

19

24

9

24

 

1  
1

24
0 0  

5

24

19

24

9

24
 

 

4. CONVERGENT ANALYSIS 

The necessary and sufficient condition for a linear 
multistep method (LMM) to be convergent are that it be 
zero stable and consistent. (Fundamental theorem of 
Daliquist on LMM) [5]. 

Convergent analysis was carried out on both K = 2 
and K = 3 and were found to be convergent and zero-
stable. Their order and error constants are given in the 
table below 

Table 2:  

Evaluation Point Order Error Constant 

y(xn+2 )  3 -0.041666667 

y(xn )  3 -0.041666667 
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Their regions of absolute stability are 

Table 3:  

y(xn+2 )  (-6,0) 

y(xn )  (0,6) 

 

Table 4:  

Evaluation Point Order Error Constant 

y(xn+3 )  4 -0.026388889 

y(xn+1 )  4 -0.015277778 

y(xn )  4 -0.001111111 

 

The region of absolute stability for the above is 
given below 

Table 5:  

y(xn+3 )  (-3,0) 

y(xn+1 )  (-3,0) 

y(xn )  (-3,0) 

 

For the reformulated schemes, their stability regions 
are: K = 2, (0,8) and K = 2, (0,4.5). 

5. NUMERICAL EXAMPLES 

The block Adams-Moulton methods and the 
reformulated two-step Runge-Kutta method were used 
to solve the following initial value problems (IVP) 
considering various step sizes. 

y ' = 60y +10x

y0 =
1

6
, y(x) =

1

6
[x + e 60x ]

      5.0.1 

y ' = 1+ x 2y

y0 = 2, y(x) =
1

4
[2x + 7e 2x

+1]
     5.0.2 

Now solving 5.0.1 using the block K = 2 

yn+2 yn+1 =
h

12
[5 fn+2 + 8 fn+1 fn ]  

yn+2 yn =
h

12
[ fn+2 + 8 fn+1 + 5 fn ]  

For h = 0.05  

Solving the following values were obtained. 

y1 = 0.00416666666, y2  = 0.016666666,

y3 = 0.045535714, y4 = 0.0630952338,

y5 = 0.077699829, y6 = 0.095493197,

y7 = 0.111116689, y8 = 0.128893474,

y9 = 0.144444035, y10 = 0.162221894,

 

Now solving the same problem using a step size of 
0.1, we have. 

y1 = 0.032456140, y2  = 0.075438596, 

y3 = 0.031902123, y4 = 0.045337027

y5 = 0.080174466, y6 = 0.037755747,

y7 = 0.122520417, y8 = 0.03847416,

y9 = 0.1626829611, y10 = 0.042243855,

 

Using the block for K = 3, h = 0.05, the following 
values were obtained. 

y1 = 0.004131911, y2  = 0.041361789  

y3 = 0.023526423, y4 = 0.055498339,

y5 = 0.089003321, y6 = 0.123035024,

y7 = 0.102639390, y8 = 0.144721221

y9 = 0.129307559 y10 = 0.151114450

 

for h = 0.1, the results are  

y1 = 0.015807560, y2  = 0.053264605,   

y3 = 0.003436426, y4 = 0.071562688,

y5 = 0.074687356, y6 = 0.110312807,

y7 = 0.111594664, y8 = 0.132309964,

y9 = 0.143308542, y10 = 0.16457492.

 

Table 6: h = 0.1 

x   Exact Solution K = 2 K = 3 

0.1  0.017079792 0.032456140  0.015807560 

0.2  0.033334357  0.075438596 0.015807560 

0.3  0.050000002  0.031902123 0.003436326 

0.4  0.066666667  0.045337027 0.071562688 

0.5  0.083333333  0.080174466 0.074687356 

0.6  0.100000000  0.037755747 0.110312807 

0.7  0.116666667  0.1225201416  0.111594664 

0.8  0.133333333  0.038471416 0.132309964 

0.9  0.150000000  0.162682961 0.143308542 

1.0  0.166666667  0.042243855 0.164574792 
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Table 7: Error Table, h = 0.1 

x  Error K = 2 Error K = 3 

0.1  4.9535932  10
2
 1.272232  10

3
 

0.2 4.2104239  10
2
 1.9930248  10

2
 

0.3 1.8.97879  10
2
 4.6563576  10

2
 

0.4 2.1329639  10
2
 4.896021  10

3
 

0.5 3.158867  10
3
 8.645977  10

3
 

0.6 6.2244253  10
2
 1.0312807  10

2
 

0.7 5.853751  10
3
 5.072003  10

3
 

0.8 9.4861917  10
2
 1.023369  10

3
 

0.9 1.2682961  10
2
 6.691458  10

3
 

1.0 1.244228115  10
1
 2.091875  10

3
 

 

