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Abstract:  
 

Entophytic bacteria have an important role in the growth process and health of the 
plant host. Nevertheless, also some endophytic bacteria are existing in seeds and 
have not been studied yet. In addition, some Entophytic bacteria are important in 
plant tolerance to environmental stresses. They can colonize the internal tissues of 
the host and are able to use a variety of different relations including symbiotic, 
mutualism, communalistic, and trophobiotic. They have the ability for plant 
hormone production like auxin, indole acetic acid, and gibberellin; also some 
endophytic bacteria have the ability for siderophore creation, phosphate 
solubilization, nitrogen fixation, protease, and hydrogen cyanide formation.. 
Moreover, they produce compounds that could have possible usage in drug, 
agriculture or engineering. They have the ability to removesoil toxins thus, 
improving phytoremediation and soil fertility. Further, most of endophytic bacteria 
are diazotrophs and associated with the Proteobacteria, and a varied range has 
been detected agreeing to the nifH gene which codes for nitrogenase enzyme, 
structures recovered from plant materials, however a limited part of these genes 
looks to be stated. The endophytes discussed in this review are isolated from 
surface-disinfested plant tissue, and that do not damage the plant. Moreover, 
endophytes appear to be in-between saprophytic bacteria and plant pathogens, 
they are either saprophytes growing to be pathogens, or extremely grown plant 
pathogens with protective accommodation and nutrient provisions, but not killing 
their host. Generally, endophytic bacteria are partial under biotic and abiotic 
influences, with the plant itself being one of the main prompting influences. 
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INTRODUCTION 

The word Endophyton consists of two parts (endon 
=inside, phyton = plant), these microorganisms spend 
most of their lifecycle inside the plant tissue without 
affecting harm or illness, [1]. They have been supposed 
to be weakly strong plant pathogens. Recent research 
proved that they have several beneficial effects on the 
plant host [2]. These bacteria have the ability to 
colonize plant tissues without negatively affecting the 
host. Endophytic genera for example Azoarcus, 
Burkholderia, Gluconobacter, Klebsiella, Pantoea, 
Herbaspirillum, Rahnella, and Pseudomonas are 
capable to increase the biomass in inoculated plants 
[3]. Positive entophytic bacteria have been concerned 
in the recent years for their progressive effect on yield 
manufacture [4]. Moreover, numerous studies have 
revealed that entophytic bacteria can be used as bio- 
control agents for numerous plant pathogens [5]. Some 
authors divided endophytic into two groups, facultative 
and obligate bacteria. Further studies [6] describe 
endophytes as microbes containing bacteria, fungi, and 
protists that inhabit the plant's inner structures. In some 
situations, they also accelerate the seedling process, 
and help plants establish under contrary conditions [7]. 
Many researchers have justified the role of endophytic 
bacteria for the defense against biotic or abiotic 
pressure in addition to the developmental advancement 
of the plant [8]. These endophytic bacteria encourage 
plant development increasing the germination rate; leaf 
part; chlorophyll, nitrogen and protein contents;, 
hydraulic activity; growth parameters; and yield, and 
help plant tolerate abiotic exhausting factors like 
drought, salinity, etc. These bacteria promote plant 
growth either directly through hormones production, 
biological nitrogen fixation, phosphate solubilization, 
potassium solubilization, or indirectly through 
stimulating opposition to pathogens [9]. Also, 
endophytic bacteria can colonize as biological agents 
against the effect of phytopathogens, making them 
function asbio control agents [9]. Several studies have 
exposed that endophytic microorganisms have the 
capability to mechanise plant pathogens [10, 11]. 
Different factors can impact the endophytic community 
structure of the plant, like growth time, genotype, 
biological status, tissue, and environmental conditions, 
plant skin and genotype production, and play their role 
in the selection of different bacterial groups that assist 
with plants [12-15]. Endophytic bacteria in agriculture 
have a massive importance in diminishing the 
environmental influences affected by chemical 
fertilizers [16]. 

