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Abstract:  
 
A review was conducted between redox biology and BSW water to link their 
interactions with cell bioenergetics. The exchange of electrons and protons from 
energized BSW water significantly contributes to recycling energy biomolecules 
during aerobic respiration. Plant resilience to biotic and abiotic stressors is also 
significantly improved by maintaining adequate levels of BSW water. The 
physicochemical properties of SW water are readily measured and are associated 
with improved human health. Natural healing water and SW water products have 
similar physicochemical properties. Medical literature shows a direct association 
between dehydration and age-related diseases. Drinking SW water enhances 
rehydration rates and increases intracellular water content. Research has also 
suggested that drinking SW water has a positive effect on certain neurological 
diseases and cancer types. Finally, drinking SW water improves the immunity 
system in humans. 
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1. BSW WATER AND REDOX BIOLOGY 

As Part 1 of this review mentions, BSW water has 
unparalleled prominence in biological redox reactions. 
The eminent redox properties of BSW water are due to 
the cold vortices of quasi-free electrons and protons 
within the interfacial structured water zone. The TEM 
images by Cardarella [1] of CD spheres show that the 
surfaces of the spheres were electron-dense, indicating 
that the spheres had cold vortex shells of quasi-free 
electrons (see Figure 1 in Part 1). These sub-atomic 
particles are donated and received for ultra-fast redox 
reactions to ensure redox homeostasis [1-9]. Electrons 
serve several functions, such as signaling particles, 
quenching of free radicals, or even combustion of O2 
by transferring single electrons that result in H2O as the 
final product.  

Redox biology is associated with cell membrane 
potential. Red and infrared light increases mitochondria 
membrane potential, increasing the energy and redox 
potential on mitochondrial membranes [17-20]. When 
the gain of electrons reduces NAD+, NADP+, and ADP, 
they are recycled back to NADH, NADPH, and ATP [9-
11]. These biomolecules are critical in mitochondria 
pathways, calcium homeostasis, antioxidation, gene 
expression, immunological functions, aging, and cell 
death [9-11]. NADPH is a substrate for NADPH 
oxidase, which contributes to ROS signaling and 
hydrogen peroxide generation, which may be used to 
inactivate pathogens. When NAD+ is reduced by 
receiving an electron, it recycles back to NADH, and 
the NADH/NAD+ ratio increases. This NADH/NAD+ 
ratio is a key biomarker for many critical cellular 
functions, including metabolic pathways, DNA repair, 
chromatin remodeling, cellular senescence, and 
immune cell function [9-15].  

Unfortunately, the ability to maintain robust redox 
homeostasis with mitochondrial energy biomolecules 
declines with age [13-19]. Recent aging reviews reveal 
a causal link between declining NAD+ levels and 
increased risk in age-related diseases, including 
cognitive decline, cancer, metabolic disease, 
sarcopenia, and frailty [13]. Aging studies have shown 
that NAD+ is a vital cofactor/coenzyme and a signaling 
messenger that can modulate cell metabolic and 
transcriptional responses. Studies have shown that 
sirtuins are NAD+ dependent enzymes, and the 
availability of NAD+ regulates their activities. Sirtuins 
are essential enzymes in delaying cellular senescence, 
or the formation of ‘zombie cells,” and extending 
longevity or lifespans. In summary, dysfunctional 

mitochondria lead to increased oxidative reactions, a 
decline in robust redox homeostasis, and an increase 
in age-related disorders [13-19]. Numerous review 
articles suggest alternative precursor supplements to 
increase NAD levels or reduce ROS damage to 
mitochondria to extend human longevity. An alternative 
therapy to extend longevity that is seldom mentioned in 
health or aging journals is to increase BSW water 
levels by either replenishment by drinking SW water or 
exposure to red and infrared lamps to increase BSW 
levels with in vivo treatments. Both therapies will be 
explored further in the following sections of this review.  

A study by Sohal et al. [20] studies the effects of redox 
dynamics on house fly longevity. They found that the 
NADH/NAD+ ratio decreased from 1.1 to 0.43 when 
flies reached 16 days old and reached 20% mortality. 
The decline in the ratio shows an oxidizing trend for 
NADH across the lifespan of flies. Also, there was a 
strong trend for H2O2 to increase across the lifespan of 
flies. Another house fly study by Farmer et al. [21] 
reveals that house flies with an increased rate of O2

− 
production had shorter life spans. They state that as 
oxidative stress from ROS radical injury increased with 
age, the longevity of house flies decreased. These 
studies reinforce that maintaining redox homeostasis 
as aging occurs is critical to increasing longevity. Part 2 
of this review series offers suggestions on maintaining 
BSW water levels as humans age, ensuring a ready 
supply of quasi-free electrons and protons for all redox 
reactions, and preserving redox health. 

2. BSW WATER AND PLANT RESILIENCE TO 
ABIOTIC STRESSORS 

Photosynthesis and BSW water are linked in a complex 
set of relationships. The first reaction in 
photosynthesis's light phase is splitting water to initiate 
the Electron Transfer Chain. In plant chlorophyll, 
Photosystem II splits water into protons (H+), electrons 
(e-), and molecular oxygen (O2).  

2H2O + hν → O2 + 4H+ lumen + 4e- 

Recent research on PSII water splitting reveals that 
proton channels transport H+ from the water splitting 
site in PSII. Also, aquaporin channels supply PSII with 
water molecules [22-28]. This research shows that the 
proton wires, or channels, contain BSW water 
molecules constrained or restricted by electrostatic 
bonds to transport protons along delocalized H-bonds 
[22-28]. In addition, as BSW water levels increase, free 
protons (H+) with symmetric double-well energy profiles 
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can join with H2O to form hydronium ions (H30+), a 
carrier for H+ [31]. Protons generated from splitting 
water can be removed by proton water wires or 
converted into hydronium ions in the presence of BSW 
water. Plant research also shows aquaporins supply 
BSW water to PSII for water splitting. However, 
aquaporins do not restrict water movement, so water 
can be transported into the PSII subunit without 
transporting protons simultaneously [22-28]. This 
research shows that BSW water, or strong H-bonded 
water, is crucial for PSII water-splitting activities.  

Hussein et al. [28] investigated the water structure in 
PSII water channels. They state that water molecules 
along the aquaporin water channels are highly 
structured [28]. A study by Doyle et al. [29] also 
investigated water structure in PSII subsystems. They 
state that the Oxygen-Evolving Complex (OEC), or the 
water-splitting complex within PSII, contains 
crystallographic or crystal water. They also state that 
the Molecular Dynamic (MD) computer simulation 
shows a “higher electron density in the channel regions 
compared to waters in bulk, which indicates that the 
water structure is more ordered within the channels” 
[29]. The high electron density MD simulation estimates 
agree with the TEM images of SW water [30] 
mentioned in Section 1 of Part 1. SW water has 
delocalized electrons that circle the pentamer or 
hexamer water rings. This electron cloud that forms the 
outer shell of water spheres is electron-dense, 
indicating that PSII subunits contain BSW water with 
crystalline structures [30]. As previously mentioned in 
Part 1. BSW water is energized and only requires low 
energy input of red light to ionize water or split water 
without relying on high energy light frequencies that 
would injure chlorophyll tissue [31].  

A study by Gauthier et al. [32] estimated that PSII 
subunits can generate up to 30 µmol O2/sq m/s by 
splitting H2O when exposed to a light intensity of 1,000 
µmol PAR/sq m/s in French bean (Phaseolus vulgaris) 
plants. Their study shows that PSII water splitting 
under high-light intensity requires many water 
molecules (up to 3.61 x 1019 H2O/sqm/s) to generate 
the 30 µmol O2/sq m/s in French bean plants. This 
estimate of water molecules is based on the fact that 
12 H2O molecules are required to be split to generate 6 
O2 molecules. The PSII research estimates that the 
aquaporins can supply this flux rate of water molecules. 
However, under full sunlight with high PAR values, the 
supply of BSW water could be rate-limited, thereby 
reducing water splitting rates and initiating 

photoinhibition to protect PSII from excess free radical 
damage.  

