

Description of an Experimental Method to Measure the CO₂ Loading in Monoethanomine Solutions using BaCO₃ Titration Technique

Pablo René Díaz-Herrera^{*}, Alan Martín Zavala-Guzmán and Zdzislaw Mazur-Czerwiec

Instituto Nacional de Electricidad y Energías Limpias, Reforma No. 113, Cuernavaca, 62490, México

Article Info:

Keywords: Carbon dioxide solubility, CO₂ loading, titration/volumetric analysis, laboratory instruction.

Timeline: Received: November 26, 2021 Accepted: December 28, 2021 Published: January 21, 2022

Citation: Díaz-Herrera PR, Zavala-Guzmán AM, Mazur-Czerwiec Z. Description of an Experimental Method to Measure the CO₂ Loading in Monoethanomine Solutions using BaCO₃ Titration Technique. J Basic Appl Sci 2021; 18: 1-7.

DOI: https://doi.org/10.29169/1927-5129.2022.18.01

Abstract:

One of the main criteria for the selection of a suitable solvent is the CO_2 solubility capacity or CO_2 loading. The objective of this work is to provide students and early-career scientists a detailed description of a titration-based experiment to measure the CO_2 loading using simple and inexpensive volumetric and gravimetric lab apparatus. The performance of the method is corroborated by comparing the experimental uncertainty obtained during the determination of the CO_2 concentration in test samples (in an absorption unit at lab scale) with reference values obtained by mass balance based on a certified gas analyser. The results indicate that CO_2 loading values between the experimental method and the reference range from ±3 to 13%, which is in good agreement with other similar methods.

*Corresponding Author

E-mail: pablor.diazh@gmail.com

© 2022 Díaz-Herrera et al.; Licensee SET Publisher.

This is an open access article licensed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

1. INTRODUCTION

There are several methods available for measuring CO₂ loading in aqueous amine solutions; these are classified as indirect and direct techniques. Indirect techniques involve mass balances from the thermodynamic system from measurements of CO₂ in the gas phase and the overall CO₂ fed to the system, the difference between these amounts is equal to CO₂ in the liquid phase. Typical techniques employed for measuring CO_2 in the gas phase [1] are the following: Fourier transform infrared (FTIR) carbon dioxide sensors, gas chromatography (GC) and, protontransfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Meanwhile, the direct techniques involve the CO₂ experimental measurement in the liquid phase, some of the analytical techniques used for this purpose are: attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy [2, 3], conductivity [4, 5], high-performance liquid chromatography (HPLC) [6] and titrimetric analysis [7].

Table 1 shows, qualitatively, the time-labour intensity, equipment and O&M cost, and CO_2 detection level of the most common analytical techniques used for measuring CO_2 , in both liquid and gas phases. Among them, HPLC is the most common analytic technique used in a variety of industrial and scientific applications (e.g. pharmaceutical, environmental, forensics, chemicals) because of its versatility, the huge number of components able to detect and, high detection limit. This can reach a detection limit range as low as parts per trillion [8].

Another technique with high accuracy is mass spectroscopy (MS), with detection levels in the range of parts per billion [9]. Due to their high precision, it is very common to find HPLC equipment coupled with MS, not only for measuring CO₂, even for other chemical compounds [10]. Furthermore, these techniques have a minimum time-labour intensity and can provide high precision results in few minutes. However, HPLC-MS equipment is very expensive comparing with other analytical techniques because of their high capital cost. Also, their operation is not easy, requires qualified personnel. Thus, these techniques could not be the first option if there is not a budget or just want to make a few tests without very high accuracy.

Another technique that is very useful for high CO_2 detection levels is Gas Chromatography (GC), depending on the detector used for, this technique can provide CO_2 detection limits in the range of subpart per

million [11, 12]. Nevertheless, the main disadvantages are GC equipment is expensive and is not be able to operate remotely, so the CO_2 source and GC equipment must be located close to each other.

