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A Class of Flows for Couple Stress Fluids 
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Abstract: Exact solutions are derived for a class of two dimensional couple stress flows. This class consists of flows for 
which the vorticity distribution is characterized by the Eq. (12). The solutions are obtained by introducing the functions Ψ, 
H and the canonical transformation. The effects of the parameters K, m, U, A, B, D, E, L, and M  on velocity components 
u  and v are discussed and streamlines for the various values of the parameters are also presented.  
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1. INTRODUCTION 

The accurate flow behavior of couple stress fluids 
cannot be predicted using classical Newtonian theory 
and therefore models are developed for these fluids. 
However, the model developed by Stokes (1966) is 
widely used because of its mathematical simplicity [1]. 
The study of the couple stress fluids is of great interest 
due to their applications in science, engineering and 
industries. The readers interested in the work on 
couple stress fluids and their applications may refer to 
[2-13] and the references therein. 

The objective of this paper is to derive a class of 
two dimensional couple stress flows and discuss the 
effect of the pertinent parameters m, K, U, A, B, D, E, L 
and M on velocity components u and v and present 
streamlines for flows for different values of the 
parameters. This class consists of flows for which the 
velocity distribution is characterized by the Eq. (12). To 
achieve our objective, the basic flow equations are 
expressed interms of the function Ψ, the function H and 
the canonical transformation defined in section 3. The 
rest of the paper is divided into five sections. In section 
2, the basic flow equations are presented. In section 3, 
the transformed flow equations are presented and their 
solutions are determined. In section 4 we sum up the 
work up to section 3. In section 5, the effect of the 
parameters of interest on the velocity components u 
and v are discussed and the streamlines for various 
values of these parameters are also presented. 
Conclusions are given in section 6. 

2. FLOW EQUATIONS 

The equations governing the motion of 
incompressible couple stress fluids in the absence of 
body forces are 
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where u is the velocity vector,  is the constant 
density, p is the pressure,  is the coefficient of 
viscosity and  the material constant responsible for 
the couples stress parameter [1]. 

For flows in xy-plane Eqs. (1) and (2) become 

ux + vy = 0,  (3) 

hx − ρvω = −µωy + η(∇2ω)y,  (4) 

hy + ρuω = µωx − η(∇2ω)x, (5) 

In Eqs. (4) and (5), h is the generalized pressure 
and ω is the vorticity function. These functions are 
defined as 
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ω = vx – uy.  (7) 

Equation (3) implies the existence of the stream 
function ψ such that 

u = ψy,       v = – ψx,  (8) 

Inserting Eq. (8) in Eqs. (4-6), we get 

hx + ρψxω = −µωy + η(∇2ω)y, (9) 

hy + ρψyω = µωx – η(∇2ω)x, (10) 

ω = −∇2ψ, (11) 

3. SOLUTIONS 

In this section, we determine a class of flows for 
which the vorticity distribution is characterized by the 
equation 
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∇2ψ = K(ψ − Ux – Uy), (12) 

where K and U are both non zero constants. 

By setting Ψ = ψ − Ux – Uy  Eq. (12) becomes 

∇2Ψ = Kψ.  (13) 

Eqs. (9-11), utilizing Eqs. (12) and (13), become 

Hx = ρU(KΨ + mΨy),  (14) 

Hy = ρU(KΨ – mΨx),  (15) 

ω = −KΨ (16) 

In Eqs. (14) and (15), the function H and m are 
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On introducing the canonical coordinates 

ξ = x + y,      η = y,  (19) 

the Eqs. (13-15) become 

2Ψξξ + 2Ψξη + Ψηη = KΨ, 20) 

Hξ = ρU(KΨ + mΨξ + mΨη),  (21) 

Hη = – ρUm(2Ψξ + Ψη). (22) 

Let us now determine the solutions of Eqs. (20-22). 

Eliminating the function H from Eqs. (21) and (22) 
employing the integrability condition Hξη = Hηξ,, we get 

Ψη + mΨ = 0, (23) 

whose solution is 

Ψ = g(ξ)e−mη, (24) 

where g(ξ) is to be determined. Inserting Eq. (24) in Eq. 
(20), we obtain 

2g’’(ξ) – 2mg’(ξ) + (m2 – K)g = 0. (25) 

The solutions of Eq. (25) are  
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where A, B, D, E, L, M, N, P, and Q  are constants. 

