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Abstract:  
 
Nowadays, the mechanical characteristics of micro-/nano-structures in the various 
types of engineering disciplines are considered as remarkable criteria which may 
restrict the performance of small-scale structures in the reality for a certain 
application. This paper deals with a comprehensive review pertinent to using the 
nonlocal strain-gradient continuum mechanics model of size-dependent micro-
/nano-beams/-plates. According to the non-classical features of materials, using 
size-dependent continuum mechanics theories is mandatory to investigate 
accurately the mechanical characteristics of the micro-/nano-structures. Recently, 
the number of researches related to the analysis of micro-/nano-structures with 
various geometry including beams as well as plates is considerable. In this regard, 
the mechanical behavior of these structures induced by different loadings such as 
vibration, wave propagation, and buckling behavior associated with the nonlocal 
strain-gradient continuum mechanics model is presented in this review work. 
Proposing the most valuable literature pertinent to the nonlocal strain-gradient 
continuum mechanics theory of micro-/nano-beams/plates is the main objective of 
this detailed survey. 
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1. INTRODUCTION 

 Micro-/nano-electromechanical systems (M/NEMS) 
have been growing in various engineering applications 
such as mechanical, structural, aerospace, biomedical, 
as well as electrical, in which their mechanical behavior 
investigation can be considered as a challenging 
problem in their modeling. Also, to design various 
micro-/nano-structures such as micro-/nano-beams as 
well as micro-/nano-plates, functional knowledge of 
their physical (mechanical, electrical, thermal, etc.) 
features is mandatory [1-3]. It is important to mention 
that after the discovery of novel manufacturing 
technologies pertinent to size-dependent components, 
the number of practical applications related to using 
micro/nano-structures in various disciplines of 
engineering problems was considerable [4-6]. 
Furthermore, there are so many examples that can be 
shown in the design of components of some smart 
devices or machines including spacecraft, submarines, 
medical devices, bio/nano-sensors, electrical circuits, 
and so on. Many approaches can be employed to 
model the size-dependent structures including 
molecular dynamics, density functional theory, and 
tight-binding molecular dynamic [7-9] (peculiar to 
atomistic simulation schemes), continuum mechanics 
models, or their combination. Besides, using classical 
and non-classical continuum mechanical models are 
easier to model micro-/nano-structures than the 
atomistic models.  

Researchers employed various size-dependent 
methods such as the nonlocal elasticity of Eringen, the 
strain gradient theory, the modified couple stress 
model, the micromorphic theory, as well as the 
nonlocal-stress gradient (as a hybrid model) procedure 
[10-20] to introduce the differences between classical 
and non-classical models. Many researchers studied 
the mechanical behavior of micro-/nano-structures 
based on the non-classical continuum mechanics 
models induced by different types of loadings including 
vibration [21-32], wave propagation [33-43], and 
buckling phenomenon [44-54] associated with linear 
and nonlinear approaches related to the kinematic 
relations. According to their hypothesis as well as 
obtained results, various methods such as analytical, 
semi-analytical, as well as numerical schemes were 
proposed to investigate the static/dynamic 
characteristics of their models.  

Recently, researchers decided to utilize nonlocal strain-
gradient models of small-scale effects such as the 
nonlocal-stress gradient method. This method has the 

advantages of both the nonlocal and strain gradient 
models together. Some scientists proposed that 
employing the nonlocal elasticity and the strain gradient 
models can change the stiffness behavior of the 
micro/nano-structures drastically, in particular in some 
specific small-scale parameters. Therefore, using the 
nonlocal strain-gradient model size-dependent model 
gives a more realistic model at micro/nano-scale. In 
this regard, there are many advantages, drawbacks, 
and key applications pertinent to using the nonlocal-
stress gradient size-dependent methods [55-60]. For 
example, this hybrid model contains both nonlocal and 
material length scale parameters and predict the 
stiffness-hardening influences using the length scale 
parameter [61-62]. Also, a nonlocal strain-gradient 
model is more accurate for modeling and analysis of 
micro/nano-structures using both stiffness reduction 
and enhancement influences [61-62]. Of course, for 
certain boundary conditions, the results are not 
accurate and correct. Moreover, some key applications 
of this theory are wave dispersion analysis of FGM, 
biological tissues, energy harvesting, M/NEMS 
cantilever actuators [24, 61-62].  