As mentioned above, magnetic fields increase SW 
water levels depending on static magnetic strength and 
exposure time [33-36]. Tu et al. [37] investigated the 
effect of magnetic fields on oxygen (O2) production in 
an algal-bacterium symbiotic complex in a wastewater 
treatment study. They found a 24.6% increase in O2 

production when the algal-bacterium complex was 
exposed to a static magnetic field of 100 mT. Yang et 
al. [38] also investigated the effect of magnetic fields on 
Chlorella vulgaris on O2 production. They found that O2 

production increased by about 100% after two h 
exposure to a static magnet field (250 mT). These 
studies indicate that static magnetic fields increased 
SW water in the culture solution, increasing the rate of 
water splitting in the bacteria PSII subsystem with a 
subsequent increase in O2 production. These bacteria 
studies provide indirect evidence that increased levels 
of BSW water within chlorophyll optimize PSII water 
splitting rates. In other words, any rate-limiting 
restrictions due to a limited supply of energized BSW 
water in excess nutrient solutions are overcome by 
magnetic fields that increase SW water levels in the 
solution. 

The terms tightly bound water and BSW interfacial 
water are synonymous in crop research involving 
drought tolerance. These terms refer to the strongly 
bound, interfacial water layer covering cell membranes 
or about 60-70% of the intracellular water content in 
plant tissue. Bound water in plant tissue is generally 
estimated using an instrument that measures water 
activity. These instruments measure free water in plant 
tissue in a sealed, temperature-controlled chamber 
[39]. As the free water evaporates in plant tissue and 
reaches equilibrium with the air vapor, the relative 
humidity of the air in the chamber is measured to 
estimate the water activity value. The amount of bound 
water can be estimated by subtracting the free water 
content from the total water content of the plant tissue. 

Another method of measuring BSW water in plant 
tissue is Differential Scanning Calorimetry (DSC) [40]. 
This calorimeter method measures the temperature 
and heat flow associated with a material based on 
glass transition temperature values [41]. A stepwise 
change in the heat flow indicates when plant tissue's 
interfacial or intracellular water transitions from a liquid 
state to a “glassy state” [41]. When plant tissue water 
content is reduced to 0.1 g H2O dry weight, the tissue 
enters a “glassy state” [41]. BSW water had liquid 
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crystalline properties, while a glassy state in plant cell 
cytoplasm has an amorphous mixture of biomolecules 
and water with extremely high viscosity.  

The glass transition temperature marks the threshold 
when the rubbery stage in plant cytoplasm transforms 
into the glassy stage, and all the free water has been 
vaporized [42]. Kunzek et al. [43] found that the 
viscosity of glassy state water in plant tissue can reach 
1,013 Pa s. This level of extreme dehydration can only 
be achieved by high temperature drying in ovens. 
When the intracellular water content is reduced from 
about 0.5 to 0.1 0.1 g H2O/g tissue, the plant tissue is 
beyond rehydration and revival, even for desiccation-
resistant plant species. The glass transition 
temperature (Tg) can be used as a biomarker to 
compare drought and desiccation tolerance in plant 
and crop species [44-45]. Exothermic peaks in the DSC 
data may indicate the degree of crystallization of the 
test material [46]. DSC software is programmable to 
test for Tg values in plant material. Given the 
assumption that BSW levels in plant foliage are 
correlated with drought tolerance, DSC tests for water 
properties in foliage would provide valuable insight into 
drought tolerance testing of crop varieties.  

Numerous articles have correlated bound water levels 
in plants with increased drought tolerance [47-48]. 
Rascio et al. [47] investigated two wheat genotypes 
(Triticum durum) grown under water stress conditions. 
The first wheat genotype had a regular cell affinity for 
bound water or BSW water, and the second wheat 
genotype was a mutant genotype with a higher affinity 
for bound water. They found that the mutant wheat 
genotype with higher levels of bound, or BSW water, 
had significantly lower leaf temperature than the non-
mutant genotype even as the air temperature increased 
to 35 C. They also found that the mutant genotype had 
about 66% lower transpiration rates than the non-
mutant genotype. Another genotype study by Rascio et 
al. [48] found that the drought-tolerant wheat genotype 
had a higher level of bound water in the wheat foliage.  

Drought tolerance studies involving cotton by 
Ergashovich et al. [50] and Singh et al. [51] show a 
correlation between bound water levels in the foliage 
and increased tolerance to water stress. Jecmenica et 
al. [52] found that bound water in common bean foliage 
increased root length when bean plants were grown at 
30 C. Zhang et al. [53] found that the ratio of bound 
water to free water increased in water-stressed sugar 
cane that had a foliage chemical treatment. Wang et al. 
[54] studied the effects of hot, dry summers on a 

drought resistant C4 tussock grass (Heteropogon 
contortus) used for grazing in China. They found that 
the bound water to free water ratio (BW: FW ratio) was 
the most sensitive parameter for measuring water 
stress sensitivity. Also, they found that the BW: FW 
ratio was 152% higher in the drought-resistant tussock 
grass grown at 4 % soil moisture compared to the 
control treatment grown at 10%. An ecological study by 
Yukui et al. [55] found that the BW: FW ratio was 
correlated with drought resistance in desert shrubs. 
Other studies show more indirect findings involving 
correlations between bound water in plants and their 
ability to increase drought tolerance or resistance. It is 
evident from this literature that the ability of a plant 
genotype or species to increase its BSW water levels 
also increases its drought tolerance and ability to 
minimize environmental abiotic stressors such as water 
stress. 

Several reviews were published on the effects of 
watering plants with structured water [56-58]. However, 
very few studies have measured the properties of their 
structured water and the crop responses to their SW 
water treatments. A deficit irrigation study by Ramsey 
[59] investigated the effects of magnetized seeds and 
SW irrigation water on velvet beans (Mucuna pruriens) 
grown under water stress or reduced irrigation 
conditions. A complete description of the study 
methods and plant responses is described in Ramsey 
[59]. The combined effect of magnetized seeds and 
watering with SW water minimized kidney bean plant 
water stress levels based on the gas exchange 
responses. Also, the combined treatments resulted in a 
water saving of 29 to 49% for the optimum treatments. 
Correlation analysis among the gas exchange and soil 
moisture data revealed several plant responses were 
unlinked from their typical responses to increased 
water stress conditions for the optimum treatments.  

In the two years following the publication of this article 
by Ramsey [59], a more in-depth data analysis 
revealed new findings to explain these improvements in 
drought tolerance due to the combined treatments. The 
data was reanalyzed to correlate unexplored gas 
exchange responses with the magnetized seed and 
SW irrigation water treatments (see this article in this 
special issue). The new findings show that the 
magnetized seed and SW water treatments altered 
foliage water properties and deactivated a large suite of 
plant defense responses intended to minimize plant 
injury to intense water stress conditions. Crop irrigation 
with SW water and magnetized seed treatments is 
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time-consuming and increases crop input costs. 
However, if irrigation water savings could approach 
even 30 or 40%, the additional input expenses may be 
cost-effective enough to evaluate in farm-scale studies. 
This study also indicates that plants are quantum 
coherent due to their ability to deactivate many critical 
plant defense activities in spite of soil moisture 
reaching about 2% (v/v) for the optimal seed and water 
treatment under the high water stress treatment. 
Despite the low soil moisture, the optimal treatment 
had an average daily water saving of about 50% that 
started about 30 days after planting into the 60-day 
study.  