Table 8: h = 0.05 

x  Exact Solution  K=2  K=3 

 0.1  0.017079792 0.004166667   0.004131911 

 0.2  0.033334357  0.016666667   0.041361789 

 0.3  0.050000002  0.045535714   0.023526423 

 0.4  0.066666667  0.063095238   0.055498339 

 0.5  0.083333333  0.077699829   0.089003321 

 0.6  0.100000000  0.095493197   0.123035024 

 0.7  0.116666667  0.11116689   0.102639390 

 0.8  0.133333333  0.128893474   0.144721221 

 0.9  0.150000000  0.144444035  0.129307559 

 1.0  0.166666667  0.162221894  0.151114450 

 

Table 9: Error Table, h = 0.1 

 x  Error K = 2 Error K = 3 

0.1 1.2913125  10
2
 1.2947881  10

2
 

0.2 1.666769  10
2
  8.027432  10

3
 

0.3 4.464288  10
3
 2.647358  10

2
 

0.4 3.571429  10
3
 1.1168328  10

2
 

0.5 5.633504  10
3
 5.669988  10

3
 

0.6 4.506803  10
3
 2.3035024  10

2
 

0.7 5.549978  10
3
 1.4027277  10

2
 

0.8 4.439859  10
3
 1.1387888  10

2
 

0.9 5.555965  10
3
 2.0692441  10

2
 

K = 2 

1.0 4.444773  10
3
 1.5552217  10

2
 

 

yn+2 yn+1 =
h

12
[5 fn+2 + 8 fn+1 fn ]  

yn+2 yn =
h

12
[ fn+2 + 8 fn+1 + 5 fn ]  

we have for h = 0.1 

12yn+2 12yn+1[5(1+ x 2y)+ 8(1+ x 2y)+ (1+1x 2y)]  

Hence 

13y2 10y1 = 1.78                  5.0.10 

similarly 

0.2y2 +13y1 = 23.26     5.0.11 

Solving equations 5.0.10 and 5.0.11 

Simultaneously we have 

y1 = 1.732692308, y2  = 1.523076923,  

y3 = 1.360376162, y4 = 1.236348267,

y5 = 1.143768636, y6 = 1.07711256,

y7 = 1.031537206, y8 = 1.003339189,

y9 = 0.989272193, y10 = 0.986853742.

 

K = 3, h = 0.1 

yn+3 yn+2 =
h

24
[9 fn+3 +19 fn+2 5 fn+1 + fn ]  

yn+3 yn+1 =
h

24
[ fn+3 +13 fn+2 13 fn+1 fn ]  

yn+3 yn =
h

3
[ fn+2 + 4 fn+1 + fn ]  

Solving we have matrix as 

1 20.2 25.8

21 26.6 0.2

0.8 3.2 0

y1
y2
y3

=

2.6

3.16

6.26

 

Evaluating the matrix, we have 

y1 = 1.732768925, y2  = 1.523076923,   

y3 = 1.360408367, y4 = 1.236304537,

y5 = 1.143774937, y6 = 1.077072736,

y7 = 1.031527678, y8 = 1.003306725,

y9 = 0.9892600378, y10 = 0.9868244531.

 

Now solving equation 5.0.2 using the reformulated 
scheme, the values of the free parameters 

a11, a12 ,…, a1s  and b11, b12 ,…, b1s  are substituted into the 

continuous TSR-K method as thus, for S=2. 

yi+1 = yi+1 + (1 )yi + h[V1 f (Y1i 1 )

+W1 f (Y1i )+V2 f (Y2i 1 )+W2 f (Yi2 )]
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Table 10: h = 0.1 

x  Exact Solution K = 2 K = 3 

0.1 1.732778818 1.732692308 1.732768925 

0.2 1.523060081 1.523076923 1.523057769 

0.3 1.360420363 1.360376162 1.360408367 

0.4 1.236325687 1.236348267 1.236304537 

0.5 1.143789022 1.143768636 1.143774937 

0.6 1.077089871 1.077112560 1.077072736 

0.7 1.031544687 1.031537206 1.031527678 

0.8 1.003318906 1.003339189 1.003306725 

0.9 0.989273054 0.989272193 0.989260038 

1.0 0.986836746 0.986853742 0.986824453 

 