There are several interesting papers in the literature 
pertinent to the review of micro/nano-structures [63-67]. 
It is significant to mention that the investigation of the 
important outcomes pertinent to the influences of the 
nonlocal-stress gradient size-dependent methods on 
various micro/nano-structures is the main motivation of 
this study as well as the major difference between the 
current review and published papers.  

2. NONLOCAL STRAIN-GRADIENT CONTINUUM 
MECHANICS THEORY 

Several procedures can be used in modelling small-
scale structures such as molecular dynamics, density 
functional theory, as well as tight-binding MD [9,68], 
which are proposed as atomistic simulation models and 
continuum mechanics. Moreover, as it was mentioned, 
there are many size-dependent effects including strain 
gradient method, couple stress theory, and 
micromorphic model. Using the mentioned size-
dependent effects can be relevant to the application of 
micro-/nano-structures in various engineering 
disciplines. Indeed, based on the softening or 
hardening behavior of material and proposed boundary 
conditions used in various small-scale structures such 
as Euler-Bernoulli, Rayleigh, Timoshenko, higher-order 
beam theories as well as plate models, nonlocal 
Eringen, couple stress, strain-gradient, and 
micromorphic theories can be employed. 
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Based on the above-mentioned, using a suitable size-
dependent model is significant to scrutinize the 
mechanical characteristics of micro-/nano-structures at 
micro-/nano-sized scales. The nonlocal strain-gradient 
method has been utilized to investigate the nonlocal 
and strain gradient models, simultaneously. Using the 
higher-order theory by Lim et al. [69], the internal 
energy density potential UED (!ij , "!ij ,e0a)  within the 
domain V can be given as follows: 

UED (!ij , "!ij ,e0a)=
1
2
!ijCijkl #0 ( x $ "x

V
% ,e0a) "!kldV

+
l2

2
!ij ,mCijkl #1( x $ "x

V
% ,e1a) "!kl ,mdV

,       (1) 

in which e0a , e1a , Cijkl , l  are, the small-scale 
parameters, elastic modulus tensor, and material 
length scale parameter, respectively. Moreover, 
!0 ( x " #x ,e0a)  and !1( x " #x ,e1a)  are the nonlocal 
attenuation kernel functions and is the volume of the 
model. Furthermore, !ij  and !"ij  are the Cartesian terms 
of the strain tensors. The total stress tensor will be 
proposed as follows:  

! xx =" xx #
d" xx

1

dx
,           (2) 

where ! xx  and ! xx
1

 are the classical and higher-order 
stresses, respectively. Based on Lim’s theory, the final 
constitutive equation of the nonlocal strain-gradient 
model can be proposed as [69-79]: 

1! (ea)2"2( )# xx = E 1! (l)2"2( )$xx .         (3) 

in which E , ! xx , !xx  are, the elasticity modulus, the 
stress, and strain counterparts, respectively. 

2.1. Static Bending and Buckling 

In recent years, the investigation of linear and nonlinear 
bending, as well as buckling of micro/nano-structures 
based on the nonlocal strain-gradient method was 
carried out by some researchers. Many studies 
proposed analytical approaches to scrutinize their 
linear bending behavior. Lu et al. [76] studied the 
investigation of a nonlocal strain-gradient theory related 
to the micro-/nano-beams with consideration of the 
importance of higher-order terms using Euler–Bernoulli 
as well as Timoshenko beam models. Based on 
Hamilton’s principle and the relevant boundary 
conditions, the relations were obtained. The effects of 
the nonlocal strain-gradient theory on the bending 
characteristics of the sandwich porous nanoplate using 

piezomagnetic face sheets as well as the first-order 
shear deformation model were proposed by Arefi et al. 
[77]. They used the power-law function to scrutinize 
changing the porosity along with the direction of 
thickness encapsulated by the Pasternak medium. 
Allam and Radwan [81] investigated the nonlocal 
strain-gradient model of bending as well as buckling of 
the FG curved micro-/nano-beam on an elastic 
foundation with viscoelastic effects and different 
boundary conditions. They employed the two power-
law models to show any changes in material features 
associated with viscoelastic FG curved micro-/nano-
beam. Xu et al. [82] proposed the bending and buckling 
characteristics of the micro-/nano-beams using the 
nonlocal strain-gradient elastic model. They proved that 
using the higher-order boundary conditions leads to 
having no significant effect on the bending deflection of 
the micro-/nano-beam. 

