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Abstract: In this paper, the analytic continuation formula of the Riemann zeta function is presented as a function of t2n, 
thus validating Riemann’s claim that ε(t) allows itself to be developed in the power of t2. It is also shown that the root of 
ε(t) is always real. A theorem to validate the real roots is established. 
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1. INTRODUCTION 

Let us choose 

                  
(1)

 

Such that 

                      (2) 

                     (3) 

and 

                   (4) 

Thus  

 

                  (5)
 

                   (6) 
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If one expresses  in its exponential form  

                (7) 

One can now write (1) as 

             

(8) 

One further simplification of (8), one obtains  as; 

   (9) 

2. BY RATIONALIZING (9), ALL THE IMAGINARY PART VANISHES AND ONE IS LEFT WITH ONLY REAL 
PARTS SUCH THAT; 

 

                    (10) 

One obtains (10) as: 

  

(11) 

 Equation (11) gives the zero of (10) by equating the numerator to zero, which can be written as; 
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(12) 

3. ON FURTHER SIMPLIFICATION, ONE OBTAINS; 

               (13) 

Such that 

          (14) 

          (15) 

               (16) 

                (17) 

          (18) 

  (19) 

 

 

               (20) 
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           (22) 

4. CONCLUSION 

The solution to these polynomials are known as Algebraic function, because the function is a summation of 
polynomials. Hence, the solution to a polynomial is called an Algebraic number. Riemann zeta function is a function 
of algebraic functions; that is, it has to do with the summation of polynomials 

 The sum and product of all the roots of  

 

are  and  respectively.  

Considering our polynomials, 

M  

  

By the theorem above, the sum of the 6 roots of the polynomials is  and the product of the roots of the 

polynomials is . We are interested in using the sum of the roots to test if the roots are real or not. The 

result of the program shows that running n from 1 to 90,000 0000 and x running from 1 to ∞ then the sum will 
always be real. 

Hence, this has validated the Riemann hypothesis that says all roots are real 

Theorem 1: 

Let ,   

Then the sum of all the roots is given to be  

 
  

1. Thus if any of the roots is a complex root then the sum of the root will be a complex root 

2. If all the roots are real such that  

  

Then the sum of all the roots will be real.  
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