
 Journal of Basic & Applied Sciences, 2022, 18, 158-165  

158 

 

 

Published by SET Publisher 
 

Journal of Basic & Applied Sciences 
 

ISSN (online): 1927-5129 
 

Convergence Analysis for Linear Fredholm and Nonlinear 
Fredholm Hammerstein Integral Equations 

Kapil Kant, Rakesh Kumar and B.V. Rathish Kumar*
 

Department of Mathematics & Statistics, Indian Institute of Technology Kanpur-208016, India 

 
Article Info: 
 
Keywords:  
Fredholm integral equation, 
Hammerstein integral equation,  
Degenerate kernel method,  
Iterated degenerate kernel method,  
Legendre polynomials,  
Convergence rates. 
 
Timeline: 
Received: November 05, 2022 
Accepted: December 10, 2022 
Published: December 29, 2022 
 
Citation: Kant K, Kumar R, Kumar BVR. 
Convergence analysis for linear 
fredholm and nonlinear fredholm 
hammerstein integral equations. J Basic 
Appl Sci 2022; 18: 158-165. 
 
 
 

 

 
Abstract:  
 
In this article, we consider the linear Fredholm integral equations and Fredholm-
Hammerstein’s integral equations. We propose the Legendre polynomial based 
degenerate kernel method to solve linear Fredholm and Fredholm-Hammerstein 
integral equations. We discuss the convergence and error analysis of the proposed 
method and also obtain the superconvergence results for iterated degenerate 
kernel method. 

DOI: https://doi.org/10.29169/1927-5129.2022.18.16 

 

 

 
*Corresponding Author 
E-mail: bvrk@iitk.ac.in 
 

 

 

 

© 2022 Kant et al.; Licensee SET Publisher. 
This is an open access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, 
provided the work is properly cited. 
 



Journal of Basic & Applied Sciences, 2022, Volume 18 

 

159 

1. INTRODUCTION 

In this article, we consider the second kind Fredholm 
integral equation  

x(t)!
!1

1
" k(t,s)x(s)ds = f (t),  t # [!1,1],      (1.1) 

and the Hammerstein equation  

x(t)!
!1

1
" k(t,s)#(s, x(s))ds = f (t),  t $ [!1,1],     (1.2) 

where k(!,!)  and f (!)  are known functions in the 
integral equations (1.1) and (1.2) and !(", x("))  is known 
in the integral equation (1.2), and x  is the unknown 
function in both the cases to be found in the Banach 
space  X =C[!1,1] . It is well known that there are 
numerous numerical techniques available to find the 
approximations to integral equation solutions, including 
the Galerkin, collocation, and Petrov Galerkin methods. 
[1] has found that the iterated version of Galerkin and 
collocation methods provide more accurate 
approximate solutions to the solution x  than the 
Galerkin and collocation approximations. This iterated 
technique was also extended to Petrov Galerkin 
methods, discrete Petrov Galerkin methods, 
degenerate kernel methods and new projection 
methods (see [2-8]). Lardy in [9] presented an 
alternative to Nyström’s method. Kumar and Sloan [6] 
proposed a new type collocation methods and its 
superconvergence properties were studied by Kumar 
[10]. Han [11] also offered an extrapolation of a 
discrete form of a collocation-type method. Brunner 
[12] talked about the relationship between Kumar and 
Sloan’s method and the iterated spline collocation 
method for Hammerstein equations. Kaneko and Xu 
[13] devised a degenerated kernel approach for 
Hammerstein equations. Kaneko and Xu [14] 
established the superconvergence of the iterated 
Galerkin solutions for the Hammerstein equations with 
smooth and weakly singular kernels. Kaneko and Xu 
[2] established the superconvergence of the iterated 
Galerkin solutions for the Hammerstein equations with 
smooth and weakly singular kernels. 