ISOLATION OF ENTOPHYTIC BACTERIA 

Entophytic bacteria commonly inhabit the intercellular 
spaces; athough, they have also been isolated from the 
seeds of the plants [17, 18]. To isolate and describe the 
endophytic bacteria from diverse plant types surface 
disinfection methods are the common procedures using 
serial washing with 70% ethanol [19] for sorghum 
(cultivars RS626 and Dekalb 61), while Soybean, 
wheat, and prairie plants were treated for 10 s with 2% 
sodium hypochlorite having 0.1% Tween 20 to remove 
the disinfectant [20]. Another method for isolating 
entophytic bacteria is vacuum removal [21]. A vacuum 
method was used to extract the xylem sap from the 
roots of grapevine plants [22] and cotton [23]. Also, a 
centrifugation technique was applied to gather the 
intercellular liquid of plant soft tissue [24], by dipping 
the stem section (3-4 cm lenth) in ethanol alcohol then 
flaming it to prevent surface contamination, and 
centrifuging up to 3000 x g in suitable tubes. This 
technique is still favorable for soft plant tissues., the 
process of sterilizing the surface of the plant is 
necessary before the centrifugation process because 
the plant tissue would come in contact with the 
removed liquid through the centrifugation process. On 
the other hand, entophytic bacteria isolated from young 
seeds stay able to provide an aneglect of the total 
count of bacteria because their seed layer could be not 
enough distinguished to keep the entophytes from the 
apparent-disinfecting solution [25]. For the perfect 
tissues of plant Arabidopsis thaliana Cd, and pressure 
plucking out was used to isolate endophytic bacteria 
from seeds. This technique was applied to separate the 
xylem fluid from the roots of undying plants similar to 
grapevine [26, 27], numerous studies have established 
that the quantity and diversity of cultivable seed 
entophytes varies in different seeds [28, 29].  

DISTRIBUTION OF ENTOPHYTES BACTERIA 

Endophytic bacteria can enter in the plants by initial 
lateral roots breaking through the epidermis and cortex, 
thus obviously creating a ‘throughway’ for bacteria to 
go in at these places. Also, they may enter the cortex 
and xylem vessels that pass photosynthates (phloem) 
nutrients and water (xylem) [42]. They inhabit in the 
root and can move to young branches and leaves by 
leakage in the plant, this can result in injuries (e.g., leaf 
scabs, root breaks) for example a product of grassy or 
other physical damage [42]. For example, Burkholderia 
sp. strains PsJN colonize the root rhizodermis cells, 
inner soft tissue, specific inner parts, and grapevine 
plant leaves [43, 44]. Table 1 shows the distribution of 
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some endophyte bacteria in different parts of the plants 
azeotropic Paenibacillus polymyxa P2b-2R, widely 
inhabits the external surface and inside of roots, 
branches and spines of lodge pole pine (Pinus contorta 
Dougl. var. latifolia Engelm) [45]. There are signals that 
bacteria are present in soil with soil microorganisms 
such as rhizobium [46]. Also, endophytic bacteria can 
be distributed in phyllosphere epiphytes through normal 
openings (e.g., stomata, hydathodes), insect, wounds, 
and pathogens [47], and colonize the shoot layer cells, 
palisade mesophyll cells, xylem vessels in addition to 
spaces among soft mesophyll coating cells [48]. 
Entophytic bacteria are divided into obligate 
endophytes, which highly depend on the plant host for 
their growth, and facultative endophytes, with irregular 
biphasic lives among plants and soil [49]. Endophytic 
bacteria are noticed in different organs, like fruits, 
seeds, and flowers but in a few numbers [50-52]. [53] 
found Pseudomonas spp. and Bacillus spp. in 
grapevine colonizing the layer of epidermis and xylem 
of the fruit, intercellular spaces of tissue cells, and 
alongside cell walls into the seeds [53] found 
Streptomyces mutabilis strain IA1colonize the area 
inside the caryopsis in the seed of wheat plants.  

COLONIZATION 

Endophyte bacteria can establish and live inside the 
plant without causing any destruction of the plant [1]. It 
could connect to the root’s superficial layer, which is 
possibly essential in reaching to suitable places at 
lateral root appearance areas or other buds produced 
by wounds or manual injuries. Endophytic bacteria 
might adjust gene expression while inhabiting in the 
plants [54, 55]. Burkholderia kururiensis M130 can 
infect and colonize the rice plant by genes coding 
proteins associated with bacterial motility, chemotaxis, 
and bond [54]. Entophytic bacteria are also producing 
exopolysaccharides (EPS), which may enable the 
addition of bacterial cells on the root superficial layer 
and might be significant in the primary stages of 
endophytic establishment. Gluconacetobacter 
diazotrophicus Pal5 produces EPS as a necessary 
influence for rice root superficial supplement and 
colonization [56]. Bacterial endophytes most frequently 
inhabit intercellular spaces in the plant, as these zones 
have the productivity of carbohydrates, amino acids, 
and inorganic nutrients [6, 3]. There are several types 
of plant surroundings which include tropic, marine, 

Table 1: Entophytic Bacterial Types Usually Isolated from Different Parts of the Diverse Plants’ Yields  

Part of the Plant  Endophyte Species Plant types Ref. 