3. PHYSICOCHEMICAL PROPERTIES OF 
STRUCTURED WATER  

There are many polymeric water structures and maybe 
hundreds of supramolecular water structures [30]. 
Analyzing the structure of water is a difficult task. 
However, SW water can be indirectly quantified and 
qualified by its water properties. Measuring the 
physicochemical properties of SW water is an 
inexpensive method of quantifying proton 
concentrations and potential for electron exchange 
rates. SW water's physicochemical properties differ 
from tap water, indicating the potential functional 
properties when SW water is converted into BSW 
water. Three physicochemical water properties are 
readily measured and are directly related to the ability 
of SW water to exchange electrons and protons in 
redox reactions. These properties are pH, oxidation-
reduction potential (ORP), and electrical conductivity 
(EC), which directly or indirectly measure the 
concentrations of protons (H+) or electron potential (e-) 
in a water sample.  

The concentration of H+ in an aqueous solution is 
measured as the-log[H+], otherwise known as pH [22-
23]. When the covalent bonds for H2O are broken, then 
H+ or OH- are the common ionic forms resulting from 
the half-reactions that form the basis for all biological 
acid-base reactions. The relative concentration of H+, 
or hydronium ion (H3O+) in solutions, supports much of 
the cell's needs for proton signaling and recycling of 
several biomolecules back to their non-reduced state. 
As mentioned in Part 1, as water becomes more 
structured, some protons have low energy barriers and, 
with negligible energy inputs, can join with H2O to form 
hydronium ions (H30+). In addition, hydronium ions are 
excluded from the EZ water zone, increasing 
membrane potential and the energy levels available for 
cells. Also, hydronium ions resonate at 7.85 Hz, 

increasing the EZ water level on cell membranes. 
These findings show that increasing the pH levels 
within physiological limits also increases cell 
membrane potential and the EZ water zone in living 
organisms.  

The status of electron concentration in an aqueous 
solution or cells is measured as the oxidation-reduction 
potential (ORP). A simple definition for ORP is a 
solution's capacity for electron transfer. ORP is an 
indicator of the oxidation-reduction status based on the 
collective electron activity within the solution [60-64]. 
Meters measure ORP as the voltage potential reading 
between the measuring and reference electrodes. A 
positive ORP indicates the ability to accept electrons as 
an oxidizing agent. A negative ORP indicates the ability 
to donate electrons as a reducing agent. Depending on 
the solution being measured, the ORP electrodes will 
serve as either an electron donor or an electron 
acceptor. Redox reactions that generate a negatively 
charged ion could include a wide range of molecules; 
thus, it is impossible to identify all the ionic species 
contributing to a cell's collective electron-based redox 
conditions. Because the ion species are difficult to 
identify in solution, ORP measures the collective 
electron concentration measured by electron flux or 
ORP in millivolts (mV), a numerical index of the 
intensity of oxidizing or reducing conditions within a 
system [60-64].  

Most mineral and municipal tap water sources have a 
positive ORP of + 200 to + 400 mV (Table 1). The 
water sources in Table 1 also have a wide range of 
ORP values, indicating that humans can tolerate a wide 
range of ORP values, including negative and positive 
values, without any harmful health effects. Most 
drinking water sources have a positive ORP with pro-
oxidant properties, i.e., the water receives electrons. In 
contrast, BSW water has a negative ORP; thus, the 
water can donate electrons and has tremendous 
antioxidant properties due to the ubiquitous presence 
of water in cells [65].  

The scales for ORP and pH are similar in that they both 
have a neutral center point with negative and positive 
readings extending from the center point. The 
physiological range for pH in humans is tightly 
controlled, with a narrow range between 7.35 to 7.45. 
The physiological range for ORP is much higher, 
including + 150 mV in the stomach,-110 mV in the 
throat, and-250 mV in the large intestine [59]. Typical 
ORP values for cells range from approximately -10 to -
90 mV, depending on the cell type [60-61].  
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Research was conducted on physicochemical water 
properties during the generation of SW water (Ramsey 
unpublished data). The physicochemical data shows a 
negative, linear relationship between ORP and pH 
(Figure 1). The regression equation in Figure 1 shows 
that a pH of 9.0 has an ORP value of -89 mV. This is a 
loose relationship because pH and ORP varies when 
measured in water samples with widely different 
properties. Also, the negative relationship shows that 
the concentration of hydroxide ions (OH-) or alkalinity of 
water and negative electron activity (negative ORP) are 
directly related to one another. This relationship also 
has implications for SW drinking water and overall 
health status and resilience to environmental stressors.  

ORP is generally buffered in plants and animals to 
meet the cell type or organ functional needs. While pH 

value can be measured within seconds, a stable ORP 
measurement can take up to several minutes, if not 
hours, to reach a stable value due to the type of 
reactions and their reaction rates. The ORP 
measurement is strongly influenced by metal surfaces 
and the cleanness of the electrode [61-62, 64]. 
Structured drinking water studies have not yet 
evaluated whether drinking water with high negative 
ORP values (> -250 mV) may be buffered as absorbed 
into the body, minimizing any potential health benefits 
of lowering overall ORP levels. Numerous drinking 
water studies, however, have correlated the 
physicochemical properties of structured water with any 
health effects [65-73]. The physicochemical properties 
of different water types or sources are listed in Tables 
2, 3, and 4. 

Table 1: Typical Oxidation Reduction Potential (ORP) Values for Liquids, Drinking Water, or Biological Tissue for both 
Negative and Positive ORP Ranges [65] 

Aqueous liquid Redox potential (negative mV) Aqueous liquid Redox potential (positive mV) 

Organic-rich saline -400 Degassed pure water +200 

Euxinic water (H2S) -250 Distilled water +250 

Healthy human cells -170 ~ -290 Groundwater +250 

Anaerobic yeast fermentation  -180 Mineral water +200 ~ +400 

Green tea -100 Tap water +220 ~ +380 

Vegetable juice -70 Surface seawater ≈ +400 

Mother's milk -70 Swimming pool +400 ~ +475 

Ave. human environment -70 Rainwater +600 

 
Figure 1: Linear regression between ORP and pH for custom-generated SW water (unpublished data).  
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Table 2: Comparison of Physicochemical Water Properties between Seawater and Several Types of Drinking Water. 
The Drinking Water Samples were Measured for the Four Water Properties by this Author 

Water Description Electrical Conductivity 
(uS/cm) 

Oxidation Reduction 
Potential (mV) 

pH Total dissolved 
solids (ppm) 

Sea water 50,000 +450 7.9 - 

Charcoal Filtered tap water 397-418 -70 to-71 8.0-8.2 202-209 

Unfiltered tap water 301.7 -76.6 8.315 - 

Distilled water 4.22 -59.6 8.22 2.13 

Mineral water 378.5 -178.0 8.33 189 

Filtered bottled water 192 -136.1 6.42 96.1 

Reverse osmosis water 69.7 -94 7.0 22 

Commercial alkaline drinking water  195.7 +33.2 9.27 97.82 
aAverage value for surface seawater. 
bCommercial water from the Colorado aquifer. 
cWater generated from electrolysis using the cathode probe to collect alkaline water. 
 

Table 3: Comparison of Physicochemical Water Properties between Structured Water Samples and Natural Springs, 
Wells, or Rivers known for Healing Powers or Promoting Good Health 

Water Description Electrical conductivity 
(uS/cm) 

Oxidation Reduction 
Potential (mV) 

pH Total dissolved 
solids (ppm) 

Commercial structured 
water 860 +106.4 7.8-8.2 34 

Custom Generated 
Structured Water-

concentrated 
8,000-10,000 -24 8-9 205 

Custom Generated 
Structured Water -

diluted 
 872-1,000 -13 7-8 697 

Brandholz at Nordenau 
slate cave waterb Na -250 8.01 Na 

Water from Hunza riverc 30.37 to 113.5 for river 
samples 

-50 to -450 8.32 to 7.13 for river 
samples 

22.61 

Zamzam natural well 
waterd  976-1390 Na 7.73 798-1000 

ahttps://kaqun.hu/. 
bHenry M, Chambron J. Physico-chemical, biological and therapeutic characteristics of electrolyzed reduced alkaline water (ERAW). Water. 2013 Dec;5(4):2094-115. 
cAli A. Hussain Z. Khan Z. Hussain A. An Assessment of Physico-Chemical and Microbiological Parameters of Water from Hunza and Gilgit Rivers, Gilgit-Baltistan 
Pakistan 2015 (www.jcbsc.org).  
dAbdullatif BM, Baeshen AA. Assessment of Different Water supplies in Jeddah as an indicator of water quality and their impact on seed germination. Life Science 
Journal. 2013 Jan 1;1:10. 
 