In this article, we consider the degenerate kernel 
method, which plays an important role in the study of 
the second kind Fredholm integral equations. Let K  
and K!  be the compact linear and non-linear integral 
operators. We assume that 1 is not an eigenvalue of 
K  and K! . The degenerate kernel method for 
approximating the solutions of the equations (1.1) and 
(1.2) consist of replacing the kernel by the finite rank 
approximation. In particular  

kn (t,s) =
i=1

n

!Ai (t)Bi (s),        (1.3) 

where A  and B  are in  X . The approximate solution of 
the integral equation (1.1) and (1.5) are given by  

xn (t)! !1

1
" kn (t,s)x(s)ds = f (t),       (1.4) 

and  

xn (t)! !1

1
" kn (t,s)#(s, x(s))ds = f (t).      (1.5) 

2. LEGENDRE DEGENERATE KERNEL METHOD 
FOR LINEAR FREDHOLM INTEGRAL EQUATION 

In this section, we discuss the degenerate kernel 
method and iterated degenerate kernel method for 
linear Fredholm integral equation based on Legendre 
polynomial basis functions and obtain the convergence 
results. Let C[!1,1]  be the Banach space of all 
continuous functions defined on [!1,1]  with the uniform 
norm. Consider the following linear integral equation:  

x(t)!
!1

1
" k(t,s)x(s)ds = f (t),  t # [!1,1].      (2.1) 

Let  

Kx(t) =
!1

1
" k(t,s)x(s)ds,  t # [!1,1].       (2.2) 

Then the integral equation (2.1) can be written in 
operator form  

x(t)!Kx(t) = f (t),  t " [!1,1].       (2.3) 

Let   X n =Span{!0,!1,…,!n}  be the sequence of 
Legendre polynomials subspace of  X  of degree r  and 

  Yn =Span{!0,!1,…,!n}  be the sequence of Legendre 
polynomials subspace of  X  of degree r . Where 

 {!0,!1,…,!n}  and  {!0,!1,…,!n}  form orthogonal basis 
for  X n  and  Yn , respectively. Here {! i}  and {! j}  are 
given by  

 
! i (s) = 2i+1

2
Li (s), " j (s) = 2 j +1

2
Lj (s),  i, j = 0,1,…,n,  

here Li's  are the Legendre polynomial of degree ! i . 
These Legendre polynomials can be generated by the 
following three-term recurrence relation  

L0 (s) =1,  L1(s) = s,   s ! ["1,1],  

and  

 (i+1)Li+1(s) = (2i+1)sLi (s)! iLi!1(s), i =1,2,…,n!1.  

Let Lx  be a projection of C([!1,1]"[!1,1])  onto 

 X n !C(["1,1]) , where  X n  is an n -dimensional 
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subspace of C[!1,1] . Similarly, let My  be a projection 
of C([!1,1]"[!1,1])  onto  C([!1,1])"Yn , where  Yn  is an 
n -dimensional subspace of C[!1,1] . 

Define  

Rxk(x, y) = k(x, y)! Lxk(x, y),       (2.4) 

and  

Ryk(x, y) = k(x, y)!Myk(x, y).       (2.5) 

Then Lxk  and Myk  provide two degenerate kernels 
that approximate partially k(x, y)  with respect to x  and 
y , with respective errors Rxk  and Ryk . Then LxMyk  
gives a complete approximation of k(x, y)  in both x  
and y , with error term  

R(LxMy )k = Rxk + Ryk ! RxRyk.       (2.6) 

Thus, the rate of convergence depends on the 
approximation powers of Lx  and My . 

In order to enhance the speed of convergence, we 
define the Boolean sum of Lx  and My  by  

Lx !My = Lx +My " LxMy .       (2.7) 

Then (Lx !My )k  approximates k  with the error  

R(Lx !My )k = RxRyk.        (2.8) 

Suppose that for each n !1 , kn (t,s)  is an 
approximation of the kernel k(t,s) , and it’s degenerate 
kernel form  

kn (t,s) =
i=1

n

!
j=1

n

!aij" i (t)" j (s),       (2.9) 

where {! i}i=1
n  is a set of linearly independent functions 

in C[!1,1] . 