Seed Bacillus, Flavobacterium, Pseudmonas Cereal, vegetables, and woody 
plants,  

[30] 

Root Pseudomanas, Erwinia Alfalfa (Medicago sativa L.) 
Corn (Zea mays L.) 

[31] 

Root, radicle, stem, 
unpenedflowers, boll 

Erwinia, Bacillus, Clavibacter Cotton (Gossypium hirsutum L.) [32] 

Root Agrobacterium, Burkholderia, Serratia Cotton (Gossypium hirsutum L.) [33] 

Root Burkholderia, Enterobacter Corn (Gossypium hirsutum L.) [34] 

Root Pseudomanas, Bacillus, Enterobacter, Agrobacterium, 
Chryseobacterium, Burkholderia 

Cucmber (Cucmissativis L.) [35] 

Root Pseudomanas, Enterobacter, Bacillus, Serratia Rough lemon (Citrus jambhiri 
Lush.) 

[36] 

Root Bacillus, Erwinia, Pseudomonas, Corynebacterium, 
Lactobacillus 

Segar beet (Beta vulgaris L.) [37] 

Tuber Bacillus, Micrococcus, Pseudomanas, Bacillus, 
Flavobacterium, Xanthomonas, Agrobacterium 

Potato [38] 

Stem Enterobacter, Klebsiella, Pseudomanas Corn (Zea mays L.) [39] 

Stem Bacillus Corn (Zea mays L.) [34] 

Stem Bacillus Cotton (Gossypium hirsutum L.) [34] 

Stem Enterobacter, Pseudomonas, Rhodococcus Grapevine [22] 

Fruit Pseudomonadaceae, Enterobacteriaceae, 
Achromobacteriaceae, Micrococcaceae 

Tomato [40, 41] 

Fruit Achromobacteriaceae, Micrococcaceae Cucumber [40, 41] 
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xerophytic, temperate, antarctic, mangrove, geothermal 
soils, deserts, littoral forests for natural colonization 
[57, 58]. The endophytic bacteria enters in plants 
through the epidermis, cortex, and endodermis, also it 
can enter the phloem and xylem vessels that transport 
photosynthetic materials [42]. ROS- detoxification 
occurs early during the interaction process once the 
endophyte gains access to the plant. Through primary 
phases of rice root colonization, endophyte 
diazotrophic Gluconacetobacter diazotrophicus is 
expressed. ROS- produces superoxide dismutase 
(SOD) and glutathione reductase (GR) in higher 
amounts. Furthermore, SOD and GR mutants of G. 
diazotrophicus might not establish in rice roots 
associate with the supposition that ROS-restricting 
genes are essential in the first stages of colonization 
[59]. Suggested that wheat grass were colonized by 
Actinobacteria, Firmicutes, and Gammaproteobacteria 
moving from the seeds and by exogenous bacteria 
capable to colonize the plant components. The 
interaction between Endophytes and plants is 
determined by the bacterial genes and the ecological 
situations [60, 42] and seems to be familial and fairly 
preserved [21]. Examined the microbial endo-phytic 
communal of seeds from the wild forebear to domestic 
maize harvested in diverse areas. Colonization 
patterns in plant entophytic have been studied by many 
methods and have been described as ‘obligate,’ 
‘facultative’ or ‘passive’ depending on whether they 
involve plant tissue to alive and duplicate [61]. Obligate 
entophytic bacteria be present producing beginning 
from the seeds and are not live in soils, Facultative 
entophytic usually occur in soil, these bacteria stay 
inside the cortex nevertheless some transfer in the 
central cortex and xylem [62], while the passive 
endophytic, it is capable to inhabit and intervention to 
the part of the plant via wounds and cleft on the plant 
[63]. 

DETECTION OF ENTOPHYTIC BACTERIA  

a. Plating Method  

A simple method is used to enumerate entophytic 
bacteria by using simulated (selective or non-selective) 
media. The population can be determined by surface 
sterilization above the ground and crushing the tissues 
and serial dilution is done for counting the colonies 
grown in the media [64, 65] and the total count of 
bacteria (CFU)/g) in the root and shoot. This method 
cannot measure the population size of introduced 
bacteria. Using an artificial medium would bring only a 

fraction of practical microbes capable to absorb the 
feeding of the medium [66]. 

b. Sustainable Staining  

 This method is suitable to detect the entophytic 
bacteria in the roots of plants inoculated with bacteria. 
By using 2 ml from 2, 3, 5- T.T.C for 3-4 hours, bacteria 
convert the dye to red-color as a result of reduction of 
T.T.C to from azans [67]. This method has been 
successfully practical to discover bacteria in surface-
cleansing corn roots [66] and to notice Azospirillum 
brasilense and Bacillus polymxa in surface sterilized 
maize plants in a previous study by the author, (Figure 
1) [68]. Colonization of bacteria was detected like a 
muddy zone nearby the roots [69]. The connection of 
diastrophic Herbaspirillum seropedicae, to the root 
faces of maize is influenced by LPS (liposaccharide) 
[70]. [45] found that diazotrophic bacterial strain 
Paenibacillus polymyxa P2b-2R extensively colonized 
the surface and interior of roots, and stems. 