Table 4: Water Properties for Structured and Unstructured Tap Water 

Water Property Structured water Unstructured tap water 

Density (g/ml) 0.97 1.0 

Specific heat (cal/mol) 1.25 (18-20 cal/mol) 1.0 (15-18 cal/mol)  

Viscosity (mPa.s at 25 C) 2-10 times tap water 0.89 

H-bond energy (kcal/mol)a 24 2.4 to 12 (ave. 5.6) 
aMandumpal JB. A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth. Bentham Science Publishers; 2017 Mar 1. 

4. EFFECTS OF DRINKING SW WATER ON HEALTH 
AND LONGEVITY 

The human body has an average water volume of 3.71 
l and 2.71 for males and females, respectively [74]. A 

concept article by Messori et al. [75] estimates that the 
percentage of BSW interfacial water in a human adult 
ranges from 20 to 30%. Based on these two water 
volume estimates, the average volume of BSW 
interfacial water would range from 740 to 1,110 ml for 
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males and 542 to 813 ml for females in humans, or 
about 2.47 to 3.71 x 1025 and 1.81 to 2.72 x 1025 
molecules of SW water in males and females, 
respectively. Other estimates of extracellular (ECW) 
and intracellular water (ICW) state that the average 
adult human should have an ICW: ECW ratio of about 
75% ICW and 25% ECW water content [76-79]. Shi et 
al. [80] conducted a Raman microscopic study of BSW 
water in HeLa cells, revealing that BSW water was 
64% of the total water in the cytoplasm of a human cell, 
and the other 36% was free water, i.e., ICW water 
consists of 64% BSW and 36% free water. These 
estimates for ECW and ICW water content in humans 
indicate the importance of BSW water, whether 
covering cell membranes (ECW water) or inside cells 
(ICW water). Guo et al. [81] investigated the heat of 
vaporization of bound water using NMR and DSC 
methods in radiata pine tissue. They found that 30% of 
the total water content in the wood tissue was bound 
water.  

Several health studies involving hydration, human 
longevity, and age-related diseases have concluded 
that “free biological water” decreases with age [22, 82-
84]. As dehydration accelerates during aging, it 
becomes critical to replenish BSW water levels for 
everyone over 50 or 60 years old [85-88]. One review 
on aging and dehydration states that the total water 
content in a 45-year-old adult ranges from 65-70 %, 
which decreases to about 45-50% in a 70-year-old man 
[89]. Another dehydration review by Lavizzo-Mourey 
[90] states that the total percent body water decreases 
to 50.8 percent in men aged 61 to 74 years and to 43.4 
percent in women aged 61 to 74 years. A third 
dehydration review by Hooper et al. [91] states that the 
percentage of body water content decreases from 70 to 
60 to 50%, respectively, in newborn babies, childhood, 
and older adults. These human dehydration reviews 
generally agree about a 10 to 20% loss in water 
content as young adults mature into their sixties and 
seventies. An abundance of medical literature has 
shown that even a conservative loss of 10 to 15% 
water content due to aging has proven to be strongly 
correlated to many age-related diseases [85-87]. No 
medical research has yet evaluated the effects of SW 
drinking water on age-related diseases. However, a 
few water drinking studies have shown that SW water 
is associated with human longevity and that rehydration 
at the cell level can be enhanced. 

The challenge of water replenishment therapy is 
whether drinking non-structured or structured water 

enhances BSW water levels. The drinking water market 
offers so many confusing claims for improving health 
status that a review of the clinical evidence is needed 
to distinguish which water products work best for 
enhancing BSW water levels. Drinking water products 
can generally be separated into water products with 
various compositions, such as alkaline or H2-infused 
water and structured water products. Alkaline drinking 
water is treated with minerals or electrolysis to raise the 
pH of the water. These water products increase the 
water's hydroxide ion concentration or alkalinity. A 
recent venture in changing water composition is 
infusing hydrogen gas (H2) into the water. The claims 
for hydrogen water include antioxidant properties with 
increased energy and longevity and improved muscle 
recovery after a workout [92]. As mentioned above, 
increasing the pH level within physiological limits, 
which is 7.35 to 7.45 in humans, also increases cell 
membrane potential and BSW water levels. Therefore, 
alkaline water and H2-infused water products can 
slightly raise blood pH levels and increase cell energy 
levels.  

A hydrogen water study by Matsiyevska [93] reveals 
that H2 gas changes physicochemical water properties, 
modifying human blood parameters. His findings state 
that human blood varies in ORP from -100 to -200 mV. 
Also, his study found that mineral water treated with H2 

gas reduced the ORP to -103 mV, with a pH of 6.84 
and rh of 16.9 for the mineral water. When they infused 
H2 gas into tap water, the ORP was -210 mV, with a pH 
of 7.4. These physicochemical water properties do not 
match the linear regression results in Figure 1, i.e., 
water with an ORP of -130 mV should have a higher 
pH. Generally, H2-infused water products on the 
market have a pH ≥ 9. The addition of H2 gas in 
mineral water results in hydronium and hydroxide ions, 
resulting in a significant reduction in ORP. The subjects 
that drank the hydrogen-saturated mineral water had 
oxygen-rich blood, and all the white and red blood cells 
returned to normal shape. Their findings show that H2-
saturated water reversed age-related blood cell 
aggregation and excess clotting, and the blood 
parameters were close to ideal [93]. 

More recent drinking water studies with H2-infused 
water reveal the effects on blood pH. Ostojic [94] found 
that blood pH increased by ~6% in adult men who 
drank two l/day of H2-infused water for seven days. 
Another study by Ostojic et al. [94] found that blood pH 
increased by 0.04 (negative log H+) for men who drank 
two l/day of H2-infused water for 14 days. Drid et al. 
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[95] found that female athletes' blood pH raised from 
7.39 to 7.47 after drinking 300 ml of H2-infused water. 
As previously mentioned, increasing pH increases 
hydronium ions (H3O+), increasing cell energy levels. 
These drinking water studies provide real world 
evidence that drinking water with enhanced 
physicochemical properties can alter blood properties 
and ultimately improve overall health. The advantage of 
drinking SW water properties is that the water is 
already structured and has alkaline properties with a 
pH range from 8 to 10.  

A website for a commercial hydrogen water product 
[97] reports that electrolysis is used to generate 
drinking water with an ORP of -850 mV. Drinking water 
with a negative ORP has reductive properties, and as 
the absolute value of ORP increases, the reductive or 
antioxidant properties increase [97]. BSW interfacial 
water always has a negative ORP value (Table 1). Any 
drinking water products with reductive properties or a 
negative ORP have inherent antioxidant properties that 
match the cell membrane potential's negative redox 
properties. 

Currently, there are no published drinking water studies 
involving structured water and its effects on age-related 
diseases. However, a few water drinking studies have 
shown that structured water is associated with human 
longevity, and rehydration at the cell level can be 
enhanced [97-111]. Two drinking studies with human 
subjects showed that intracellular water content 
improved after drinking different forms of structured 
water. Fisher et al. [98] evaluated the effects of drinking 
structured water (0.5 l/person) using an MRET water 
generator that adds structure with a resonance device 
oscillating at 7.8 Hz. Using a bioimpedance meter, they 
found a 4.2% increase in intracellular water. They state 
that the ratio of extracellular to intracellular water in 
humans is approximately 20:40 and that an average 75 
kg male has a total water volume of 45 l with 30 l of 
intracellular water. A drinking water study by Smirnov 
[99] also evaluated the effects of MRET-structured 
water and found that intracellular water uptake 
increased three-fold. A third drinking water study by 
Johansson and Sukhotskya [100] found that structured 
water improved the resiliency and auto-stabilization of 
human heart rates within 15 min. of drinking 100 ml of 
water.  