One of the main techniques used for CO_2 monitoring in the gas sample is the CO_2 sensors by FTIR. This is because is very easy to operate, able to operate online (or directly from CO_2 source), provides results in just a few seconds, and is not costly in comparison with other analytical methods (e.g. HPLC, MS, GC, or ATR-FTIR spectroscopy). Nevertheless, its main drawback is the relatively low detection level (hundreds of ppm) [13, 14].

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) is also an easy method for CO_2 measuring in a liquid sample, this technique is very useful for the determination of unknown chemical species as on function of their molecular structure and wavenumber in the infrared spectrum. This technique is medium capital and O&M cost has a low time-labour intensity and provides results quickly, just a few seconds. However, it does not have the high levels of CO_2 detection that HPLC, GC or, MS techniques have.

On the other hand, the titration-based method consists of determining the number of moles of reagent (titrant), required to react quantitatively with the substance being determined. The main advantage of this analytical technique is the low capital cost and O&M cost. This is an ideal technique when is desired just a few tests or a non-capital budget is available. Nevertheless, the main disadvantages of this technique are the relatively high time-demanding and its very low accurate CO_2 detection level. For better results, accurate weighing of substrates and highly graduated apparatus are the keys. Another drawback is that fact is a manual off-line liquid analysis, so liquid samples should be taken, stored and, labelled for later analysis in the laboratory.

Among all the techniques measurement of CO_2 loading in aqueous amine solutions, the titration method with barium carbonate (BaCO₃) is one of the most employed due to its low capital cost. Although this has been used by many authors [15-18], there is still no work in the scientific literature with open access that explains in enough detail the experimental procedure for easy replication and reproducibility. Therefore, the originality of this work remains in the fact that it aims to provide a simple and detailed description of the experimental method for the measurement of CO_2

Table 1: Time-Labour Intensity, Equipment and Operation & Maintenance (O&M) Costs, and CO₂ Detection Level of the Most Common Analytical Techniques used for Measuring CO₂

Analytical method for CO ₂ measuring	Phase of the sample	Time-labour intensity	Equipment cost	O&M cost	CO ₂ detection level
Infrared CO ₂ sensor (FTIR)	Gas	L	L	L	Н
Mass spectroscopy (MS)	Gas	L	Н	Н	Н
Gas Chromatography (GC) with flame ionisation detection (FID)	Gas	L	Н	Н	н
High-Performance Liquid Chromatography (HPLC)	Liquid	L	н	н	н
ATR-FTIR spectroscopy	Liquid	L	Н	Н	L
pH titration-based method	Liquid	Н	L	L	L

L = low, H = high.

loading by titration with BaCO₃ that serves as a reference for new researchers in the area, non-chemical profiles, students or any other technical professional interested in the subject.

2. EXPERIMENTAL SECTION

2.1. Solutions of MEA Loaded with CO₂

Initially, a set of calibrations solutions were prepared using MEA, CO2 and, deionized water. The set contained MEA concentration of 25wt% with different CO₂ loadings in the range from 0.1 - 0.5 mol CO₂/mol MEA. This range value was estimated according to vapor-liquid equilibrium values of CO2-MEA-H2O system at low CO₂ partial pressures (P_{CO_2} < 100 kPa) and at low temperature range (T < 40° C) [19, 20]. Then, the solutions were prepared gravimetrically using an analytical balance (OHAUS, model Explorer EX324) and then were loaded with CO₂ by carefully bubbling CO₂ (through a glass bubbler) into the solution until the desired amount of CO2. During the experiment, the solutions were blended (using a magnetic stirrer) and cooled at 3 °C for accelerating the CO₂ absorption process.