 
Figure 1: Colonization of maize roots by Azosprillum 
Brasiliense. 

C-Electron Microscopy 

Transmission electron microscopy (TEM) and Scan 
Electron microscopy (SEM) have been commonly used 
to observe and localize the entophytic bacteria inside 
plant tissue. Both electron microscopy fluorochromes 
and fluorescent stain were applied to test the particular 
bacterial endophytic establishments in the plant soft 
tissue. FISH, GFP group, GUS stain, and fluorogenic 
stain are communal structures related to microscopy to 
examine the establishment of endophytic bacterial in 
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plants [64-65]. There is diverse microscopy proving that 
this procedure can be used to investigate the 
communication among the endophytic bacteria and the 
plant. Auto-fluorescence formed cell walls mainly in the 
leaf matters can end the usage of these systems 
however giving small focuses of lightening might 
increase the appearance of an image. These are used 
to detect entophytic bacteria in several plant species, 
like pea plants [71], rice (Oryza sativa L.) [72], for 
observing Burkholderia kururiensis in banana [73], for 
detection of Brachybacterium, Micrococcus, Kocuria 
and Staphylococcus spp in Sugar beet [68, 74]. 
Isolated the Paenibacillus polymyxa from maize using 
this technique (Figure 2). 

 
Figure 2: Transmission electron microscopy (TEM) of root 
hair for maize root colonization by Bacillus polymxa. 

D-Immunological Staining 

Immunological detection procedures have developed in 
microbial biology essentially for the pursuit of 
endophytic bacteria. For a dependable use of these 
methods, the Antibodies can be raised against bacteria 
by injecting them into rabbits or mice. Immunological 
methods are applied for the concurrence, 
quantification, and enhancement of specific antibodies. 
Immunological procedures could be associated with 
PCR methods using image treating of epifluorescence 
micrographs or laser scanning microscopy. It is applied 
to study complex environmental samples [75]. 

E-Nucleic Acid Hybridization 

The inside of a plant tissue can be recognized through 
in situ hybridization by using polymerase chain reaction 
(PCR) methods to approve the presence of bacteria in 
the shoot and root tissue. Nucleic acid analyses is 
characterized through the connection of a haptin (i.e., 
biotin or digoxygenin), with an antibody leading to an 
apparent indicator, i.e., colloidal golden [76]. These 
methods are critical to discover endophytic bacteria in 
plant fluid [77] used the polymerase chain reaction 
(PCR) in rice inoculated with Azoarcus sp to approve 
these bacteria occurrences in the shoot and root 
tissues. Using rRNA for the examination of particular 
endophytic bacteria is another dominant device as 
nucleic acids have extremely well-maintained and 
limited areas [78].  

F-Autoradiography 

Autoradiography methods are also used to study the 
dynamic endophytic bacteria in the plant. The 
incorporation of radioactive material happens 
exclusively in molecules that are dynamically produced 
when. Endophytic bacteria are cultured in normal 
growth media containing (I5NH4) SO4 [79]. These 
bacteria can be tracked inside the plant by labeling on 
them the active labeled bacteria can be checked by 
mass spectrometry or autoradiography. 

The Beneficial Effect of Endophytic Bacteria on 
Crops 

1. Biological Nitrogen Fixation (BNF) 

Nitrogen is necessary for plant growth. About 30–50% 
of the N in plants comes from the biological fixation of 
N2 by soil microbes [80]. A large number of bacterial 
genes intricated in N cycling of rice roots, shows that 
the - nitrification and ammonia oxidation procedures in 
rice roots can be exposed to the impact of the 
endophytic root micro biome [81]. Endophytic bacteria 
arevery important in N cycling and there is a signal that 
N2 fixation by foliar endophytic bacteria has happened 
in numerous subalpine conifer species [82]. Some 
bacteria have been isolated and described as nitrogen-
fixing endophytes from nonleguminous plants in 
previous times. Rice, sugarcane, and maize must be 
the most generally exposed grasses to find out if 
endophytic bacteria can be a part of the nitrogen 
essential for these crops. Rice has a wide range of 
endophytic diazotrophs [83]. The involvement of 
diazotrophic endophytic communal of rice has been 
identified by [84]. The genera Herbaspirillum [85] and 
Burkholderia [86] were primarily designated as the 