Let  

Knx(t) = !1

1
" kn (t,s)x(s)ds.      (2.10) 

The approximate solution xn  of the integral equation 
(2.1) can be found by solving the following 
approximation equation  

xn !Knxn = f .       (2.11) 

Substituting kn  from the equation (3.4) in the equation 
(2.11), we obtain  

xn (t)! !1

1
"

i=1

n

#
j=1

n

#aij$ i (t)$ j (s)xn (s)ds = f (t)  

xn (t) =
i=1

n

!" i (t){
j=1

n

!
#1

1
$ aij" j (s)xn (s)ds}+ f (t).    (2.12) 

Suppose  

ci =
j=1

n

!
"1

1
# aij$ j (s)xn (s)ds.      (2.13) 

Then xn  can be written as  

xn (t) = f (t)+
i=1

n

!ci" i (t).      (2.14) 

Substituting equation (2.14) in the equation (2.13), we 
obtain  

ci =
j=1

n

!
"1

1
# aij$ j (s){ f (s)+

l=1

n

!cl$ l (s)}ds  

ci !
l=1

n

"cl
j=1

n

"
!1

1
# aij$ j (s)$ l (s)ds =

j=1

n

"
!1

1
# aij$ j (s) f (s)ds, 1% i % n.

        (2.15) 

Once we get the ci's  from (2.15), we obtain the desired 
approximate solution xn  from (2.14). 

We define the iterated approximation corresponding to 
the equation (2.1) by  

 !xn = f +Kxn .        (2.16) 

lemma 1 Let k(!,!)" C (r ,r ) (0,1)  be the kernel of the 
integral equation (2.1) and the integral equation K  be 
defined by (2.2). Let the operator Kn  be defined by 
(2.10). Then there holds  

(K !Kn )
"

=
# (n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx $ My )k.

%

&
'

('
  (2.17) 

Proof. Consider  

(K !Kn )x "
=

s#[!1,1]
sup | (K !Kn )x(s) | .    (2.18) 

Let  

| (K !Kn )x(s) |=| !1

1
" [kn (t,s)! k(t,s)]x(s)ds |    (2.19) 

Case-I:- Let kn (t,s) = LtMsk(t,s) , we obtain  
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| (K !Kn )x(s) |=| !1

1
" [LtMs ! I ]k(t,s)x(s)ds |  

! [LtMs " I ]k(#,#) L2
x

L2
.!Cn"r x

L2
   (2.20) 

This implies  

(K !Kn )x "
#Cn!r x

L2
.      (2.21) 

Case-II:- Let kn (t,s) = (Lt !Ms )k(t,s) , we obtain  

| (K !Kn )x(s) |=| !1

1
" [Lt #Ms ! I ]k(t,s)x(s)ds |  

=|
!1

1
" [(Lt +Ms ! LtMs )! I ]k(t,s)x(s)ds |  

! (Lt +Ms " LtMs " I )k(#,#) L2
x

L2
 

! (I " Lt )(I "Ms )k(#,#) L2
x

L2
 

!Cn"2r k (r ,r ) (#,#)
L2
x

L2
.      (2.22) 

This implies  

(K !Kn )x "
#Cn!2r x

L2
.     (2.23) 

This completes the proof.  

Theorem 1 Let the integral operator K  be defined by 
(2.2) and the integral operator Kn  be defined by (2.10). 
Suppose that 1  is not an eigenvalue of K ,  then !  a 
finite constant M > 0  such that (I !Kn )

!1

"
< M <".   

Proof. We need to show that Kn  is norm convergent to 
K  in the uniform norm. 

From Lemma (1), we have  

(K !Kn )
"

=
O(n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx # My )k.

$

%
&

'&
 (2.24) 

This implies K !Kn "
# 0  as n!" . Since 1  is not an 

eigenvalue of K . Hence from the analysis of [15], 
! M > 0  such that (I !Kn )

!1

"
< M .  

This completes the proof.  

In the following theorem, we discuss the convergence 
analysis of degenerate kernel method.  

Theorem 2 Let x  be the exact solution of the integral 
equation (2.1) and the approximate solution nx  be 

defined by (2.11), then we find the following error 
bounds in the degenerate kernel method  

x ! xn "
=

O(n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx # My )k.