Barretta et al. [83] examined the boundary conditions 
effects on nonlocal strain-gradient micro-/nano-beams. 
They indicated equivalence between a differential 
model as well as the nonlocal strain-gradient integral 
scheme using the proposed constitutive boundary 
conditions. Gao et al. [84] investigated nonlinear static 
bending characteristics of an FG porous micro-/nano-
beams using physical fields and the nonlocal strain-
gradient theory. They obtained the nonlinear relations 
using Hamilton's method. Beddia et al. [85] proposed a 
new hyperbolic in conjunction with two-unknown micro-
/nano-beam related to buckling and bending 
characteristics with consideration of the nonlocal strain-
gradient theory. They utilized Navier’s solution for the 
governing equations to solve them analytically based 
on the S-S boundary condition. Besides, several 
authors employed discretization methods to investigate 
the buckling as well as post-buckling characteristics of 
the micro-/nano-structures. Farajpour et al. [86] 
proposed the nonlocal strain-gradient theory for 
buckling behavior of an orthotropic micro-/nano-plate 
induced by the thermal environment. Based on the 
DQM procedure the equations were examined and 
solved. Bending/buckling/vibration characteristics of 
axially FG micro-/nano-beams with consideration of the 
nonlocal strain-gradient as well as Euler–Bernoulli 
beam theories were proposed by Li et al. [87]. 
According to the through-length grading model of the 
FG material, the mechanical behavior was investigated. 
Also, the buckling load, deflection, and frequency 
values were controlled with appropriate amounts of the 
power-law index.  
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Moreover, numerical procedures were employed by 
researchers to scrutinize the nonlinear behavior of 
buckling, as well as post-buckling of micro-/nano-
structures. Post-buckling, as well as bending behavior 
of nano-beams using nonlocal strain-gradient model 
based on the nonlinear influences, were carried out by 
Zhong et al. [88]. They scrutinized the multi-scale 
method of the Euler Bernoulli nano-beam based on the 
long deflection model. Li and Hu [89] studied the post-
buckling features of FG nano-beams using nonlocal 
stress/strain gradient models with consideration of the 
nonlinear geometric associated with von Kármán 
theory. They used the physical neutral surface for 
removing the proposed coupling between 
bending/stretching associated with geometric 
nonlinearity related to the FG micro-/nano-structure. 
Mao and Zhang [90] investigated the buckling and 
post-buckling characteristics of FG graphene reinforced 
piezoelectric micro-/nano-plate using axial forces and 
the electric potential. They utilized the Halpin-Tsai 
parallel method to obtain the effective Young’s modulus 
pertinent to each layer. They indicated that graphene 
platelet has an interesting influence on the buckling 
and post-buckling strength associated with the FG 
piezoelectric micro-/nano-plate.  

2.2. Vibration and Wave Propagation 

The following researches indicate the proposed works 
related to the linear and nonlinear free/forced vibration 
as well as wave propagation of the micro-/nano-
structures. 

Roudbari and Ansari [80] analyzed the physical 
characteristics of SWBNNT as a bio-/nano-sensor due 
to sensing attached micro/-nanoscale objects. Based 

on the various boundary conditions including SS-SS, 
C-C, and C-F, the vibrational characteristics of the 
model were examined. They used Rayleigh and 
Timoshenko beam models in their study. Furthermore, 
the nonlocal strain-gradient method was employed to 
show the size-dependent influences. Also, numerical 
methods were employed to investigate the mechanical 
properties of size-dependent structures. Figure 1a-c 
show the influences of the dimensionless amounts of 
the mass weight of attached nanoparticles on the 
relative frequency shift values. It was obvious that 
relative frequency shift values increase with an 
increase in the amounts of mass weight of attached 
nanoparticles, which was correct for nonlocal strain-
gradient RBT and TBT. Moreover, the results of 
nonlocal strain-gradient TBT track the outputs of 
nonlocal strain-gradient RBT for all magnitudes of 
mass weight of the attached nanoparticle. Also, the 
discrepancy between the obtained relative frequency 
shift values for nonlocal strain-gradient RBT and TBT 
was observable in higher values of the mass weight of 
the attached nanoparticle. Furthermore, the C-C 
boundary condition had higher values than other case 
studies. 

