A Validation of the Real Zeros of the Riemann Zeta Function via the Continuation Formula of the Zeta Function

O.O.A. Enoch ${ }^{1}$ and F.J. Adeyeye ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti, Nigeria
${ }^{2}$ Department of Math/Computer, College of Sciences, Federal University of Petroleum Resources, Effurun, Delta State

Abstract: In this paper, the analytic continuation formula of the Riemann zeta function is presented as a function of $t^{2 n}$, thus validating Riemann's claim that $\varepsilon(t)$ allows itself to be developed in the power of t^{2}. It is also shown that the root of $\varepsilon(t)$ is always real. A theorem to validate the real roots is established.

Keywords: Meromorphic functions, Riemann zeta functions, zeros Riemann hypothesis.

1. INTRODUCTION

Let us choose
$\varepsilon(t)=4 \int_{1}^{\infty} \frac{d\left(x^{3 / 2} \emptyset^{1}(x)\right)}{d x} x^{-1 / 4} \cos \left(\frac{t}{2} \log ^{x}\right) d x$
Such that

$$
\begin{equation*}
\emptyset(x)=\sum_{n=1}^{\infty} e^{-n n \pi x} \tag{2}
\end{equation*}
$$

$$
\emptyset^{\prime}(x)=-\sum_{n=1}^{\infty} n n \pi e^{-n n \pi x}
$$

and

$$
\begin{equation*}
x^{3 / 2} \emptyset^{\prime}(x)=-\pi x^{3 / 2} \sum_{n=1}^{\infty} n n e^{-n n \pi x} \tag{4}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \frac{d\left(x^{3 / 2} \emptyset^{\prime}(x)\right)}{d x} \text { is obtained to be } \frac{d}{d x}\left[-n n \pi \sum_{n=1}^{\infty} x^{3 / 2} e^{-n n \pi x}\right] \text { and this leads to } \\
& \pi \sum_{n=1}^{\infty}\left[x^{3 / 2} n^{4} \pi e^{-n n \pi x}-\frac{3 n^{4}}{2} x^{1 / 2} e^{-n n \pi x}\right] \tag{5}\\
& =\sum_{n=1}^{\infty}\left[x^{3 / 2} n^{4} \pi^{2}-\frac{3 n^{2}}{2} \pi x^{1 / 2}\right] e^{-n n \pi x} \tag{6}
\end{align*}
$$

*Address corresponding to these authors at the Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti, Nigeria; Tel: 07066466859, 07037344253; Email: ope_taiwo3216@yahoo.com
Department of Math/Computer, College of Sciences, Federal University of Petroleum Resources, Effurun, Delta State; E-mail: adeyeyefola@yahoo.com

If one expresses $\cos \left(\frac{1}{2} t \log x\right)$ in its exponential form
$x^{-1 / 4} \cos \left(\frac{1}{2} t \log x\right) \equiv \frac{1}{2} x^{\frac{-1}{4}} e^{i t / 2} \log x+\frac{1}{2} x^{\frac{-1}{4}} e^{i t / 2} \log x$
One can now write (1) as

$$
\begin{align*}
\varepsilon(t)= & \sum_{n=1}^{\infty}\left[\frac{3 n^{2}}{4} \int_{1}^{\infty} x^{3 / 2} e^{\left(\frac{i t}{2} \log x-n n \pi x\right)} d x+\frac{3 n^{2}}{4} \int_{1}^{\infty} x^{1 / 2} e^{-\left(\frac{i t}{2} \log x+n n \pi x\right)} d x\right. \\
- & \left.\frac{n^{2} \pi^{2}}{2} \int_{1}^{\infty} x^{5 / 4} e^{\left(\frac{i t}{2} \log x+n n \pi x\right)} d x-\frac{n^{2} \pi^{2}}{2} \int_{1}^{\infty} x^{5 / 4} e^{-\left(\frac{i t}{2} \log x+n n \pi x\right)} d x\right] \tag{8}
\end{align*}
$$