Replenishing BSW water with drinking SW water or 
using infrared lamp treatments to increase EZ water “in 
vivo” can improve neurological health. A case study by 
Smirnov [101] found that a man suffering from cerebral 

palsy had exceptional recovery after drinking SW water 
for twelve months. The MRET water generator was 
also used in this case study. In another study, Smirnov 
[102] tested the MRET water generator on transgenic 
mice that expressed an amyloid gene that increased 
amyloid plaque production. The brain area in the mice 
that drank the MRET water increased their total brain 
area by 15% compared with the control mice. Also, the 
transgenic mice predisposed to amyloid plague 
production that drank tap water had a mortality rate of 
33%, which is comparable to the 25 to 40% mortality 
expected from this type of transgenic mice. In 
comparison, the transgenic mice that drank the MRET 
water had a mortality rate of 9% or a 75% decrease in 
mortality due to drinking the MRET water.  

Another independent study by Saltmarche et al. [112] 
indirectly validated the transgenic mouse study by 
Smirnov. The Saltmarche study tested mild to 
moderately severe dementia or Alzheimer’s patients 
with a near-infrared (NIR) photo-biomodulation light 
attached to their heads with a 41 mW/cm2 power 
density. The use of infrared pulsed radiation in these 
patients also increased the EZ water zone in their brain 
tissue, as Chai et al. [113] found that far-infrared light 
increased the EZ water zone to 600 µm after just 10 
min. Exposure. The NIR treatment used in the 
Saltmarche study likely increased the BSW water 
levels in the patients' brains over the 12-week study. 
The patients had significantly improved test scores and 
personality profiles after 12 weeks of NIR brain 
treatments. In addition, the study results were 
comparable to those from a large dementia study that 
tested a dementia drug (donepezil). In other words, the 
NIR study improved the neurological health of 
dementia patients and had comparable results to a 
dementia drug study. Other clinical studies that tested 
NIR photo-biomodulation treatments on dementia and 
Alzheimer’s patients found similar improvements in 
neurological recovery [114-116]. These research 
findings with either MRET water generator or NIR lamp 
treatments provide evidence that increasing BSW 
levels in transgenic mice or dementia patients can 
improve longevity and increase neurological recovery 
rates.  

A study by Wang et al. [117] evaluated “micro-clustered 
water (MC),” or structured drinking water, on the 
hydration status in humans. They found that diabetes 
patients who drank micro-clustered water had improved 
cell water distribution (ICW/ECW), basal metabolism 
rate (BMR), phase angle (PA), and cell capacitance 
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(CP) during the four-week study. Liguori et al. [118] 
investigated the effects of Ion Cyclotron Resonance 
(ICR) treatments in a human clinical trial (See Part 1 
Section 3). The ICR treatment included the Schumann 
Resonance (7.88 Hz), hydronium ion (H3O+) 
resonance, and several mineral ion frequencies in 
sequential wavelength treatments. They found that the 
intracellular water content, based on bio-impedance 
meter readings, increased for the ICR treatment. In 
addition, the ICR treatment increased the IWC water 
structure, indicating that ICR treatments increase BSW 
levels in humans [118].  

An unpublished study by Jhon [110] investigated the 
effects of SW water on the longevity of beagle dogs. 
The study evaluated the survival rate for 32 beagle 
dogs for over a decade-long test. The study showed 
that more than half of the dogs that drank SW water 
survived over 13 years. However, half of the beagles 
that drank the unstructured water survived less than 
seven years [110]. 

Magnetized water research has the most extended 
history and the most published studies. However, few 
drinking water articles have published any details 
related to SW water properties. Research on the 
effects of magnetic fields on water properties reveals 
that bulk water becomes more structured depending on 
the strength and duration of the magnetic fields [119-
124]. The health benefits of drinking magnetized water 
have been widely researched [125-133]. The evidence 
is compelling that magnetized drinking water improves 
animal health, but the same literature offers few links 
between magnetized water and SW water properties. 

Many case studies investigated the effects of drinking 
natural water with SW properties that have increased 
health and longevity [134-140]. Over a dozen research 
and case studies by Ignatov evaluated the effects of 
SW properties of natural water sources on human 
health and longevity have been published [141-150]. 
He measured the physicochemical water properties 
from high-elevation streams (1,000 to 1,500 m) in 
Bulgaria in a region containing shungite minerals and 
zeolite clays [144-145]. Shungite is an ancient rock 
containing non-crystallized fullerene-like carbon (30 %), 
silica (45 %), and silicate mica (about 20 %). Shungite 
alters physicochemical water properties such as 
oxidation-reduction processes, sorption, catalytic, 
biological activity, and electrical conductivity, improving 
its health benefits as a drinking water [144-145]. 
Ignatov used the evaporation angle of water droplets to 
estimate the energy of hydrogen bonds of shungite and 

zeolite solutions in water [141-150]. He found a 
significant relationship between the H-bond energy of 
the mountain drinking water and extended life spans for 
the villagers drinking the mountain water. Ignatov 
states that the average number of centenarians in 
Russia and Bulgaria is 8 and 47 per million, 
respectively. However, the average number of 
centenarians in the Bulgarian mountains around the 
Teteven Municipality jumps to 139 per 1 million, or a 
1.96-fold increase in centenarians, significantly 
associated with the water source they drink [141-142]. 
His research focused on the SW water properties, 
including electrical conductivity, mineral content, and 
H-bond strength in several natural drinking water 
sources. His studies reveal a strong relationship 
between the SW water properties in high-elevation 
shungite-filtered water sources and human health and 
longevity.  

Other age-related hydration research indirectly 
confirms Ignatov's findings. Lorenzo [151] investigated 
the effects of hydration on aging. He states that 
hydration declines with age, suggesting BSW water 
also decreases with age. Kerch et al. investigated the 
effects of bound and free water on age-related 
diseases [152-153]. He states that the ratio of bound 
water to free water decreases with age, i.e., bound 
water gradually converts to a higher percentage of free 
water as humans age, which is correlated with a host of 
age-related diseases. These age-related hydration 
studies confirm that drinking SW water improves health 
and longevity, and conversely, the loss of BSW water, 
or bound water, is associated with age-related 
diseases. 

As mentioned, drinking SW water with negative ORP 
values matches the BSW interfacial water properties 
with the negative cell membrane potential. The reviews 
by Yang and Brackenbury [68-69] state that malignant 
cells have lower negative cell membrane potentials. 
Their review states that the average membrane 
potential for nine malignant (tumor) cell types was ~24 
mV. They also state that the average resting 
membrane potential for eight types of non-tumor cells 
was ~-72 mV. A concept article on the causes of 
cancer by Szigeti et al. [154] states that malignant cells 
have a lower membrane potential. They also conclude 
that cells undergoing division into daughter cells 
require tremendous energy, and healthy cells with 
negative membrane potentials can enter mitosis and 
remain non-malignant. These research findings 
indicate that cells' risk of becoming malignant or 
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cancerous increases as membrane potentials 
decrease. In other words, as cell membrane potentials 
decrease from approximately -72 mV to -22 mV, the 
risk of cells becoming malignant substantially 
increases. Membrane potential is directly related to the 
depth of the BSW water zone, i.e., the deeper the EZ 
water zone or BSW interfacial water zone, the higher 
the negative membrane potential.  