Journal of Basic & Applied Sciences, 2023, Volume 19 

 

121 

highest diazotrophic endophytes isolated from rice. 
Azoarcusas though was eventually isolated from Kallar 
grass [87], which could inhabit the rice in laboratory 
trials [77]. There is a diversity of diazotrophic bacteria 
such as Pseudomonas, Stenotrophomonas, 
Xanthomonas, Acinetobacter, Rhanella, Enterobacter, 
Shinella, Agro- bacterium, and Achromobacter [88], 
which were isolated from the sugarcane plant. The 
capability of G. diazotrophicus for growing and fixing 
nitrogen in sugarcane internal tissues has been proved 
[89]. Its positive effect on the plant construction relies 
on the bacterial mass, and then bacterial transduction 
may be essential for the PGP possessions of G. 
diazotrophicus. In recent times, the incidence of 
Gluconacetobacter-similardiazotrophs was found in 
different plants like sweet potato, tea, carrot, radish, 
and rice, with extensive physical spreading [90]. 
Among the species that have been isolated 
Stenotrophomonas and Burkholderia belong to nitrogen 
fixers bacteria [91] nitrogen fixing bacterial endophytes 
have a wide host variety. Nitrogen fixing bacteria are 
frequently present in Gramineae plants but are not 
special. Herbaspirillum seropedicae was established in 
a diversity of crops, including maize, sorghum, 
sugarcane, and other Gramineae plants [85, 92]. [93] 
isolated Herbaspirillum strain from rice it may establish 
in the sugarcane plant and the Burkholderia sp. 
isolated from onion can also grow in grapes [43]. 
Inoculation of sugarcane with a mixture of bacterial 
Gluconacetobacter diazotrophicus, Herbaspirillum 
seropedicae, H. rubrisubalbicans, Azospirillum 
amazonense and Burkholderia species amplified 30% 
of its nitrogen content [94]. 

2. Plant Growth-Promoting Endophytic Bacteria  

Endophytes bacteria also have paramount importance 
in the plant growth through direct and indirect, 
mechanisms. Directly, they backup the plant growth by 
phosphate solubilization activity [95, 96], siderophore 
production [97] and indole acetic acid (IAA) production 
[98]. Also, these bacteria can create plant hormones 
and improve other useful microorganisms [99]. 
Indirectly, they improve plant growth by prompting plant 
protection responses. PGPR endophytic bacteria-
induced stomata regulation, osmotic instruction, and 
variation in the morphology of root, improve the 
absorption of minerals [100, 101]. They are being used 
for phytoremediation of contaminated soils. 
Phytohormones are recognized as auxins, gibberellins, 
and cytokinins which stimulate morphological 
modifications of roots, enhancing the absorption of 
minerals and water [102, 103]. Microorganisms such as 

Acinetobacter sp., Azospirillum sp., Azotobacter sp., 
Pseudomonas sp., and Bacillus sp. create 
phytohormones like indoleacetic acid, cytokinins, and 
mixtures that simulate the behavior of jasmonates in 
existence of the plant [104].  

3. As a Bio-Control Agent Against Plant Diseases 

Endophytic bacteria have beans used as bio-control 
agent in agriculture [105]. These may be useful as bio-
control agents by direct inhibition of pathogens and by 
indirect mechanisms. A direct mechanism is through 
the production of hydrogen cyanide (HCN), which plays 
a critical role in providing iron nutrition to the plants and 
antifungal metabolites [42]. [106] stated that endophytic 
bacteria produce hormones, which manage plant 
growth genes coding the proteins for bio-installation of 
indole acetic acid (IAA) [107], production of cytokinins 
(CKs) [108] as well as gibberellins (GAs) [109]. 
Sphingomonas sp. LK11 is an endophytic bacterium 
that improved the growth of tomato plants because it 
was intermediated by the creation of GAs and IAA 
[110]. This research sheds light on the indirect plant- 
bacterial interactions that encourage the growth of 
plants. The Siderophores are produced by endophytes 
when iron is deficient in the soil. Siderophore-producing 
plant growth-endophytes can be encouraging to 
chemical fertilizers [111]. Indirect resistance of 
endophytic bacteria through plant-induced resistance 
inhibits a large number of plant pathogens [112]. 
Endophytic bacteria antibiotics that control the cell 
metabolic rate and are an effective tool for controlling 
the plant pathogens. But, the efficacy of an antibiotic on 
one pathogen strain may differ in other strains of 
similar species because of the existence of genomic 
resistance tools, or the difference in environmental 
conditions [102]. Species such as Pseudomonas sp. 
and Bacillus sp. create peptides bio surfactants that 
can be essential in competitive connections of diverse 
groups of microbes with nematodes and plants [106]. In 
many researches, biological control of maize, wheat, 
and legume plants has been studied against many 
diseases as well as the post-harvest control of plants 
like pepper and apple [113]. Endophytic bacteria could 
improve plant protection responses, and their systemic 
resistance (ISR) may be accepted as a device for 
disease managing in agriculture. Genera 
Pseudomonas and Bacillus might be the most common 
groups that produce ISR, however, it is not limited to 
these sp. only [114].	 