$

%
&

'&
   (2.25) 

Proof. From equations (2.3) and (2.11), we have  

x ! xn = (I !K )
!1 f ! (I !Kn )

!1 f  

= (I !Kn )
!1[I !Kn ! I !K ](I !K )

!1 f  

= (I !Kn )
!1(K !Kn )x.       (2.26) 

Hence  

x ! xn "
# (I !Kn )

!1

"
(K !Kn )x "

.    (2.27) 

Now using the Lemma 1 and Theorem 1 in the 
estimate (2.27), we obtain  

x ! xn "
#M (K !Kn )x

"
=

O(n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx $ My )k.

%

&
'

('
(2.28) 

This completes the proof.  

In the next theorem, we discuss the order of 
convergence in iterated degenerate kernel method.  

Theorem 3 Let x  be the exact solution of the integral 
equation (2.1) and the approximate solution  !xn  be 
defined by (2.16), then we find the following error 
bounds in the iterated degenerate kernel method  

 

x ! !xn "
=

O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx # My )k.

$

%
&

'&
   (2.29) 

Proof. From equations (2.3) and (2.16), we have  

 x ! !xn = K(x ! xn )  

= K(I !K )!1(K !Kn )xn  

 
x ! !xn "

# (I !K )!1
"
K(K !Kn )xn "

   (2.30) 

Now we evaluate the error bounds for K(K !Kn )xn  in 
the uniform norm. 

Consider  

|K(K !Kn )xn (s) |=| !1

1
" k(t,s)(K !Kn )xn (s)ds |  
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=|
!1

1
" k(t,s)

!1

1
" [k(s,# )! kn (s,# )]xn (s)d# ds |  

=|
!1

1
" !1

1
" k(t,s)[k(s,# )! kn (s,# )]xn (s)d# ds |  

Let ! t (t,s) = k(t,s)xn (s)  and let 

!n (s," ) = i=1

n
# j=1

n
# bij$ i (s)% j (" )  be any element in 

Xn !Yn . Then since nk  is the least-squares 
approximation of k ,  

!1

1
" !1

1
" #n (s,$ )[k(t,s)! kn (t,s)]dsd$ = 0,    (2.31) 

therefore  

|K(K !Kn )xn (s) |=| !1

1
" !1

1
" [# t (s,$ )!%n (s,$ )]

[k(s,$ )! kn (s,$ )]d$ ds |
 

! " t (s,# )$%n (s,# ) L2
k(s,# )$ kn (s,# ) L2  

=
O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx " My )k.

#

$
%

&%
    (2.32) 

Using the estimate (2.31) in the estimate (2.30), we 
have  

 

x ! !xn "
=

O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx # My )k.

$

%
&

'&
   (2.33) 

This completes the proof.  

Remark 1 In the above section, we have discussed the 
degenerate kernel method and iterated degenerate 
kernel method in the two cases when kn = LxMyk  and 
kn = (Lx !My )k . From Theorems 2 and 3, we have 
seen that the order of convergence in iterated 
degenerate kernel method improves over degenerate 
kernel method.  

3. LEGENDRE DEGENERATE KERNEL METHOD 
FOR FREDHOLM-HAMMERSTEIN INTEGRAL 
EQUATION 

In this section, we discuss the degenerate kernel 
method and it’s iterated version to obtain the error 
analysis for Fredholm-Hammerstein integral equations. 
Consider the following Fredholm-Hammerstein integral 
equation:  

x(t)!
!1

1
" k(t,s)#(s, x(s))ds = g(t),  t $ [!1,1].     (3.1) 

Let  

K! (x)(t) =
"1

1
# k(t,s)$(s, x(s))ds,  t % ["1,1].     (3.2) 

Then the integral equation (3.1) can be written in 
operator form  

x(t)!K" (x)(t) = g(t).        (3.3) 

Suppose that for each n !1 , kn (t,s)  is an 
approximation of the kernel k(t,s) , and it’s degenerate 
kernel form  

kn (t,s) =
i=1

n

!
j=1

n

!aij" i (t)" j (s),       (3.4) 

where {! i}i=1
n  is a set of linearly independent functions 

in C[!1,1] . 