One further simplification of (8), one obtains $\varepsilon(t)$ as;

$$
=\sum_{n=1}^{\infty}\left[\begin{array}{c}
\frac{\left(\frac{3 n^{4} \pi^{2}}{2 x}-3 n^{2} \pi i t\right) e^{-n n \pi}}{\frac{\left(3 n^{4} \pi^{2}-n^{4} \pi x-\frac{t^{2}}{2}\right)-i\left(\frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)}{x}}+\frac{\left(\frac{3 n^{4} \pi^{2}}{2 x}+3 n^{2} \pi i t\right) e^{-n n \pi}}{\left(4 n^{4} \pi^{2}-n^{4} \pi x-\frac{t^{2}}{2}\right)+i\left(\frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)} \tag{9}\\
-\frac{\left(-2 n^{6} \pi^{3}+i \frac{n^{4} \pi^{2}}{x}\right) e^{-n n \pi}}{\left(4 n^{4} \pi^{2}-5 n^{4} \pi x-\frac{t^{2}}{2}\right)-i\left(5 \frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)}-\frac{\left(\frac{n^{4} \pi^{2}}{x}+2 n^{6} \pi^{3}\right) e^{-n n \pi}}{\left(4 n^{4} \pi^{2}-5 n^{4} \pi x-\frac{t^{2}}{2}\right)+i\left(5 \frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)}
\end{array}\right]
$$

2. BY RATIONALIZING (9), ALL THE IMAGINARY PART VANISHES AND ONE IS LEFT WITH ONLY REAL

 PARTS SUCH THAT;$$
\begin{gather*}
\varepsilon(t)=\frac{\left(6 n^{4} \pi^{2} e^{-n n \pi}\right)\left(4 n^{4} \pi^{2}-n^{4} \pi x-\frac{t^{2}}{2}\right)+\left(\frac{3 n^{2} \pi t}{x} e^{-n n \pi}\right)\left(\frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)}{\left(4 n^{4} \pi^{2}-n^{2} \pi x-\frac{t^{2}}{2}\right)^{2}+\left(\frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)^{2}} \\
-\frac{\left(4 n^{6} \pi^{2} e^{-n n \pi}\right)\left(4 n^{4} \pi^{2}-5 n^{2} \pi x-\frac{t^{2}}{2}\right)+\left(\frac{2 n^{4} \pi^{2}}{x} e^{-n n \pi}\right)\left(\frac{5 x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)}{\left(4 n^{4} \pi^{2}-5 n^{2} \pi x-\frac{t^{2}}{2}\right)^{2}+\left(\frac{5 x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)^{2}} \tag{10}
\end{gather*}
$$

One obtains (10) as:

$$
\begin{equation*}
=\sum_{n=1}^{\infty} \frac{\left[\left(4 n^{4} \pi^{2}-5 n^{2} \pi x-\frac{t^{2}}{x}\right)^{2}+\left(\frac{5 x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right)^{2}\right] A-\left[\left(4 n^{4} \pi^{2}-n^{2} \pi x-\frac{t^{2}}{2}\right)^{2}+\left(\frac{x t}{2}-2 n^{2} \pi t+\frac{2 n^{2} \pi t}{x}\right)^{2}\right] B}{\left.\left.2 n^{4} \pi^{2}-5 n^{2} \pi x-\frac{t^{2}}{x}\right)^{2}+\left(\frac{5 x t}{2} 2 n^{4} \pi x-\frac{2 n^{2} \pi t}{x}\right)^{2}\right]\left[\left(4 n^{4} \pi^{2}-n^{2} \pi x-\frac{t^{2}}{x}\right)^{2}+\left(\frac{x t}{2}-2 n^{2} \pi t+\frac{2 n^{2} \pi t}{2}\right)^{2}\right]} \tag{11}
\end{equation*}
$$

Equation (11) gives the zero of (10) by equating the numerator to zero, which can be written as;

$$
\begin{align*}
\sum_{n=1}^{\infty}\left[\left(\frac{6 n^{4} \pi^{2}}{x}\right)\right. & \left.t^{2}+\left(\frac{6 n^{4} \pi^{2}}{x}+\frac{6 n^{4} \pi^{2}}{x^{2}}-\frac{3 n^{4} \pi}{2}\right) t+\left(24 n^{8} \pi^{4}-6 n^{6} \pi^{3} x\right)\right]\left[\left(\frac{1}{x^{2}}\right) t^{2}\right. \\
& \left.+\left(\frac{-8 n^{6} \pi^{3}}{x}+\frac{25 x^{2}}{4}-10 n^{2} \pi+12 n^{4} \pi^{2}+\frac{4 n^{4} \pi^{2}}{x^{2}}\right) t^{2}+\left(16 n^{8} \pi^{4}-40 n^{6} \pi^{3}+25 n^{4} \pi^{2} x^{2}\right)\right] \\
& +\left[\left(\frac{-4 n^{6} \pi^{3}}{x^{2}}+5 n^{4} \pi^{2}\right) t^{2}+16 n^{10} \pi^{5}-20 n^{8} \pi^{4} x\right]\left[\left(\frac{1}{x^{2}}\right) t^{4}\right. \tag{12}\\
& \left.+\left(\frac{x^{2}}{4}-2 n^{2} \pi x+4 n^{4} \pi^{2}+\frac{4 n^{4} \pi^{2}}{x^{2}}\right) t^{2}+\left(16 n^{8} \pi^{4}-8 n^{6} \pi^{3}+n^{4} \pi^{2} x^{2}\right)\right]=0 \tag{12}
\end{align*}
$$