2.2. Procedure for Measuring CO₂ Loading

The CO_2 concentration in the liquid phase was determined by taking 4 g. of solvent loaded with CO_2 and spilled in a 100 mL volumetric flask. According to Reaction 1, the CO_2 -loaded solution is composed of two ionic species: bicarbonate (HCO₃⁻) and MEA's basic cation ($C_2H_7NOH^+$). In order to convert the CO_2 dissolved (in form of bicarbonate) to a soluble stable salt, 6 mL of a 1 M NaOH solution was added (Reaction 2). After that, 50 mL of a 0.1 M BaCl₂ solution was added and blended to precipitate the NaHCO₃ to BaCO₃ (Reaction 3). The precipitation

process takes near 4 hours to finish. This process could be accelerated in an isothermal bath circulator at 5 $^{\circ}$ C since Reaction 3 is favored at low temperatures.

 $C_2H_7NO + CO_2 + H_2O \leftrightarrow C_2H_7NOH^+ + HCO_3^-$ (1)

 $C_2H_7NOH^+ + HCO_3^- + NaOH \iff NaHCO_3 + C_2H_7NO + H_2O$ (2)

$$\begin{split} \mathsf{N}\mathsf{a}\mathsf{H}\mathsf{C}\mathsf{O}_3 + \mathsf{C}_2\mathsf{H}_7\mathsf{N}\mathsf{O} + \mathsf{H}_2\mathsf{O} + \mathsf{B}\mathsf{a}\mathsf{C}\mathsf{I}_2 & \Longleftrightarrow \, \mathsf{N}\mathsf{a}\mathsf{C}\mathsf{I} + \mathsf{B}\mathsf{a}\mathsf{C}\mathsf{O}_3 + \\ \mathsf{H}\mathsf{C}\mathsf{I} + \mathsf{C}_2\mathsf{H}_7\mathsf{N}\mathsf{O} + \mathsf{H}_2\mathsf{O} \end{split} \tag{3}$$

Then, the precipitate was filtered using the experimental apparatus shown in Figure 1. It consists of a vacuum flask which is attached to a Büchner funnel via a black elastomer adapter. The hose barb of the flask is connected via a hose to a vacuum pump. Also, a glass microfiber filter was put inside of the Büchner funnel for recovery of the BaCO₃ precipitated (inset of Figure 1). The precipitate was washed with deionized water several times until a solvent filtered reaches a pH value near between 9.6 and 9.8. Then, the clean BaCO₃ precipitate, which has a white appearance, was recovered from the filter and was transferred into a 250 mL round-bottomed flask along with 100 mL of deionized water. After that, the clean BaCO₃ precipitate was titrated with a 0.1 M HCI solution. Depend on the amount of acidic solution spent, is the CO₂ captured by the amine, such as shown in Reaction 4:

$$BaCO_3 + 2HCI \leftrightarrow BaCl_2 + CO_2 + H_2O$$
(4)

Figure **2** shows the lab instruments employed for titration of $BaCO_3$ for determining the CO_2 concentration in an aqueous MEA solution. It consists of a burette, which is held using a double burette clamp attached to a lab support stand; a lab magnetic stirring

Figure 1: Experimental apparatus used to filter the $BaCO_3$ precipitate from the ionic solution: 1) vacuum flask; 2) Büchner funnel with elastomer adapter; 3) hose; 4) vacuum pump and 5) glass microfiber filter.

heater, on which the flask is placed; a glass vacuum adapter is placed on the top of the flask and it is connected to a vacuum pump. Additionally, a pH meter (Hach, model HQ40d) was used to detect the endpoint of the neutralization reaction of $BaCO_3$ (a pH indicator also could be used).

Initially, in order to accelerate the CO₂ desorption by incrementing the superficial area, small glass balls (Θ = 4 mm) were employed for milling the carbonate lump by shaking the flask manually. Then, a few milliliters of the HCI solution was added to the flask carefully, it was closed with the glass vacuum adapter, then, heated at ~50 °C and afterward shaken again for accelerating CO₂ desorption. After that, the valve of the glass vacuum adapter was opened for extracting the CO₂ desorbed using the vacuum pump. This experimental sequence of shaking-extracting is completed when there are no bubbles in the solution anymore. Once the total amount of CO₂ is extracted, the solution is cooled at 20 °C and its pH is measured. It keeps adding acid to the system and repeating the previous experimental procedure until a pH range between 4.2-4.4 is reached. Depending on the amount of HCI solution spent, is the CO₂ captured by the MEA, such as shown as follows:

$$M_{CO_{2}} = 5 \times 10^{-4} (V_{HCl}) (C_{HCl}) (MW_{CO_{2}})$$
(5)