Case I: For K = m2, Eq. (24) gives 
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On inserting Eq. (31) in Eqs. (21) and (22), we get 

Hξ = ρUKBem(ξ − η), (32) 

Hη = –ρUBm2em(ξ − η) − ρUmAe−mη, (33) 

The solution of Eqs. (32) and (33) is 
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 Equation (18), on substituting K = m2, gives, 

U = v1m – v2m3 (35) 

The streamfunction ψ, velocity components and 
pressure in this case are 

ψ = (v1m – v2m3)(x + y) 
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u = v1m – v2m3 + Ae−my, (37) 

v = – v1m + v2m3 − mBemx, (38) 
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Case II: For 2K > m2, Eq. (24) provides 

Ψ = Dem1ζ−mη + Eem2ζ−mη. (40) 

Equations (21) and (22), employing Eq. (40), 
becomes 
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Hξ = ρUD(K + mm1 – m2)em1ξ−mη 

     + ρUE(K + mm2 – m2)em2ξ−mη, (41) 

Hη = − ρUmD(2m1 – m)em1ξ−mη 

       −ρUmE(2m2 – m)em2ξ−mη, (42) 

The solution of Eqs. (41) and (42) is 

H = ρUD(2m1 – m)em1ξ−mη 

     + ρUE(2m2 – m)em2ζ−mη + F. (43)  

For this case streamfunction ψ, velocity 
components and pressure are 
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Case III: When 2K – m2 < 0, the streamfunction is 
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 and the exact solution associated to Eq. (48) is 
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Case IV: In this case the streamfunction ψ, 
velocities components and pressure are 

ψ = U(x + y) + [P + Q(x + y)] e
m(x-y)

2 , (52)  
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4. RESULTS  

A class of exact solutions of the equations 
governing the steady plane flows of incompressible 
couple stress fluids are determined for which the 
vorticity distribution is defined by Eq. (12).  

5. DISCUSSIONS  

The effect of the parameters K, m, U, A, B, D, E, L, 
and M on velocity components  and  are depicted 
in Figures 1-4, 8-15 and 19-25. The streamlines for the 
stream function Eqs. (36), (44) and (48) are presented 
for various values of the parameters.  

 
Figure 1: The effect of m on velocity component u for U = 5 
and A = 1.  
 

Figures 1-4 are for case I. Figures 1 and 2 present 
the effect of parameters m and A on the velocity  
 

 
Figure 2: The effect of A on velocity component u for U = 5 
and m = 1. 

component u. These figures indicate that the velocity 
component u increases with increase in parameters m 

 
Figure 3: The effect of m on velocity component v for U = 5 
and B = 1.  

 
Figure 4: The effect of B on velocity component v for U = 5 
and m = 3. 
 
and A, and increase is larger with increase in A  than 
increase in m. Figures 3 and 4 illustrate the effect of 
parameters m and B on the velocity component v. 
These figures indicate that velocity component v 
increases with increase in m and B in absolute value. 
Figures 5-7 represent streamlines for the stream 
function for case I given by the Eq. (36) for the different 
values of parameters m, A and B. These figures  
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Figure 5: Streamlines for the streamfunction equation (36) 
for A = B = 1, m = 10, U = 5. 
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Figure 6: Streamlines for the streamfunction equation (36) 
for A = 1, B = 1, m = 2, U = 5.  
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Figure 7: Streamlines for the streamfunction equation  (36) 
for A = B = -1, m = 10, U = 5. 
 
indicate that streamline pattern change with change in 
parameters. We mention that there exists a stagnation 
point in the flow region for U < 0, A > 0, B > 0 or U > 0, 
A < 0, B < 0. The stagnation point is  
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 The figures 8-15 depict the effect of the pertinent 
parameters m, K, U, D and E on the velocity 
components u and v for case II. Figures 8 and 9 
represent the variation of velocity component u in the 
flow field for different values of the parameters D and E 
and fixed values of the other parameters. Comparison 
of these figures indicates that velocity component u 
increases with increase in parameters D and E  in 
absolute value. Comparing Figures 8 and 10, we find 
that velocity component u increases with increase in 
parameter m and K. Comparison of Figures 8 and 11 
indicate that velocity component u increases with 
increase in parameter U. Figures 12-15 show effect of 
parameters m, K, U, D and E  on the velocity 
component v. These figures indicate that v increases 
with increase in these parameters in absolute value. 
These figures also indicate that increase in v is larger 
with increase in parameters K and m than  
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Figure 8: Variation in velocity component u in the flow field 
for U = 5, K = 3, m = 2, D = E = 1.  
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Figure 9: Variation in velocity component u in the field for  
U = 5, K = 3, m = 3, D = 5, E = 9.  