Several drinking water studies evaluated the effects of 
SW water on cancer cells or cancer patients. Ignatov et 
al. [154] investigated the effects of infrared light and 
high-frequency EMF field (2.3 x 107 MHz) treatments 
on water structures. They found that the water 
treatments increased H-bond strength in water and 
increased water structure. In a related study, Toshkova 
et al. [156] investigated the effects of the same infrared 
and EMF-treated water in a drinking water study with 
tumor-infected hamsters. They found that the infrared 
and EMF-treated water increased the H-bond strength 
in the blood plasma of mice with cancer. Also, they 
state that the infrared and EMF-treated water increased 
mitochondrial polarity or membrane potential. Finally, 
they stated that infrared and EMF-treated water 
increased the life span and decreased tumor growth in 
mice with cancer.  

In collaboration with Dr. Pollack, a study by Hang et al. 
[157] they investigated the effects of a hydrophilic 
ceramic powder (QELBY powder) mixed with water to 
create SW water with EZ water properties. They found 
that QELBY powder increased the water structure. 
After mixing water with QEBLY powder (1% or 9,988 
mg/l) and water for 0.5 h, the ORP of the water rose to 
-75 mV. Another study by Hang et al. [158] investigated 
the effects of water treatment using QELBY powder 
(10,000 mg/l) with an approximate ORP of -75 mV on 
Natural Killer (NK) cells and phagocytic activity in 
media cultures. The same QELBY water was also 
tested on viability for breast cancer cells (MCF-7 cell 
line). They found that NK cell activity increased from 
8% (control) to 25% for the QELBY SW water 
treatments. Also, they found that phagocytic activity 
increased twofold for the QELBY water treatment. In 
addition, they show that breast cancer cell viability 
decreased by approximately 20% for the QELBY water 
treatment. Finally, they found that the mitochondrial 
membrane potential increased 1.36-fold with the 
QELBY treatment, indicating a deepening of the EZ 
zone that covers the mitochondria membrane [158].  

A concept article by Mojica et al. [159] proposes that 
SW drinking water could be used as a hydration 

therapy for cancer patients. The underlying concept of 
this SW water research is that cells with adequate 
levels of BSW water and healthy negative ORP values 
reduce the risk for several types of cancer. This cell 
hydration concept was indirectly confirmed by a clinical 
study conducted by Mayrovitz [160]. He monitored 
breast cancer patients using non-invasive 
measurements to correlate water content in arm tissue 
with the risk of relapse for patients in cancer remission. 
He evaluated the ability of two portable medical 
devices to measure intracellular water content (IWC) in 
healthy patients and patients in remission from Breast 
Cancer-Related Lymphedema (BCRL). One device 
measured IWC using bioimpedance spectroscopy 
(BIS). The second device measured IWC using a 
Tissue Dielectric Constant (TDC) monitor to measure 
the dielectric properties of tissue. He found that both 
devices accurately measured IWC levels in patients 
with and without BCRL. He concluded that the non-
invasive devices could reliably screen patients for 
BCRL symptoms based on their IWC levels from arm 
measurements. The findings from this study show that 
the level of intracellular water content could be used to 
predict or screen patients for their risk of relapse into 
cancer. The overall implications of this study suggest 
that the level of IWC water in human tissue could 
reliably correlate with certain cancer risks. As 
mentioned, ICW water comprises 64% BSW and 36% 
free water [80]. These findings agree with the concept 
paper by Mojica et al. [159] that adequate levels of 
BSW water would reduce the risk for several types of 
cancer. Mojica et al. suggest that cell membrane 
potential near -60 to -70 mV is a reliable biomarker for 
maintaining adequate BSW levels in humans. Yang 
and Brackenbury [68 -69] also agree that membrane 
potentials should be maintained near -70 mV, 
significantly decreasing cancer risk. These findings 
show that IWC water content and BSW interfacial water 
zone should be maintained at healthy levels to 
minimize cancer risks.  

Aquaporins are protein-based water channels in cell 
and organelle membranes that allow rapid transfer of 
water and other low molecular weight molecules across 
the membranes. The aquaporin identified in 
mitochondria membranes is called AQP8. The AQP8 
aquaporin assists with the transport of H2O and H2O2 

across the mitochondria's inner membrane. Ikaga et al. 
[161] found that “knocking out” the ability of AQP8 to 
function contributes to mitochondrial dysfunction. He 
also states that mitochondrial AQP8 contributes to 
mitochondrial respiratory function by maintaining water 
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homeostasis [161]. This study highlights the 
importance of water transport across membranes and 
maintaining water and redox homeostasis for both intra 
and extracellular environments. Kozumi and Kitagawa 
[162] state that three different aquaporins preferentially 
transported SW water generated from a ceramic 
device. The increase in permeability for the aquaporins 
ranged from 21% to 26% when SW water was 
compared to non-structured water. Also, Ali et al. [163] 
found that four aquaporin types exhibited increased 
transport of natural healing spring water that had 
physicochemical properties comparable to structured 
water. Both studies suggest that human aquaporins are 
more permeable for SW and BSW water. The ability of 
a single aquaporin to rapidly transport water into cell 
organelles at rates up to 3 x 109 H2O/s indicates how 
crucial aquaporins and structured water are for 
maintaining water homeostasis across both intra and 
cellular membranes. Maintaining the IWC: EWC ratio in 
cells as humans age is important so that BSW levels 
are at optimum levels for ultra-fast exchange of 
electrons and protons to preserve redox homeostasis 
at the cell and higher biological scales [1-9].  

This review of the health benefits of drinking man-made 
or naturally sourced SW water reveals several 
impressive benefits. There are many more case studies 
for drinking naturally sourced SW than drinking man-
made water products. Several other generation 
methods for drinking water have properties similar to 
SW water, including magnetized, electrolyzed, or 
hydrogen water. This article did not extensively review 
these methods of generating drinking water due to their 

limited information on their possible SW water 
properties. 

5. EFFECTS OF INFRARED RADIATION ON BSW 
ZONE DYNAMICS 

Energy from infrared radiation temporarily increases 
the thickness of the BSW interfacial water zone in plant 
or animal tissue when directly exposed to the radiation, 
according to Pollack [155]. This spectrum covers near, 
mid, and far ranges with associated wavelengths 
(Figure 2). When a surface absorbs infrared radiation, 
radiative heat transfer occurs, and the temperature 
rises in that surface material. Water molecules readily 
absorb infrared radiation, especially in the far infrared 
spectrum. Near-infrared (NIR) has higher energy, 
penetrating deeper into tissue and raising tissue 
temperature faster than far infrared. As tissue absorbs 
NIR energy, it rises the temperature and is re-emitted 
at lower FIR energies that can be detected with thermal 
IR scans. Wein’s law can be used to convert the 
temperature of an object into the infrared wavelength 
emitted from the object. For example, the average 
temperature of humans is 98 F, which converts to a 
FIR wavelength of 9,343 nm, based on Wein’s law. 
Human mitochondria have an average temperature of 
53-54 C, which converts to a FIR wavelength of 10,174 
nm. Radiant heat from a temperature rise is constantly 
emitted in FIR wavelengths, but organic tissue can 
absorb a wide range of wavelengths in the EMF 
spectrum.  

Pollack proposes that infrared radiation causes free 
water molecules to self-assemble into BSW water 

 
Figure 2: Infrared wavelength spectrum and associated wavelengths (open access image). 
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based on the absorption of IR energy by water 
molecules and altered electrostatic charges in the 
water molecules [155]. However, Pollack also states 
that the expanded EZ water zone is temporary and 
returns to its original size within about 10 min. He also 
states that the EZ zone maintains its new thickness if 
there is a continuous supply of IR energy from any 
source. All warm-blooded animals generate far infrared 
radiation during aerobic respiration in the hundreds of 
mitochondria in each cell. This infrared radiation 
emitted by mitochondria is absorbed by BSW interfacial 
water. Recycling and partial storage of heat generated 
by the mitochondria in BSW water improves overall 
metabolic efficiency, reduces energy demands, and 
supplies supplemental energy in the form of increased 
thickness of the EZ water zone. There is an intricate 
interplay between external and internal sources of IR 
radiation in creating and maintaining an adequate 
thickness for BSW water zones.  