Where:

 M_{CO_2} = Mass of CO₂ [g] V_{HCl} = Volume of HCl solution spent [mL]

$$C_{HCl}$$
 = Molar concentration of HCl solution
[mol/L]

$$MW_{CO_2}$$
 =

CO₂ molecular weight [g/mol]

Figure 2: Lab instruments employed for titration of BaCO₃: 1) lab magnetic stirring heater; 2) flask connected to a glass vacuum adapter; 3) double burette clamp attached to a lab support stand; 4) burette and 5) vacuum pump.

3. METHOD VALIDATION

The experimental method is validated against a reference system to determine its accuracy and uncertainty. The reference data is obtained by the indirect method, performing experiments in a lab-scale absorption unit. The lab-scale absorption unit is showed in Figure 3, this includes an absorption column (T-101) made of borosilicate glass Duran 3.3, with an internal diameter of 4" and height of 1.70 m; the packing used was 5/8" polypropylene pall ring; the total height of the packing is 1.20 m. Additionally, there are two atmospheric tanks: one for holding a CO₂-free MEA solution (TK-101) and another for the reception of CO₂ rich solution (TK-104); a pump with volumetric flow rate control for feeding of the MEA to the column (P-101); for the gas conditioning there are: a pressurized tank contained CO₂ (TK-102), an air compressor (TK-103) and volumetric flow measurement instruments (gas mixer, "M", and rotameters). A 25 wt% MEA aqueous solution at 25 °C was used varying the solvent volumetric flow rate from 54 to 468 mL/min.

Meanwhile, for the feed gas stream, a mixture of air and CO_2 was used. Table **2** shows the feed condition of the gas (*Stream 3*).

Table 2:	Feed Conditions of the Gas Stream

Flow rate (L/h)	4448
Absolute pressure (atm)	1.1
Temperature (°C)	26.1
Relative humidity (% HR)	45
Composition (v/v%)	
N ₂	73.9
O ₂	19.6
CO2	5.0
H ₂ O	1.5

Initially, the gas was fed from the bottom of the column and its CO_2 concentration and relative humidity were measured at the outlet on the top of the column (*Stream 4*) using an analyzer gas (Testo 350 Portable Emission Analyzer) and humidity-temperature meter (Vaisala M170), respectively. Once the composition of the *Stream 4* was stabilized, the MEA solution was fed to the column from the top (*Stream 1*), it was fed for about 10 minutes until the concentration gas at the outlet was constant. Then, samples of the liquid phase in triplicate were taken from the bottom of the column (*Stream 2*) and its CO_2 loading was determined by the experimental method described above. The steps mentioned were repeated for each solvent flow rate change employed. Additionally, mass balances were performed to collect the reference data. It is pertinent to mention that, for calculating mass balances, it was assumed that there is no solubility of oxygen in the solvent and there is no evaporation of the amine, water only.

The results for the validation method are presented in Table **3**. As it can be seen, at a higher solvent flow rate (Q_{solv}) , lower CO₂ concentrations in the liquid phase were obtained, as could be expected. This is because only the amount of amine is varied and, the CO₂ concentration of feed gas and the amine in the solvent are constants, so this behavior is then due to a dilution effect.

In addition, from Figure **4** it can be observed that deviation percentage between the CO_2 concentration obtained by experimental method ($w_{CO_2,meth}$) and the reference ($w_{CO_2,ref}$) is higher at a lower solvent flow rate (Q_{solv}). This is because the samples obtained at lower Q_{solv} have a higher amount of CO_2 dissolved in the amine, which requires a longer time for Reaction 2 to reach equilibrium. In other words, not enough time is being given for the total amount of HCO_3^- contained in the samples to transform into NaHCO3. Therefore, the person interested in applying this method must make a trade-off between the time involved in this process and the desired uncertainty value.