3. ON FURTHER SIMPLIFICATION, ONE OBTAINS;

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[M t^{6}+N n^{5}+P t^{4}+Q t^{3}+R t^{2}+S t+W\right]=0 \tag{13}
\end{equation*}
$$

Such that

$$
\begin{align*}
& A=\left(6 n^{4} \pi^{2} e^{-n n \pi}\right)\left(4 n^{4} \pi^{2}-n^{4} \pi x-\frac{t^{2}}{2}\right)+\left(\frac{3 n^{2} \pi t}{x} e^{-n n \pi}\right)\left(\frac{x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right) \tag{14}\\
& B=\left(4 n^{6} \pi^{2} e^{-n n \pi}\right)\left(4 n^{4} \pi^{2}-5 n^{2} \pi x-\frac{t^{2}}{2}\right)+\left(\frac{2 n^{4} \pi^{2}}{x} e^{-n n \pi}\right)\left(\frac{5 x t}{2}-2 n^{2} \pi t-\frac{2 n^{2} \pi t}{x}\right) \tag{15}\\
& M=\left[\left(\frac{-4 n^{6} \pi^{3}}{x^{2}}+5 n^{4} \pi^{2}\right)+\left(\frac{6 n^{4} \pi^{2}}{x}\right)\right]\left(\frac{1}{x^{2}}\right)+\frac{5 \pi^{4} x}{4} \tag{16}\\
& N=\left(\frac{6 n^{4} \pi^{2}}{x}+\frac{6 n^{4} \pi^{2}}{x^{2}}-\frac{3 n^{2} \pi}{2}\right)\left(\frac{1}{x^{2}}\right)-\frac{5 \pi^{4} x}{4} \tag{17}
\end{align*}
$$

P

$$
\begin{align*}
& =\left[\frac{44 n^{8} \pi^{4}}{x^{2}}-\frac{48 n^{10} \pi^{5}}{x^{2}}+\frac{75 n^{4} \pi^{2}}{2}-\frac{66 n^{6} \pi^{3}}{x}+\frac{48 n^{10} \pi^{4}}{x}+\frac{24 n^{8} \pi^{4}}{x^{3}}+\frac{12 n^{8} \pi^{4}}{x}-n^{6} \pi^{3}-\frac{16 n^{10} \pi^{5}}{x^{5}}-10 n^{6} \pi^{3} x\right. \tag{18}\\
& \left.+20 n^{6} \pi^{3}\right]
\end{align*}
$$

$$
\begin{equation*}
Q=\left[\frac{75 x n^{4} \pi^{2}}{2}-\frac{48 n^{10} \pi^{5}}{x^{2}}-\frac{60 n^{6} \pi^{3}}{x}+\frac{84 n^{8} \pi^{4}}{x}+\frac{24 n^{8} \pi^{4}}{x^{3}}-\frac{48 n^{10} \pi^{5}}{x^{3}}+\frac{75 n^{4} \pi^{2}}{2}-n^{6} \pi^{3}-\frac{66 n^{6} \pi^{3}}{x^{2}}+\frac{24 n^{8} \pi^{4}}{x^{2}}-10 n^{6} \pi^{3} x+20 n^{6} \pi^{3}\right] \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
R=\left(12 n^{4} \pi^{2}-\frac{8 n^{6} \pi^{8}}{x}+\frac{25 x^{2}}{4}-10 n^{2} \pi+\frac{4 n^{4} \pi^{2}}{x^{2}}\right)\left(24 n^{8} \pi^{4}-6 n^{6} \pi^{3} x\right)+\left(\frac{6 n^{4} \pi^{2}}{x}\right)\left(16 n^{8} \pi^{4}-40 n^{6} \pi^{3} x+25 n^{4} \pi^{2} x^{2}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
+\left(16 n^{10} \pi^{5}-20 n^{8} \pi^{4} x\right)\left(\frac{x^{2}}{4}-2 n^{2} \pi x+4 n^{4} \pi^{2}+\frac{4 n^{4} \pi^{2}}{x^{2}}\right) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
S=\left(16 n^{8} \pi^{4}-40 n^{6} \pi^{3} x+25 n^{4} \pi^{2} x^{2}\right)\left[\frac{6 n^{4} \pi^{2}}{x}+\frac{6 n^{4} \pi^{2}}{x^{2}}-\frac{3 n^{2} \pi}{2}\right] \tag{21}
\end{equation*}
$$