Let  

Kn! (x)(t) = "1

1
# kn (t,s)$(s, x(s))ds.       (3.5) 

Let xn  be the approximating solution of the integral 
equation (3.1). We denote the approximating equation 
by  

xn !Kn" (xn ) = g,        (3.6) 

The equation that one must solve is the following  

xn (t)! !1

1
" kn (t,s)#(s, xn (s))ds = g(t),  !1$ t $1.     (3.7) 

Following analogously the development made in (3.4) 
and (2.12) with  

ci =
j=1

n

!
"1

1
# aij$ j (s)%(s, xn (s))ds.       (3.8) 

xn  can be written as  

xn (t) = g(t)+
i=1

n

!ci" i (t).        (3.9) 

Substituting (3.9) into (3.8), we obtain the following n  
nonlinear equations in n  unknowns  c1,c2,…,cn .  

ci =
j=1

n

!
"1

1
# aij$ j (s)%(s,g(s)+

l=1

n

!cl$ l (s))ds, 1& i & n.   (3.10) 

We define the iterated approximation corresponding to 
the equation (3.1) by  
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 !xn = g+K! (xn ).       (3.11) 

In the following theorem, we discuss the error analysis 
in degenerate kernel method.  

Theorem 4 Let x  be the exact solution of the integral 
equation (3.1) and xn  be the approximate solution of 
the equation (3.6). Then the following holds  

x ! xn "
=

O(n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx # My )k.

$

%
&

'&
   (3.12) 

Proof. First we need to show that (I ! (Kn" #) (x))!1
$

 

exists and bounded. 

For this, we need to show that 
(Kn! ") (x))# (K! ") (x))

$
% 0  as n!" . 

Consider  

(Kn! ") (x))# (K! ") (x)) =

#1

1
$ [kn (t,s)% (0,1)(s, x(s))# k(t,s)% (0,1)(s, x(s))]ds

 

=
!1

1
" [kn (t,s)! k(t,s)]# (0,1)(s, x(s))ds  

! kn (t,")# k(t,") L2
$ (0,1)(", x("))

L2
.     (3.13) 

Since kn  is the least square approximation of k . Thus 
we have  

(Kn! ") (x))# (K! ") (x))
$
% 0 as  n%$.    (3.14) 

Since 1 is not eigenvalue of (K! ") (x)  and from [15], 
there exists  L1 > 0  such that 

 
(I ! (Kn" #) (x))!1

$
< L1.  

From equations (3.3) and (3.6), we have 

xn ! x = (Kn" )(xn )! (K" )(x)  

= (Kn! )(xn )" (Kn! )(x)+ (Kn! )(x)" (K! )(x)  

= (Kn! )(xn )" (Kn! )(x)" (Kn! #) (x)(xn " x)+
(Kn! #) (x)(xn " x)+ (Kn! )(x)" (K! )(x).

 

This implies  

(I ! (Kn" #) (x))(xn ! x) = (Kn" )(xn )! (Kn" )(x)!
(Kn" #) (x)(xn ! x)+ (Kn" )(x)! (K" )(x).

 

Hence  

xn = x+ (I ! (Kn" #) (x))!1[(Kn" )(xn )!
(Kn" )(x)! (Kn" #) (x)(xn ! x)+ (Kn" )(x)! (K" )(x)]

 

= An (xn ),  

where  

An (v) = x+ (I ! (Kn" #) (x))!1[(Kn" )(v)!
(Kn" )(x)! (Kn" #) (x)(v! x)+ (Kn" )(x)! (K" )(x)].

  (3.15) 

From above, it can be seen that xn = (Kn! )(xn )  iff 
An (xn ) = xn . Next we show that An :B(x,!)" B(x,!) , for 
some ! > 0  is a contraction mapping. 