Figure 3: Schematic flow diagram of CO₂ capture lab unit.

Q _{solv} (mL/min)	y _{CO2} (v/v%)	$w_{CO_2, ref}$ (mass fraction)	$w_{CO_2,meth}$ (mass fraction)	Deviation (%)
54	3.37	0.0493	0.0429	-13
128	2.36	0.0321	0.0305	-5
299	1.9	0.0162	0.0166	5
468	1.48	0.0117	0.0119	3

Table 3: Data Obtained from the Validation Test (Reference) and the Method Used

From the results, it can observe that the uncertainty between the experimental method developed and the reference values is ±3-13%; which is in good agreement with similar titration-based methods [15. 16]. This range of error could be attributed mainly to the lack of time to reach the chemical equilibrium of reactions, uncertainty in solvent weighing, losses of BaCO₃ precipitate during filtering and, visual errors in the burette reading during the titration.

Figure 4: Comparison between CO2 concentration in the liquid phase obtained by method and reference as funtion of Q_{solv}.

Finally, the experimental method described in this work is an alternative to students or technicians be able to measure CO₂ measuring in liquid sample using inexpensive and common apparatus in most of the laboratories. The main disadvantages are the poor CO₂ detection level and very high time-labor intensity in comparison to other analytical techniques. Although the method developed is not practical enough for the high time demanding, it is a reliable and inexpensive alternative for measuring CO₂ solubility in amine-based solutions.

4. CONCLUSIONS

A detailed titration-based method for measuring CO₂ loading in aqueous MEA solutions was presented. The

method was validated against a reference system (a certified gas analyzer) to determine its accuracy and uncertainty. The results show that uncertainty between the titration-based method and the reference is ± 3 -13%; which is in good agreement with similar experiments. It is a reliable and inexpensive alternative for testing CO₂ solubility in amine aqueous solutions.

Although the method described in this work is not practical enough, it is very educational and illustrative to describe the process step by step, especially for students. non-chemical profiles and beginning scientists to measure the CO₂ load using common and inexpensive devices that are easy to find in most laboratories.

ACKNOWLEDGEMENTS

The project was funded by Instituto Nacional de Electricidad y Energía Limpias (INEEL) under the project number 20026: "Ampliación de las capacidades del INEEL en energía limpia y eficiente". The authors thank Dra. Vita Peralta-Martínez and Eng. Elvia Palacios-Lozano for supporting with equipment for running the validation test.

DECLARATION OF INTERESTS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

[1] Cuccia L, Dugay J, Bontemps D, Louis-Louisy M, Vial J. Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review. International Journal of Greenhouse Gas Control 2018; 72: 138-151. https://doi.org/10.1016/j.ijggc.2018.03.014

[2] van der Ham LV, van Eckeveld AC, Goetheer ELV. Online monitoring of dissolved CO₂ and MEA concentrations: Effect of solvent degradation on predictive accuracy. Energy Procedia 2014; 63: 1223-1228. https://doi.org/10.1016/j.egypro.2014.11.132