4. Increase Nutrient Uptake Productivity 

Endophytes have the ability to solubilize some mineral 
deposits and fixed nitrogen. 
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A. Nitrogen 

Endophytic bacteria characterize an exclusive class of 
bacteria that could inhabit the internal parts of a plant 
and provide benefits to the plant related to those 
provided by the rhizospheric microorganisms. 

The legumes have the capability of using symbiotic 
associations with specific nitrogen-fixing bacteria 
therefore nitrogen fixation is called plant procedure. 
Though, the chief role is performed by nitrogenase 
enzyme synthesis in these associations, which is 
produced and confined in the endophyte named 
endosymbiont. Such bacteria are known as rhizobia 
and belong to diverse genres, such as Rhizobium, 
Sinorhizobium, Bradyrhizobium, Mesorhizobium, 
Azorhizobium, etc. Other endophytic species are from 
the genera Azospirillum, Herbaspirillum, Klebsiella, 
Acetobacter, etc. [115]. It is nteresting amazing to note 
that endophytes can be implicated in the complete 
nitrogencycle, like proteins implicated in N2-fixation, 
denitrification, and nitrification were noticed and then 
selectedfor genes expressed [81]. 

B. Phosphorus 

The use of phosphate fertilizers, one of the 
macronutrients that regulate plant growth, in plant 
nutrition is important to increase plant growth [116]; 
Using normal sources of phosphate fertilizers is limited 
due to the low ion –exchange process of acidic tropical 
soils [117]. Additionally, use of soluble phosphate 
chemicals in fertilizing is expensive. Phosphate- 
dissolving bacteria play a major role in providing plants 
with phosphate in different environmental conditions 
[118, 119]. Endophytic PSB could be applied to 
efficiently utilize the nutrient as they dissolve the 
phosphate and make it accessible for absorption by 
plants [50]. These bacteria can colonize the root 
superficial layer and internal parts of the plants. Many 
studies have been conducted on common but different 
species of endophytic bacteria capable of solubilizing 
mineral phosphates [120]. The capability of phosphate-
solubilizing bacteria shows that endophytic bacteria 
rhizobium function as growth stimuli [50]. 

C. Siderophore Production 

Siderophores are small molecular with iron-chelating 
minor metabolites produced by different groups of 
endophytic bacteria for assistance in iron-restricted 
conditions. Siderophores created by endophytic 
bacteria help plants to grow by supplying iron to the 
plants. Endophytes produce two types of siderophores; 
Hydroxamate and catecholate [121]. Iron is an 

essential micronutrient for crops, complexes as a 
cofactor in numerous enzymatic reactions; it exists in 
the extremely indissoluble hydroxide form in the soil 
and is not available to plants. [122] found that 
siderophore making is a widespread attribute of 
endophytes [123]. 

D. Zinc Solubilization 

Zinc is an essential micronutrient for micro flora in 
addition to plants. Zinc is present in the earth in 
proportion of 0.008%. It plays an important role in 
feeding both eukaryotic and prokaryotic bacteria as 
cofactor stimulating numerous enzyme reactions [124]. 
Endophytic bacteria have the ability to solve immobilize 
zinc such as zinc oxide, and zinc carbonate [125] found 
that, many genera of bacterial viz. Thiobacillus 
thioxidans, Thiobacillus ferroxidans, Acinetobacter, 
Bacillus, Gluconacetobacter, Pseudomonas, and 
facultative thermophilic iron oxidizers were zinc 
solubilizers. Lack of zinc in basic food crops, apart from 
the loss of yield, leads to a decrease in the zinc content 
in grains and thus may serious damage to human 
nutrition [126]. Use of zinc solubilizing bacteria (ZSB) 
could be an ecological method for the increase of Zn 
obtain ability in soil. Numerous Zinc solubilization 
bacteria have been described from warm and mild soils 
[127]. Usually, nitrogen-fixing bacteria such as 
Rhizobium, Azospirillum, and Azotobacter are not the 
zinc-solving bacteria while Acinetobacter, Bacillus, and 
Pseudomonas are zinc-solving bacteria [125]. They 
appear to be present in roots, stems, shoots, and 
grains of many plant types [1]. These zinc-solving 
endophytic bacteria nitrogen fixing bacteria may be 
used in association with nitrogen fixing bacteria in grain 
yields to meet double objectives of fixing atmospheric 
nitrogen besides zinc solubilization [128]. 