Table 11: Error h = 0.1 

X K = 2 K = 3 

0.1 8.651  10
5
 9.893  10

6
 

0.2 -1.6842  10
5
 2.312  10

6
 

0.3 4.4201  10
5
 1.1996  10

5
 

0.4 -2.258  10
5
 2.115  10

5
 

0.5 2.0386  10
5
 1.4085  10

5
 

0.6 -2.2689  10
5
 1.7135  10

5
 

0.7 7.481  10
6
 1.7009  10

5
 

0.8 -2.0283  10
5
 1.2181  10

5
 

0.9 8.61  10
7
 1.3016  10

5
 

1.0 -1.6996  10
5
 1.22929  10

5
 

 

yi
(1)
=U1yi 1 + (1 U1 )yi + h[a11 f (Y1i 1 )

+b11 f (Y1i )+ a12 f (Y2i 1 )+ b12 f (Yi2 )]
 

yi
2
=U2yi 1 + (1 U12 )yi + h[a21 f (Y1i 1 )

+a22 f (Y2i 1 )+ a21 f (Yi1 )+ b22 f (Yi2 )]
 

S = 3 

yi+1 = yi 1 + (1 )yi + h[V1 f (Y1i 1 )+W1 f (Y1i )

+V2 f (Y2i 1 )+W2 f (Yi2 )+V3 f (Yi3 )]
 

yi
(1)
=U1yi 1 + (1 U1 )yi + h[a11 f (Yi 1 )+ b12 f (Y2i 1 )

+a23 f (Y3(i 1) )+ b11 f (Yi 1 )+ b]
 

yi
(2)

=U1yi 1 + (1 U2 )y1 + h[a21 f (Y1i 1 )+ a22 f (Y2i 1 )

+b23 f (Yi 1 )+ b21 f (Yi 1 )+ b]
 

yi
(3)

=U3yi 1 + (1 U3 )yi + h[a31 f (Yi 1 )+ a32 f (Y2(i 1) )

+a33 f (Y3(i 1) )+ b31 f (Yi 1 )+ b]
 

Thus solving 5.0.2, the following results were 
obtained as contained in Table 7. 

Table 12: {h = 0.1}, Reformulated Scheme 

X Exact Solution  K = 2 K = 3 

0 2.000000000 2.000000000 2.000000000 

0.1 1.732778818 1.700000000 1.700000000 

0.2 1.523960081 1.451748148 1.641084610 

0.3 1.360420363 1.308771208 1.448463233 

0.4 1.236325687 1.203082244 1.304033029 

0.5 1.143789022 1.281327248 1.192758695 

0.6 1.077089871 1.077321208 1.112191440 

0.7 1.031544687 1.045801716 1.056080923 

0.8 1.003318906 1.029687970 1.019872305 

0.9 0.989273054 1.025879662 0.999759807 

1.0 0.986836745 1.031900258 0.992681275 

 

Table 13: Error Reformulated Scheme (h = 0.1) 

X K = 2 K = 3 

0 0.000000000 0.000000000 

0.1 3.2778818  10
2
 3.2778818  10

2
 

0.2 7.2211933  10
2
 -1.17124529  10

1
 

0.3 5.1649155  10
2
 -8.804287  10

2
 

0.4 3.3243443  10
2
 -6.7707342  10

2
 

0.5 -1.37538226  10
1
 -4.8969673  10

2
 

0.6 -2.31337  10
4
 -3.5101569  10

2
 

0.7 -1.4257029  10
2
 -2.4536236  10

2
 

0.8 -2.6369064  10
2
 -1.6553399  10

2
 

0.9 -3.6606608  10
2
 -1.0486753  10

2
 

1.0 -4.5063513  10
2
 -5.84453  10

3
 

 

I made use of the block two-step and three-step 
Adam Moulton methods reformulated as a subclass of 
two-step Runge-Kutta method. The block methods 
were derived by evaluating Adam-Moulton continuous 

schemes at x = xn , xn+1  and xn+3 . 

The methods are of degree K and order k+1 and 
their blocks are also stable. However, the reformulated 
methods have gained stability because for k = 2 it is A- 

stable and k = 3 is now A  - stable. 
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The block for k = 3 shows it is a better scheme than 
the k = 2 as demonstrated by their errors in the solved 
numerical examples. The block k = 3 also yielded an 
equivalent Simpson’s scheme which is the most 
accurate linear multistep method (LMM) i.e. 

yn = yn+2 +
h

3
{ fn+2 + 4 fn+1 + fn} . 

CONCLUSION 

The block methods were shown to have lower 

errors than their conventional schemes and exhibited 

similar characteristic convergent properties to their 

respective discrete schemes usually applied singularly. 

The advantage of this approach is that it reduces 

computational efforts and speeds up computation. Also 

by the gain in stability, the reformulated schemes are 

better numerical methods. 
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