The interaction between IR energy and the 
electrostatics of energized water moles proposed by 
Pollack may also hint at the temporary nature of EZ 
water zone thickness [153]. The energy from IR 
radiation may be enough to split SW water that has 
been energized. However, the energy of IR radiation is 
too low to alter hydrogen bond strength in free or 
unstructured water. As mentioned in Part 1, when H-
bonds are shortened, free water molecules increase in 
polymeric structures with much longer stability and 
duration dynamics. The shelf life of structured drinking 
water products is evidence of the stability of generated 
SW water. This author has custom-generated SW 
water that has maintained its physicochemical water 
properties for well over 12 months. Also, this author 
conducted a plant watering study using generated SW 
water [59]. The SW water was added to potting soil, 
which is highly reactive, and was then taken up into the 
roots of water-stressed plants. The study results 
indicate that the generated water maintained its SW 
water properties when transported in the soil matrix 
and the plant vascular system. Biological research is 
still uncertain whether BSW interfacial water has 
weaker H-bond strengths, less stability, and cyclic 
water zone dynamics than generated SW water using 
energy sources high enough to break the covalent 
bonds in water molecules. However, the bioenergy 
fields needed to maintain or increase BSW levels “in 
vivo” are probably too weak to shorten the H-bonds 
that ensure stable polymeric structures. It remains an 
open question whether drinking SW water with strong 
H-bonds would convert into BSW interfacial water with 

increased stability and prolonged duration spans. Also, 
it is still unclear if drinking high quality, generated SW 
water with strong H-bonds negatively impacts 
metabolic activities. The large volume of case studies 
for drinking natural or spring water with SW water 
properties and extending human longevity suggests 
only positive effects of drinking SW water. Part 3 of this 
review will describe several methods of generating SW 
water that produce shorter H-bonds and ensure stable 
SW water structures using energy sources strong 
enough to break the covalent bonds in water.  

6. BIOMARKER MONITORING TO QUANTIFY 
EFFECTS OF DRINKING SW WATER ON HEALTH 

The effects of SW water on human health can be 
monitored using home digital devices to measure four 
biomarkers. The biomarkers were heart rate, percent 
blood oxygen, body temperature, and Resting Energy 
Expenditure (REE). Personal biomarkers should be 
monitored after a prolonged rest period, as the 
biomarkers are also robustly synchronized to physical 
activity. In other words, these biomarkers are highly 
variable depending on any physical activity. Therefore, 
monitoring biomarkers while the body is at full rest 
provides more accurate results with less variation in 
averaging the results.  

Essential biomarkers can be monitored with 
inexpensive devices. The heart pulse rate is measured 
with a finger oximeter that collects beats per minute 
(BPM). The oximeter also measures the percentage of 
blood oxygen. Digital thermometers measure body 
temperature when placed under the tongue. Also, 
indirect calorimeters measure Resting Energy 
Expenditure data [164]. The calorimeter data included 
volumetric oxygen consumption and estimates of 
calorie burn rates (kcal/day) while at rest and total 
calories per day.  

Biomarkers for heart pulse rate and body temperature 
are easy to monitor daily over long periods. These 
biomarkers have taken on a new health monitoring 
status due to new research correlating the two 
biomarkers to a person’s overall health status. Recent 
research has shown a direct, linear relationship 
between heart pulse rate and body temperature. 
Broman et al. [165] found that the heart rate increased 
by 8.35 BPM for every 1°C increase in body 
temperature between 32.0°C and 42.0°C in critically ill 
patients. Also, Neal et al. [166] found that in children 
under 16 years of age, the heart rate increased by 12.3 
BPM for every 1 C increase in temperature after 
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accounting for oxygen saturation, location of 
attendance, and age. Medical literature confirms that 
life spans are shortened as body temperature 
increases with increasing respiration rates [167-170]. 
Monitoring personal temperatures before and after 
drinking SW water should indicate a trend in reduced 
body temperature over time.  

Research on aging shows a negative relationship 
between heart rates and longevity [171-173]. In a 
review by Jensen [174], he states that a reduction of 
19% in resting heart rates (65 versus 80 bpm) was 
associated with 4.6 years longer life expectancy in men 
and 3.6 years in women. An earlier study by Jensen et 
al. [175] analyzed a large cohort study to estimate any 
associations between heart rates and longevity. A 
similar study was published by Woodward et al. [176]. 
They found that the health risk ratio was 1.0 for both 
sexes, with a resting heart rate of less than 60 BPM for 
heart failure and total mortality. Another meta-analyses 
study on heart rate and longevity by Quer et al. [177] 
involved a 92,000-person cohort study. They found that 
men's average resting heart rate at 70 years old was 
about 62 BPM. Again, personal monitoring with an 
oximeter before and after drinking SW water should 
show a trend in reducing heart pulse rates over time.  

A portable indirect calorimeter measures aerobic 
respiration rates, i.e., the meter measures calories 
burned (kcal/day) when data is collected after different 
activities. In Part 1 of this review, the Water Respiration 
(WR) theory was presented as a cell energy source. If 
the WR energy cycle theory is ultimately proven valid, 
then total cell energy is a product of aerobic (AR) and 
water respiration (WR), along with secondary sources 
previously mentioned in Part 1. Water-based WR 
respiration is directly proportional to the level of BSW 
water available to initiate the WR cycle. In contrast, AR 
respiration requires a carbon-based energy source and 
O2 to initiate the AR cycle within the mitochondria. As 
the AR respiration decreases and WR respiration 
increases, there is a reduction in REE and O2 for 
aerobic respiration needs. Aerobic respiration 
consumes O2; therefore, the percentage of blood 
oxygen is a direct biomarker for respiration status. 
Personal monitoring of REE rates requires collecting 
data before physical activity first thing in the morning. 
Monitoring REE rates before and after drinking SW 
water should show a trend in reduced REE rates over 
time. 

Personal medical devices have been developed to 
monitor water content in body tissue remotely. Two 

types of portable meters have been designed to 
measure extracellular and intracellular water content 
remotely. One device uses bioimpedance spectroscopy 
(BIS). The BIS device sends a small electrical current 
into the body tissue over a range of frequencies and 
measures the impedance of the current. Algorithms 
convert the impedance values into biomarker estimates 
of body composition, including extracellular and 
intracellular water content. The accuracy of the BIS 
meters has been evaluated in several tests [178-180]. 
The second uses electrical current to measure the 
tissue's Tissue Dielectric Constant (TDC). The 
dielectric properties of tissue are directly proportional to 
its water content [181-182]. A comparison between BIS 
and TDC medical meters was conducted by Lahtinen et 
al. [183]. These meters allow daily monitoring of 
hydration levels and test for any enhancement of IWC 
levels due to drinking SW water.  

7. ALTERNATIVE TREATMENTS FOR MAINTAINING 
BSW WATER LEVELS DURING AGING 

The second part of this review focused on drinking SW 
water to maintain BSW water levels in humans or 
irrigated plants. However, research also reveals that 
two other treatments, including infrared light and 
magnetic fields, can increase BSW levels in organisms. 
These treatments for increasing BSW levels rely on 
exposing the body to energy fields that penetrate the 
tissue and induce self-assembly of free water into BSW 
water.  