Adaptation of Endophytic Bacteria under Stress 
Condition  

Endophytic bacteria have a major role in overcoming 
the negative effect of the presence of salts in the soil 
and promoting plant growth under stress conditions 
because they can adapt to harsh environmental 
conditions under drought or salt stresses or any other 
conditions [2]. [129] found that inoculations of grape 
plants by endophytic bacteria Burkholderia 
phytofirmans- PsJN improved the growth under cold 
stress conditions by increasing the photosynthetic 
activity and absorption of carbohydrates complex. The 
presence of endophytic bacteria in the plant made the 
plant adapt to high temperatures, which led to a 
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decrease in cell damage, and increase in 
photosynthetic activity; and the accumulation of 
receptors associated with frost stress such as protein, 
phenolic compounds, and starch. They help in 
mechanical resistance by regulating plant hormones 
and detoxification in plants that improves growth under 
salt stress. Under osmotic stress there is a decrease in 
the rate of photosynthesis, and also the stomata are 
closed and the leaf area decreases, and the rate of 
carbon dioxide fixation inside the cell prevents light 
reactions in the end [130]. Reactive oxygen species 
(ROS) have very essential roles in plant cell cycle 
systems. ROS in plant cells mostly includes 
(superoxide anion radical), H2O2 (hydrogen oxide), OH 
(hydroxyl radical), and O2 (singlet oxygen), which are 
mostly produced from chloroplasts, mitochondria, and 
peroxisomes [131]. The bacterial cells produce the anti-
oxidant compounds like (carotenoids, flavonoids, and 
otherphenolic) and anti-oxidative enzymes [superoxide 
dismutase (SOD), glutathionereeducates (GR), 
catalase (CAT) and peroxidases (POD)] to reduce the 
harmful effects of increased ROS concentrations [132]. 

1. ACC: Deaminase Activity 

Ethylene (ET) is a major organizer of salinity stress; it 
is prepared from methionine by S-adenylyl-Methionine 
that is changed to 1-aminocyclopropane-1-carboxylic 
acid (ACC) by the enzyme ACC oxidase [133]. Plants 
under stress conditions produce high concentrations of 
ET; this leads to a decrease in the plant growth and 
causes cell wall death [134]. High levels of ET in the 
plants under stress conditions reduce the cell division, 
DNA creation and decrease the growth of roots and 
aerial parts of the plants., Inoculation of plants with 
endophytic bacteria producing ACC deaminase (1-
aminocyclopropane-1-carboxylic acid) enzyme, leads 
to a decrease in the amount of ethylene level in the 
plants, as well as ACC deaminase strengthens internal 
plant immunity and stress tolerance and encourages 
seed germination [102]. Endophytic bacteria use1-
aminocyclopropane-1-carboxylate (ACC) as a carbon 
and nitrogen source under high pressure of ET by 
producing ACC [135, 136]. The ACC accumulates in 
the roots spreads directly to the buds [137, 138]. 
Endophytic diazotrophic like Achromobacter 
xylosoxidans AUM54 isolated from Catharanthus 
roseus can create ACC deaminase and decrease the 
ethylene levels under salinity stress [138]. Furthermore, 
Achromobacter xylosoxidans strain Ax 10 and Pantoea 
agglomerans Jp3-3 created ACC deaminase to reduce 
stress. Brassica sp, bacteria enhanced the growth of 
plants grown in copper- polluted soils and improved 

copper uptake by the plants [139]. Isolated entophytic 
bacteria isolated from Commelina communis plants 
grown-up on a soil affected with zinc, creating ACC 
deaminase increased the growth of rape plants in the 
lead-polluted soil. 