Now to prove An (B(x,!))" B(x,!) . For this, !v " B(x,#)  
and from equation (3.15), we obtain  

An (v)! x = (I ! (Kn" #) (x))!1[(Kn" )(v)!
(Kn" )(x)! (Kn" #) (x)(v! x)+ (Kn" )(x)! (K" )(x)]

 

= (I ! (Kn" #) (x))!1[{(Kn" #) (v+$1(v! x))!
(Kn" #) (x)}(v! x)+ (Kn" )(x)! (K" )(x)].

   (3.16) 

Since y1 = v+!1(v" x)# B(x,$), 0 <!1 < 1  and using the 
estimate (3.16) and Mean value theorem, we obtain  

|| An (v)! x ||"  

!|| (I " (Kn# $) (x))"1[{(Kn# $) (y1)" (Kn# $) (x)}(v" x)]
||% + || (I " (Kn# $) (x))"1[(Kn# )(x)" (K# )(x)] ||%

 

 !LC2 || y1 " x ||# || v" x ||# +Ln
"2r  

 !LC2 || v" x ||#
2 +Ln"2r .      (3.17) 

Since n!2r " 0  as n!" , we select n  sufficient large 
so that n!2r < " 2  and !  small enough such that 

 (L (C2 +1)!) <1 , then from equation (3.17), we obtain  

 || An (v)! x ||"# (LC2$ +L$)$ < $.     (3.18) 

It follows An (B(x,!))" B(x,!).  

Next we show that An  is a contraction mapping. Let for 
any !1,!2 " B(x,#)  and using the estimate (3.16), we 
obtain  

|| An (!1)" An (!2 ) ||#  

=|| (I ! (Kn" #) (x))!1[(Kn" )($1)! (Kn" #) (x)($1 ! x)
!(Kn" )($2 )+ (Kn" #) (x)($2 ! x)] ||%

 



Journal of Basic & Applied Sciences, 2022, Volume 18 

 

164 

 !L || (Kn" )(#1)$ (Kn" )(#2 )$ (Kn" %) (x)(#1 $#2 ) ||&  

 =L || (Kn! ") (#1 +$1(#1 %#2 ))(#1 %#2 )% (Kn! ") (x)(#1 %#2 ) ||&  

 !L || (Kn" #) ($1 +%1($1 &$2 ))& (Kn" #) (x) ||' ||$1 &$2 ||'  

 !LC2" ||#1 $#2 ||% .  

We select !  very small such that  LC2! <1 , it follows  

|| An (!1)" An (!2 ) ||#$||!1 "!2 ||# .     (3.19) 

It shows that An :B(x,!)" B(x,!)  is a contraction 
mapping. Hence from Banach contraction principal, An  
has an isolated solution xn  in B(x,!) . 

From equations (3.3) and (3.6), we obtain  

x(t)! xn (t) = K" (x)(t)!Kn" (xn )(t)  

=
!1

1
" [k(t,s)#(s, x(s))! kn (t,s)#(s, xn (s))]ds  

=
!1

1
" [k(t,s)! kn (t,s)]#(s, x(s))ds+

!1

1
" [#(s, x(s))!#(s, xn (s))]kn (t,s)ds

   (3.20) 

This implies  

x ! xn "
# k ! kn L2

$
L2
+ 2 x ! xn "

kn L2
 

(1! 2B) x ! xn "
# k ! kn L2

$
L2

    (3.21) 

Hence using Theorem 1, we obtain  

x ! xn "
#

Cn!r ,  if kn = LxMyk,

Cn!2r , if kn = (Lx $ My )k

%

&
'

('
 

=
O(n!r ),  if kn = LxMyk,

O(n!2r ), if kn = (Lx " My )k.

#

$
%

&%
    (3.22) 

This completes the proof.  

In the following theorem, we discuss the error bounds 
in iterated degenerate kernel method.  

Theorem 5 Let x  be the exact solution of the integral 
equation (3.1) and  !xn  denote the iterated approximate 
solution of the equation (3.11) in iterated degenerate 
kernel method. Then the following holds  

 

x ! !xn "
=

O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx # My )k.