- [3] Einbu A, Ciftja AF, Grimstvedt A, Zakeri A, Svendsen HF. Online analysis of amine concentration and CO₂ loading in MEA solutions by ATR-FTIR spectroscopy. Energy Procedia 2012; 23: 55-63. https://doi.org/10.1016/j.egypro.2012.06.040
- [4] van der Lee JH, Swallow JA, Young BR. CO₂ loading measurement and control in an amine absorption/stripping pilot plant. Proc Annu ISA Anal Div Symp 2003; 59-65.
- [5] van der Lee JH, Swallow JA, Young BR, Svreck WY. Monitoring CO₂ loading of rich and lean streams in an amine absorption/stripping pilot plant. Proc Annu ISA Anal Div Symp 2004; 250-257.
- [6] Idem R, Supap T, Shi H, Gelowitz D, Ball M, Campbell C, Tontiwachwuthikul P. Practical experience in postcombustion CO₂ capture using reactive solvents in large pilot and demonstration plants. Int J Greenhouse Gas Control 2015; 40: 6-25. <u>https://doi.org/10.1016/j.ijqqc.2015.06.005</u>
- [7] Crossno SK, Kalbus LH, Kalbus GE. Determinations of Carbon Dioxide by Titration: New Experiments for General, Physical, and Quantitative Analysis Courses. Journal of Chemical Education 1996; 73(2): 175. https://doi.org/10.1021/ed073p175
- [8] Linde, High performance liquid chromatography (HPLC), web page: http://hiq.linde-gas.com/en/analytical_methods/ liquid_chromatography/high_performance_liquid_chromatogr aphy.html, consulted in August 2018.
- [9] Vega F, Sanna A, Maroto-Valer MM, Navarrete B, Abad-Correa D. Study of the MEA degradation in a CO₂ capture process based on partial oxy-combustion approach. International Journal of Greenhouse Gas Control 2016; 54(Part 1): 160-167. <u>https://doi.org/10.1016/j.ijggc.2016.09.007</u>
- [10] Gilmartin G, Gingrich D. A comparison of the determination and speciation of inorganic arsenic using general HPLC methodology with UV, MS and MS/MS detection. Journal of Chromatography B 2018; 1083: 20-27. https://doi.org/10.1016/j.jchromb.2018.02.034
- [11] Janse van Rensburg M, Botha A, Rohwer E. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a

pulsed discharge helium ionisation detector. Journal of Chromatography A 2007; 1167(1): 102-108. https://doi.org/10.1016/j.chroma.2007.07.055

[12] Wurm DB, Sun K, Winniford WL. Analysis of low levels of oxygen, carbon monoxide, and carbon dioxide in polyolefin feed streams using a pulsed discharge detector and two PLOT columns. Journal of Chromatographic Science 2003; 41.

https://doi.org/10.1093/chromsci/41.10.545

- [13] Esler MB, Griffith DWT, Wilson SR, Steele LP. Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous Analysis of CO₂, CH₄, N₂O, and CO in air. Analytical Chemistry 2000; 72(1): 206-215. https://doi.org/10.1021/ac9905625
- [14] Vaisala, "How to measure carbon dioxide", application note. Web page: https://www.vaisala.com/sites/default/files/ documents/CEN-TIA-Parameter-How-to-measure-CO2-Application-note-B211228EN-A.pdf. Published in 2012, consulted in August 2018.
- [15] Jou FY, Mather AE, Otto FD. Solubility of solution and carbon dioxide in aqueous 1982.
- [16] Jou FY, Mather AE. Solubility of carbon dioxide in an aqueous mixture of methyldiethanolamine and Nmethylpirrolidone at elevated pressures. Fluid Phase Equilib 2005; 228-229: 465-469. https://doi.org/10.1016/j.fluid.2004.10.004
- [17] Ma'mun S, Jakobsen JP, Svendsen HF, Juliussen O. Experimental and Modeling Study of the Solubility of Carbon Dioxide in Aqueous 30 Mass % 2-((2minoethyl)amino)ethanol Solution. Ind Eng Chem Res 2006; 45(8): 2505-2512. https://doi.org/10.1021/ie0505209
- [18] Ji L, Miksche SJ, Rimpf LM, Farthing GA. CO₂ Chemical Solvent Screening. 8th Annual Conference on Carbon Capture and Sequestration. DOE/NETL Pittsburgh, PA, U.S.A. May 4-7, 2009.
- [19] Kohl AL, Nielsen RB. Gas Purification, 5th ed., Gulf Publishing Co., Houston, TX, 1997.
- [20] Maddox RN, Erbar JH. Gas conditioning and processing. Campbell Petroleum Series, Norman, OK, 1982.