They also obtained the predicted first four 
dimensionless flexural frequencies of zigzag (7,0) form 
SWBNNT as a bio-/nano-mass sensor which is 
provided in Table 1. Their obtained results were 
pertinent to S-S, bridged and cantilever types of 
boundary conditions and also nonlocal strain-gradient 
RBT and TBT models. It was clear that the C-F 
boundary condition case study had lower values of 
dimensionless flexural frequencies than other types of 
boundary conditions. 

 
Figure 1: (a-c). The influences of the dimensionless amounts of the mass weight of attached nanoparticles on the relative 
frequency shift values. 
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Nonlinear vibration behavior of bi-directional FG micro-
/nano-beams with consideration of the nonlocal stress 
as well as micro-structural strain gradient effects was 
examined by Sahmani and Safaei [91]. They utilized 
GDQM as well as Galerkin procedures and also 
pseudo-arc-length continuation schemes to solve the 
proposed relations of motions. They studied the 
nonlocal strain-gradient of 2D FGM against different 
magnitudes with the nonlinear dynamic response of the 
axial material characteristics. Ghayesh et al. [92] 
investigated the coupled dynamics pertinent to 
nanofluid-conveying micro/nanotubes. Using the 
Beskok–Karniadakis model, the size-dependent 
influences of the nanofluid were proposed. Likewise, 
they used Coriolis acceleration effects based on the 
influences of the centrifugal acceleration. At a specific 
speed of nanofluid, the coupled bifurcation variation of 
the nanofluid-conveying micro/nanotubes was 
examined. Roodgar Saffari et al. [24] worked on the 
vibration behavior of fluid conveying SWCNT 
surrounded by a visco-Pasternak substrate with 
nonlinearity effects using the nonlocal strain-gradient 
model. They indicated that the size-dependent 
parameters have considerable effects on the dynamic 
behavior of the proposed model. The effect of variation 
of eigenvalue by velocity for different values of Winkler 

and damping parameters were illustrated in Figure 2. 
The real part (damping ratio) curve did not change at 
lower values of fluid speed but divergence at higher 
values of fluid speed. Also, by increasing damping 
parameters, total damping of the system increased, the 
imaginary part and the critical values of speed 
decreased. Also, the real part increased and 
divergence at lower values of fluid speed. 

Barati et al. [61] worked on the forced vibration 
characteristics of the heterogeneous porous FG micro-
/nano-plates using the nonlocal stress-strain gradient 
theory. He examined the effects of the stiffness-
softening/hardening behavior to scrutinize the 
mechanical features of the proposed model. Roudbari 
and Doroudgar Jorshari [93] analyzed the control 
behavior of SWCNT acted upon by a moving 
nanoparticle using the nonlocal strain-gradient as well 
as the Rayleigh beam theories with consideration of 
thermal and magnetic influences. They proved that the 
PZT patches as bio/nano-sensors can be connected to 
a charge amplifier for actuating the SWCNT which can 
be shown in Figure 3. 

Wu et al. [94] proposed forced vibration behavior of FG 
graphene platelet-reinforced nanocomposite micro-
/nano-beams based on the nonlocal strain-gradient 