$

%
&

'&
   (3.23) 

Proof. From equations (3.3) and (3.11) and using Mean 
value theorem, we obtain  

 x ! !xn = K" (x)!K" (xn )  

= (K! ") (x+#(xn $ x))(xn $ x)  

= [(K! ") (x+#(xn $ x))$ (K! ") (x)+ (K! ") (x)](xn $ x), (3.24) 

where 0 <! <1 . 

Hence using the assumption , we obtain  

 

x ! !xn "
# [(K$ %) (x+&(xn ! x))! (K$ %) (x)](K$ %) (x)(xn ! x) "

+ (K$ %) (x)(xn ! x) "
 

! "(xn # x) $ xn # x $
+ (K% &) (x)(xn # x) $  

! xn " x #

2
+ (K$ %) (x)(xn " x) # .     (3.25) 

Again from equations (3.3) and (3.6), we obtain  

xn ! x = Kn" (xn )!K" (x)  

= Kn! (xn )"Kn! (x)" (Kn! #) (x)(xn " x)+ (Kn! #) (x)(xn " x)  

+Kn! (x)"K! (x)  

(xn ! x) = Kn" (xn )!Kn" (x)! (Kn" #) (x)(xn ! x)+Kn" (x)!K" (x)  

= [(Kn! ") (x+#(xn $ x))$ (Kn! ") (x)](xn $ x)+[Kn! (x)$K! (x)]  

xn ! x = [I ! (Kn" #) (x)]!1[(Kn" #) (x+$(xn ! x))! (Kn" #) (x)](xn ! x)  

+[I ! (Kn" #) (x)]!1[(Kn" )(x)! (K" )(x)]    (3.26) 

From estimate (3.24), we obtain  

(K! ") (x)(xn # x) $ % c2 (K! ") (x)[I # (Kn! ") (x)]#1
$
x # xn $

2  

+ (K! ") (x)[I # (Kn! ") (x)]#1[Kn! (x)#K! (x)] $  

!M x " xn #

2
+
(K$ %) (x){I +[I " (Kn$ %) (x)]"1

(Kn$ %) (x)}[Kn$ (x)"K$ (x)] #

 

!M x " xn #

2
+ (K$ %) (x)[Kn "K ]$ (x) #  

+ (K! ") (x)[I # (Kn! ") (x)]#1(Kn! ") (x)[(Kn! )(x)# (K! )(x)] $ . (3.27) 

Consider 

| (Kn! ") (x)[(Kn! )(x)# (K! )(x) |=|

#1

1
$ k(t,s)% (0,1)(s, x(s))(Kn #K )! (x)(s)ds |

 

=|
!1

1
" k(t,s)# (0,1)(s, x(s))

!1

1
" [kn (s,$ )! k(s,$ )]#($ , x($ ))d$ ds |  
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=|
!1

1
" !1

1
" k(t,s)# (0,1)(s, x(s))[kn (s,$ )! k(s,$ )]#($ , x($ ))d$ ds |  

=|
!1

1
" !1

1
" [#t (s,$ )!%n (s,$ )][kn (s,$ )! k(s,$ )]#($ , x($ ))d$ ds |  

! "t (s,# )$%n (s,# ) L2
kn (s,# )$ k(s,# ) L2

 

=
O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx " My )k.

#

$
%

&%
    (3.28) 

Hence combining the estimates (3.26)-(3.28) with the 
estimate (3.25), we obatin  

 

x ! !xn "
=

O(n!2r ),  if kn = LxMyk,

O(n!4r ), if kn = (Lx # My )k.

$

%
&

'&
   (3.29) 

This completes the proof.  

Remark 2 In the above section, we have discussed the 
degenerate kernel method and iterated degenerate 
kernel method for Fredholm-Hammerstein integral 
equations and obtained the error analysis. From 
Theorems 4 and 5, we have seen that iterated 
degenerate kernel method improves over degenerate 
kernel method.  

4. CONCLUSION 

In this paper, we have discussed the degenerate kernel 
method and iterated degenerate kernel method for 
linear Fredholm integral equations and Fredholm-
Hammerstein integral equations and obtained the error 
analysis. We have seen that iterated degenerate kernel 
method improves over degenerate kernel method in 
both the types of integral equations. 
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