-1

0

1

-1

0

1
-400

-200

0

200

xy

u

 
Figure 10: Variation in velocity component u in the flow field 
for U = 5, K = 12, m = 4, D = E = 1.   
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Figure 11: Variation in velocity component u in the flow field 
for U = 50, K = 3, m = 2, D = E = 1.  
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Figure 12: Variation in velocity component v in the flow field 
for U = 5, K = 3, m = 2, D = E = 1.   
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Figure 13: Variation in velocity component v in the flow field 
for U = 5, K = 3, m = 2, D = 5, E = 9.  
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Figure 14: Variation in velocity component v in the flow field 
for U = 5, K = 12, m = 4, D = E = 1.  
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Figure 15: Variation in velocity component v in the flow field 
for U = 50, K = 3, m = 2, D = E = 1. 
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Figure 16: Streamlines for the streamfunction equation (44) 
for U = 5, m = 3, D = E = 1.  
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Figure 17: Streamlines for the streamfunction equation (44) 
for U = 5, K = 5, m = 3, D = −1, E = 1.  
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Figure 18: Streamlines for the streamfunction equation (44) 
for U = 5, K = 5, m = 3, D = -1, E = −1.  
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Figure 19: Variation in velocity component u in the flow field 
for U = 5, K = 3, m = 5, L = M = 1.   
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Figure 20: Variation in velocity component u in the flow field 
for U = 5, K = 5, m = 6, L = M = 1.      
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Figure 21: Variation in velocity component u in the flow field 
for U = 5, K = 53, m = 5, L = 5, M = 9. 
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Figure 22: Variation in velocity component v in the flow field 
for U = 5, K = 3, m = 5, L = M = 1.  
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Figure 23: Variation in velocity component v in the flow field 
for  U = 5, K = 8, m = 9, L = M = 1.  

-1

0

1

-1

0

1
-1

0

1

x 10
4

xy

v

 
Figure 24: Variation in velocity component v in the flow field 
for U = 5, K = 3, m = 5, L = 6, M = 12.  
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Figure 25: Variation in velocity component u in the flow field 
for U = 5, K = 3, m = 5, L = 5, M = -9. 
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Figure 26: Streamlines for the streamfunction equation (48) 
for U = 5, K = 2, m = 5, L = 1, M = 1.  
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Figure 27: Streamlines for the streamfunction equation (48) 
for U = 5, K = 2, m = 5, L = 1, M =  −1. 
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Figure 28: Streamlines for the streamfunction equation (48) 
for U = 5, K = 1, m = 10, L = 1, M = 1.   

increase in other parameters. Figures 16-18 show the 
streamlines for case II, which illustrate the behaviour of 
the flows for the different values of the parameters m, 
K, U, D and E. Figures 19-25 show the effect of 
parameters m, K, U, L and M on the velocity 
components u and v for case III. These figures indicate 
that the values of the velocity components u and v 
variate in the flow region with change in parameters m, 
K, U, L and M. Figures 26-28 represent the streamlines 
for the streamfunction for case III for various values of 
the parameter m, K, U, L and M. Similarly we can 
discuss the effect of parameters m, U, P and Q on the 
velocity components u and v for case IV through their 
plots. We mention that influence of the parameters on 
velocity components u and v are of the same nature as 
in cases I to III. 

6. CONCLUSION 

A class of exact solutions to equations governing 
the steady motion of incompressible couple stress 
fluids are determined for which the vorticity distribution 
is given by the Eq. (12). The solutions are determined 
by introducing the function H and the canonical 
coordinates ξ, η defined by Eqs. (17) and (19). The 
effect of the pertinent parameters m, K, U, A, B, D, E, L 
and M on velocity components u and v are discussed 
and streamlines are presented for various values of 
parameters. It is found that velocity components uand v 

increase with increase in parameters m, K, U, A, B, D, 
E, L and M. The increase in velocity components u and 
v is much larger with increase in K and m than increase 
in other parameters. 
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