Additional research studies confirmed Pollack’s 
assertion that red and infrared light increases the EZ 
zone on membranes, which increases membrane 
potential [184- 188]. Sommer et al. [189-190] state that 
the bound water on mitochondria absorbs red to near-
infrared radiation (R-NIR light) in Low-Level Light 
Therapy (LLLT) treatments. Medical treatments based 
on biophotomodulation or LLLT use red to near-infrared 
light to treat wound healing, stroke, traumatic brain 
injury, neurodegenerative conditions, cancer, in vitro 
fertilization, and pain management [190]. A review by 
Ravera et al. [191] states that biophotomodulation 
LLLT treatments positively affect cell-based 
bioenergetics. They also state that bound water, or EZ 
water, absorbs red to near-infrared light, which 
increases mitochondrial membrane potential. 
Passarella et al. [192] found that rat liver mitochondria 
had increased membrane potential and a 70% increase 
in ATP levels when the cells were exposed to red light 
(647 nm). Alexandratou et al. [193] showed a 30% 
increase in mitochondrial membrane potential with 15 s 
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exposure to red light EMF (647 nm). A third study by 
Hu et al. [194] revealed a 34.5% increase in 
mitochondrial membrane potential when exposed to 
red light (633 nm). Yu et al. [195] found that photo 
modulation with NIR (660 nm) increased oxygen 
consumption twofold and increased membrane 
potential by 33% in rat liver mitochondria. A review by 
Yang and Youngblood [196] also states that 
biophotomodulation with red and near-infrared radiation 
can increase mitochondrial membrane potential and 
partially alleviate mitochondria dysfunction.  

Research on the effects of static magnetic fields on 
water structure also shows some promise. Konovalov 
et al. [197] and Sidorenko et al. [198] collaborated on 
studies involving generating structured water with 
electromagnetic fields. They were able to form “nano-
sized water assemblies” or water clusters up to 400 nm 
in size. These water clusters were estimated to contain 
up to 500 million H2O molecules. Their findings suggest 
that electromagnetic fields can generate coherent 
domains, fully described in Part 1 of this review. Chang 
et al. [199] investigated the effects of static magnetic 
fields on water structure using molecular simulation 
models. They found that external magnetic fields from 
0 to 10 T increased the number of hydrogen bonds in 
water, resulting in the formation of larger water 
clusters. Other studies by Cai et al. [200], Pang et al. 
[201], Jung et al. [202], and Ghauri et al. [203] found 
that magnetic fields increase water structure based on 
the enhancement of several SW water properties. A 
study by Shalatonin and Pollack [204] found that a 
neodymium bar magnet (1,440 mT) increased the EZ 
water zone on microspheres.  

These studies were conducted under laboratory 
conditions, so one can only conjecture whether 
magnetic fields can increase BSW water levels by 
placing static magnets on the organism's surface. 
Mohamed and Hanafy [205] found that water exposed 
to static magnetic field (2 mT) for 1 h exhibited SW 
water properties by increasing pH by 11.6%, viscosity 
by 10%, and electrical conductivity by 10%. They used 
the same magnetized water to irrigate common beans 
(Phaseolus vulgaris), resulting in a 7.9% increase in 
plant height and a 13% increase in weight of 100 seeds 
compared to the control plants. Despite the low 
magnetic field strength (2 mT), their irrigation study 
showed increased plant responses based on plant, 
seed, and chlorophyll variables. Magnetic fields 
increase the hydrogen bond numbers in water, which 
increases water structure, depending on the magnetic 

field strength and duration of exposure [206-207]. The 
effects of different energy fields, including the strength 
and duration of exposure to different fields, on altering 
H-bond strength in liquid water will be briefly discussed 
in Part 3. 

8. BSW WATER EFFECTS ON INNATE IMMUNITY 
AND VIRUS ATTACHMENT TO MEMBRANES 

BSW water can boost human immunity via two different 
processes. The first process boosts the redox activities 
within the innate immune system. The innate immune 
system is the “first responder” immunity system that 
goes into action immediately. The innate immunity cells 
surround and engulf the invader or produce free 
radicals that chemically inactivate the pathogens. 
Innate immunity is non-specific and includes responses 
such as phagocytosis, killing of pathogens or cells, and 
cytokine production. The second process involves the 
ability of BSW water to increase cell membrane rigidity 
by the semi-flexible liquid crystalline coating on 
membrane surfaces.  

The innate system includes leukocytes, such as 
neutrophils, that generate free radical oxygen species 
[208-209]. When the immune system signals are sent 
to neutrophils, the enzyme NADPH oxidase is activated 
to produce free radicals [210-212]. NADPH oxidase 
can generate a respiratory burst that can increase 
oxygen consumption by 10-15-fold [210-212]. The 
innate immune system uses this rapid increase in 
Radical Oxygen Species (ROS) to inactivate pathogens 
through a series of redox reactions [213-215]. Hang et 
al. [158] found that Natural Killer cell activity increased 
from 8% to 25% for the control and SW water 
treatments, respectively. Also, they found that 
phagocytic activity increased twofold for the SW water 
treatment. As mentioned in Part 1, excess ROS 
radicals can be rapidly quenched when adequate BSW 
water levels are present due to their excellent 
antioxidant properties.  

Pollack et al. [184-187] conclude that the EZ zone, 
a.k.a. BSW interfacial layer, excludes virtually all ions, 
solutes, and pathogens. Shalatonin [216] states that a 
long-range EMF interaction between the EZ water and 
SARS-CoV-2 glycosylated spikes creates a “glass-like” 
hydration layer that covers the cell membrane. Many 
research phrases are vague descriptions such as 
“glass-like,” but this phrase suggests that the glass-like 
hydration layer is synonymous with a liquid crystalline 
lattice of H-bonded water molecules hydration layer. 
This glass-like hydration layer inhibits the entry of the 
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SARS-CoV virus into a host cell. She concludes that 
viral interactions with EZ water may also be able to 
exclude human immunodeficiency viruses, influenza 
viruses, and possibly other enveloped viruses. A 
concept paper by Messori [217] states that viruses 
such as SARS-CoV-2 seek host cells via long-range 
emission of ULF-EMF signals. These EMF signals are 
the electromagnotaxis principle that viruses use to seek 
out and find host cells. The EMF signals also alert the 
host cells to initiate a cascade of redox reactions to 
generate ROS radicals. The same ULF-EMF signals 
also create a glass-like stabilizing EZ zone that inhibits 
viral attachment to host cells [217].  

Chen et al. [218] investigated the strength of the 
exclusion force in the EZ water zone. They found that 
negatively charged microspheres were repelled from 
an EZ zone on a Nafion surface with a force increasing 
from 0 to 3 pN as the microsphere distance decreased 
from 60 to 0 µm from the surface. The SARS-CoV-2 
virus is negatively charged on its outside surface. 
Therefore, SARS-CoV-2 should be repelled from 
negatively charged EZ water zones that also repelled 
the negatively charged microspheres in the study by 
Chen et al. [218]. Cheng and Moraru [219] evaluated 
the effects of long-range interactions between 
structured water generated as an EZ water zone on a 
Nafion surface and bacteria. They found that an EZ 
water zone excluded Staphylococcus aureus, 
Escherichia coli O157:H7, and Listeria monocytogenes 
from 40-60 µm from the surface, with an additional 
transition zone of 40-80 µm for bacteria suspended in 
tryptic soy broth. Kowacz and Pollack [220] evaluated 
the ability of propolis (bee glue) to create an EZ water 
zone. They state that Propolis created an EZ zone over 
40 min., approximately 200-300 µm thick, and was 
stable for about two h before diminishing in depth. They 
state that the propolis-generated EZ zone created an 
effective exclusion zone that prevented the attachment 
of viruses or entry of pathogen bacteria. 

These research findings indicate that viral entry into 
host cells is associated with the depth of BSW 
interfacial water covering the host cell membrane. 
Further research is needed to investigate the effects of 
maintaining and enhancing BSW interfacial water on 
inhibiting virus entry into host cells. Additional research 
is required to investigate the interplay between BSW 
water levels, ROS generation and quenching, ROS 
inactivation of pathogens, and boosting overall cell 
immunity.  
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