2. Drought Stress Tolerance 

[140] Endophytic bacteria can help plants to tolerate 
drought. Plants need several mechanisms to adapt to 
adverse environmental conditions. Among these is the 
establishment of an interactive regulatory signaling for 
exchange in specific pathways with cofactors. Signaling 
during biotic or abiotic stresses involves an interactive 
regulatory network with frequent interchange between 
individual pathways and signal molecules/cofactors 
[141]. Phytohormones; ROS, Ca2+, NO2, phosphates, 
etc. serve as signaling molecules. Drought stress leads 
to osmotic pressure whereas in the case of salt, stress 
together with osmotic pressure either ionic or ion-
toxicity influences also act on cells. The increase of the 
phytohormone abscise acid (ABA) is noted that 
encourage the adaptive reactions in plants during 
drought and salt stress [142]. Molecular units such as 
Ca2+ and NO- play significant roles in signaling during 
stress response pathways via hormones. Nitric oxide or 
Ca2+ signaling show a chief role in plant protection 
responses, ABA-independent stomata actions, and 
drought stress conditions [143]. Potato plants 
inoculated with endophytic B. phytofirmans PsJN 
showed a diverse effect of functionalities [144]. 
Reactive oxygen species (ROS) produced under 
drought stress are extremely reactive and harmful to 
the cell, and might lead potato plants to necrosis.I 
Inoculation of entophytic B. phytofirmans PsJN 
adjusted the environments and induced biological 
changes in plants via changes in gene expression. A 
positive influence was observed among bacterium on 
metabolic equilibrium which reduced the result of 
drought stress in wheat plants grownup under 
decreased irrigation conditions [145]. Endophytic 
Pseudomonas pseudoalcaligenes can induce 
resistance to rice plants under drought conditions by 
producing high concentrations of glycine [146, 147] as 
well as endophytic Azospirillum spp, when inoculated in 
maize plants led to improve the growth of maize by 
producing the abscise acid (ABA) IAA and gibberellins. 
ABA is phytohormone working on regulation of plant 
water balance and osmoticstress tolerance [148]. 

Commercial uses of Endophytic Bacterial Products 

Endophytic bacteria are used as bio-fertilizer, plant 
strengthener, microbial bio-stimulators improving soil., 
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the laws for use of these bacterial products vary from 
country to country, and the product must be presented 
as a plant protection product (PPP) [149]. In common, 
the bio-fertilizers are characterized by their practicality 
for example using them as liquid inoculants, added 
directly to the soil and seeds [150]. However, the 
inoculum must be preserved to maintain bacterial 
vitality for a long time [151]. Although used in previous 
years, the liquid inoculants are generally not applied 
today because it is expensive compared to new 
techniques. EU must focus to properly protect the 
product and maintain its capacity. The establishment of 
companies can contribute significantly to the success 
of the process of preserving the inoculant and keeping 
records of the inoculant process [152]. 

Encapsulation of endophytic bacteria with alginate  

Alginate is the most common material used for the 
encapsulation of bacteria. Inoculates are used for many 
objectives such as application as biological control 
agents and mycoherbicides for increasing stability of 
plasmids in plant cells as well as in bacterial chemo 
taxis [153, 154]. The main purpose of the manufactured 
formulations is to save the cells and maintain activity 
for as long as possible. Encapsulated processes in 
agriculture industry require at least two different goals 
(i) maintaining encapsulated bacteria in the soil and 
bacterial competition and (ii) slowing the exit of bacteria 
to and colonize plant roots [155]. The characteristics of 
the alginate material are that it is nontoxic, natural, and 
biodegradable [156]. This carrier of alginate sodium 
was carefully chosen after optimization of the 
encapsulation process which includes evaluating the 
alive bacterial alive with regard to polymer 

characteristics, i.e., eco-friendly, bio-compatible, and 
inexpensive. Encapsulation technique must be carried 
out in several stages including capability to formula 
beads, small viscous solution) and fast drying. I In 
microencapsulation, the capsules have a size reaching 
between 1 to 1000 µm [157]. Figure 3 shows the 
Azosprillum lipoferum capsulated with sodium alginate 
[158-160]. 

CONCLUSIONS AND FUTURE PERSPECTIVES 

Endophytic bacteria have proven to play a role in plant 
tolerance to difficult environmental conditions besides, 
it has great biological importance in improving soil 
fertility and quality. Entophytic bacteria have been 
applied as an alternative to mineral fertilization, as 
mineral fertilizer pollutes the atmosphere. A large group 
of these bacteria isolated from plants showed their 
great importance in maintaining plant growth and 
effectiveness in preserving agricultural ecosystems. 
The composition of the bacterial population depends on 
the genetic composition of the plant as well as on 
environmental biotic and abiotic stresses. The 
commercial use of endophytic bacteria to enhance the 
growth and production of crops is not as easy as plant 
growth-promoting bacteria (PGPR), so selected and 
approved studies must be conducted on how to use 
them in commercial formulations. 
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