Table 1: Predicted First Four Dimensionless Flexural Frequencies of (7,0) SWBNNT 

Mnp Predicted results !1  !2  !3  !4  

NSRBT (S-S) 3.0638 7.9321 11.1057 13.2447 

NSTBT (S-S) 3.0699 7.6038 10.0432 12.9012 

NSRBT (C-C) 4.5834 9.0884 11.9654 13.8896 

NSTBT (C-C) 4.478 8.3824 10.4365 12.902 

NSRBT (C-F) 1.8778 4.5244 7.0607 10.65 

0 

NSTBT (C-F) 1.9122 4.4968 6.8242 9.6902 

NSRBT (S-S) 2.6059 7.4691 10.8409 14.6669 

NSTBT (S-S) 2.6144 7.1336 9.7565 12.8297 

NSRBT (C-C) 3.792 8.7123 11.7311 13.7717 

NSTBT (C-C) 3.7134 8.0081 10.1721 12.8379 

NSRBT (C-F) 1.4209 3.9879 6.5249 10.2388 

0.5 

NSTBT (C-F) 1.4476 3.9581 6.3151 10.281 

NSRBT (S-S) 2.3629 7.3305 10.772 14.6489 

NSTBT (S-S) 2.3717 6.9872 9.6845 12.8075 

NSRBT (C-C) 3.4059 8.6116 11.6785 13.7471 

NSTBT (C-C) 3.3361 7.9014 10.1075 12.0748 

NSRBT (C-F) 1.2484 3.9124 6.4756 10.2156 

1 

NSTBT (C-F) 1.2716 3.88 6.2655 10.2654 



Journal of Basic & Applied Sciences, 2021, Volume 17 

 

189 

theory as well as the refined hyperbolic shear 
deformation beam procedure. The material features of 
laminated FG graphene platelet-reinforced 
nanocomposite micro-/nano-beams were obtained 
using the Halpin–Tsai method. Mahmoudpour [95] 
reported the nonlinear resonant behavior of a thick 
multi-layered nano-plate using the nonlocal strain-
gradient model and the first-order shear deformation 
plate theory. The interactional vdW forces between the 
proposed adjacent layers of the nano-plate were 
considered. Vahidi-Moghaddam et al. [96] examined 
the nonlinear characteristics of forced vibration of the 
micro-/nano-beam using the nonlocal strain-gradient 
theory and the Euler-Bernoulli beam model for C-C 
boundary conditions. A reduced motion equation based 
on the central harmonic load as well as the Galerkin 
procedure was proposed.  

Several works related to the analytical methods for the 
elastic wave propagation of the micro-/nano-structures 
have been carried out. Wave propagation behavior of 
the visco-elastic SWCNT using the nonlocal strain-
gradient model was reported by Tang et al. [97]. They 
indicated that the blocking diameter value was related 
to the damping ratio, Winkler modulus, and the 

nonlocal strain-gradient scale parameters. The wave 
propagation characteristics of micro-/nano-beams for 
the Timoshenko beam model with consideration of the 
nonlocal strain-gradient theory were analyzed by 
Norouzzadeh et al. [98]. They showed that the classical 
beam model underestimates and overestimates the 
wave frequency values for without as well as with 
consideration of the nonlocal parameter, respectively. 

On the other hand, discretization procedures were 
employed to show the mechanical characteristics of the 
elastic wave propagation responses with nonlinear 
effects of the micro-/nano-structures. Ebrahimi et al. 
[62] examined wave propagation of the FG nano-plates 
with consideration of the inhomogeneous effects and 
the nonlinear thermal influences based on the nonlocal 
strain-gradient model. Nonlinear modelling of the 
flexural wave propagation using the nonlocal strain-
gradient scheme related to the Euler-Bernoulli and 
Timoshenko beam models was investigated by Huang 
et al. [99]. Also, Huang and Wei [100] worked on the 
flexural wave propagation modelling of the infinite 
micro-/nano-plate with consideration of the 
homogeneous effects and fractional nonlocal strain-
gradient model. They employed the spatial and 

 
Figure 2: Effect of variation of eigenvalue by velocity for different value of Winkler and damping parameter. 

 

 
Figure 3: The PZT patches as sensors connected to charge amplifiers to actuate the SWCNT induced by a moving 
nanoparticle. 
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temporal fractional differential to indicate the spatial 
nonlocal and the history-dependent characteristics 
pertinent to the thermoelastic features of the micro-
/nano-structures.  

3. CONCLUSION 

A comprehensive survey of the nonlocal strain-gradient 
continuum mechanics model pertinent to the micro-
/nano-beams and -plates were examined. The 
proposed parts of this review are based on the nonlocal 
strain-gradient theory to show the size-dependent 
influences with consideration of different external 
loading including bending, buckling, vibration, and 
wave propagation. The recently published papers 
pertinent to using small-scale methods for micro-and 
nano-structures are considerable; thus, the current 
review is aimed to work on the proposed small-scale 
method employed in various beams and plates with 
different geometrical and physical parameters. Hope 
the present review help researchers to address the 
advantages, limitations, and deficiencies of using this 
procedure in the modelling of small-scale structures. 
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