$$
+\left(16 n^{8} \pi^{4}-8 n^{6} \pi^{3} x+n^{4} \pi^{2} x^{2}\right)\left(5 n^{4} \pi^{2}-\frac{4 n^{6} \pi^{3}}{x^{2}}\right)
$$

$$
\begin{equation*}
W=\left(16 n^{8} \pi^{4}-8 n^{6} \pi^{3} x+n^{4} \pi^{2} x^{2}\right)+\left(16 n^{10} \pi^{5}-20 n^{8} \pi^{4} x\right)\left(16 n^{8} \pi^{4}-8 n^{6} \pi^{3} x+n^{4} \pi^{2} x^{2}\right) \tag{22}
\end{equation*}
$$

4. CONCLUSION

The solution to these polynomials are known as Algebraic function, because the function is a summation of polynomials. Hence, the solution to a polynomial is called an Algebraic number. Riemann zeta function is a function of algebraic functions; that is, it has to do with the summation of polynomials

The sum and product of all the roots of

$$
\begin{aligned}
& a_{0} z^{n}+a_{1} z^{n-1}+\cdots a_{n}=0 \\
& a_{0} \neq 0 \text { are } \frac{-a_{1}}{a_{0}} \text { and }(-1)^{n} \frac{a_{n}}{a_{0}} \text { respectively. }
\end{aligned}
$$

Considering our polynomials,

$$
\mathrm{M} t^{6}+N t^{5}+P t^{4}+Q t^{3}+R t^{2}+S T+W=0
$$

$$
t^{6}+\frac{N}{M} t^{5}+\frac{P}{M} t^{4}+\frac{Q}{M} t^{3}+\frac{R}{M} t^{2}+\frac{S}{M} t+\frac{W}{M}=0
$$

By the theorem above, the sum of the 6 roots of the polynomials is $\frac{-N}{M}$ and the product of the roots of the polynomials is $(-1)^{n} \frac{W}{M}$. We are interested in using the sum of the roots to test if the roots are real or not. The result of the program shows that running n from 1 to 90,0000000 and x running from 1 to ∞ then the sum will always be real.

Hence, this has validated the Riemann hypothesis that says all roots are real

Theorem 1:

$$
\text { Let } \quad t_{1}=a_{1}, t_{2}=a_{2}, t_{3}=a_{3}+i b_{3}, t_{4}=a_{4}, t_{5}=a_{5}, \quad t_{6}=a_{6}
$$

Then the sum of all the roots is given to be

$$
\begin{aligned}
& t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}=a_{1}+a_{2}+\left(a_{3}+i b_{3}\right)+a_{4}+a_{5}+a_{6} \\
& \left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}\right)+i b
\end{aligned}
$$

1. Thus if any of the roots is a complex root then the sum of the root will be a complex root
2. If all the roots are real such that
$t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
Then the sum of all the roots will be real.

REFERENCES

[1] On the number of Prime Number less than a given Quantity; Bernhard Riemann Translated by David R. Wilkins. Preliminary version: Dec. 1998 \{Nonatsberichte der Berliner, Nov.1859\}
[2] An introduction to the theory of the Riemann zeta function, by S.J.Patterson.
[3] On lower bounds for discriminants of algebraic number fields, M.Sc. thesis by S.A.Olorunsola (1980).
[4] Complex variables and Application (Third edition) By Ruel V. Churchill, James W. Brown, and Roger F. Verhey.
[5] Complex variables for scientists and engineers By John D. Paliouras.
[6] Mathematical methods for physics and engineering; A comprehensive guide by K. F. Riley, M. P. Hobson and S. J. Bence.
[7] Complex analysis (third edition) by Serge Lang; Department of mathematics Yale university New Haven, CT06520 USA. SPRINGER
[8] Problem of the millennium; hypothesis.en.wikipedia.org/wiki/ Riemann-hypo.
[9] Advanced Engineering mathematics By Erwin Kreyszig (8 ${ }^{\text {th }}$ Edition)
[10] Supercomputers and the Riemann zeta function: A.M. Odlyzko; ATandT Bell Laboratories Murray Hcll, New jersey 07974
[11] The Mathematical Unknown by John Derbyshire Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics; Joseph Henry Press, 412 pages, \$24.95; Reviewer James Franklin
[12] The Riemann hypothesis by Enrico Bombieri.
© 2012 Enoch and Adeyeye; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

