Effects of Carburizing Process Variables on Mechanical and **Chemical Properties of Carburized Mild Steel**

A. Ovetunji^{*,1} and S.O. Adeosun^{*,2}

¹Dept of Metallurgical and Materials Engineering The Federal University of Technology, Akure Ondo State Nigeria

²Dept of Metallurgical and Materials Engineering University of Lagos, Akoka Lagos Nigeria

Abstract: This work evaluates the suitability of using palm kernel shell, animal bone (mammalian bones from cattle) and sea shell (oyster shell) materials as carburizers for case hardening of 0.078%C mild steel. The mild steel sample used in this study sourced from universal steel company, Ikeja Lagos Nigeria was cut into suitable sizes using hacksaw machine for tensile and hardness tests. The carburizing media used were milled into fine powder while Barium trioxo (iv) carbonate (VI) (BaCO₃) was used as an energizer in the carburizing process.

Three rectangular stainless steel plate boxes were fabricated to accommodate each of the steel samples and carburized. A calculated amount of each carburizer was weighed into each of the stainless steel boxes and 20 wt % of BaCO₃ was mixed with each of them. Mild steel samples were covered completely in each of the boxes with the mixture of the carburizer and energizer placed in the furnace chamber. The carburizing temperatures varied between 700 - 1100°C while the holding time varied between 1-5 hrs. The boxes and its contents were allowed to cool down to room temperature in the furnace after carburization.

All samples were heated to 850°C after been soaked for 30 minutes at this temperature and oil quenched. This was to increase the hardness of the case. Fifteen (15) of these samples were further tempered at 350°C for 2hrs to relieve the stress built up during quenching. Hardness test, tensile strength tests and chemical analysis were carried out on the samples. It was observed that the hardness values of the untempered samples are superior to the tempered ones at carburizing temperatures of 700°C, 800°C and 900°C. On the other hand, the tensile strengths of the tempered samples are higher relative to the untempered samples at carburizing temperatures of 700°C, 1000°C and 1100°C. The results of the carbon analysis show that palm kernel shell and animal bone are potentially suitable to be used as a carburizing media than the sea shell at high temperatures (above 1000°C) with holding time above 1 hr.

Keywords: Carburizers, hardness, tensile, carburizing time and temperature, pack carburizing, quenching and tempering properties.

INTRODUCTION

Many different types of heat treatment processes are used to modify the surface and structural properties of engineering components as reported by Child [1]. The engineering of surfaces of components to improve the life and performance of parts used in automobiles and aerospace is an active area of research. Suitable thermal / mechanical / thermo mechanical surface engineering treatments are known to produce extensive re-arrangements of atoms in metals and alloys and a corresponding marked variation in physical, chemical and mechanical properties. Among the more important of these treatments are heat treatment processes such as immersion hardening, induction hardening and case carburizing as studied by Child [1].

*Address corresponding to these authors at the Dept of Metallurgical and Materials Engineering The Federal University of Technology, Akure Ondo State Nigeria; Tel: +2348035795336; E-mail: akinlabioyetunji@yahoo.com Department of Metallurgical and Materials Engineering University of Lagos, Akoka Lagos Nigeria; Tel: +2348036126987;

E-mail: samsonoluropo@yahoo.com

The service condition of many steel components such as cams, gears and shafts make it necessary for them to possess both hard and wear-resistant surfaces at the same time with tough and shock-resistant cores. In plain carbon steels, these two different sets of properties exist only in alloy steels. Higgins [2] reported that low carbon steel, containing approximately 0.1 %C, will be tough and soft, whilst a high carbon steel of 0.8%C or more will be hard and brittle.

Case carburizing involved the diffusion of carbon into the surface layers of low carbon steel by heating it in contact with a carbonaceous material. The principle of case hardening was used centuries ago in the conversion of wrought iron to steel by 'the cementation process. This ancient case hardening process make use of the fact that carbon will diffuse into the iron provided the iron is in the Face Centered Cubic (FCC) gamma form which exists above 910°C.

Prime, et al., [3] reported that carburizing is one of the most commonly performed steel heat treatments. Over the years it was performed by packing the low carbon wrought iron parts in charcoal, then raising the temperature of the pack to red heat for several hours.

The entire pack, charcoal and iron parts, was then dumped into water to quench it. The surface became very hard, while the interior or "core" of the part retained the toughness of low carbon steel.

Craig [4] defined carburizing as a diffusioncontrolled process, so the longer the steel is held in the carbon-rich environment, the greater the carbon penetration will be and the higher the carbon content. The carburized section will have carbon content high enough so that it can be hardened again through flame or induction hardening. The objective is to produce a hard, wear-resistant case which will be resistant to both bending and contact fatigue whilst still maintaining its toughness and ductility of the low carbon core as studied by Stephen and Edward [5].

Surface hardening processes are influenced by heat treatment temperature, rate of heating and cooling, heat treatment period, guenching media and temperature as investigated by Schimizu and Tamura [6]. Post heat treatment and pre-heat treatment processes are the major influential parameters, which affect the quality of the part surface hardened. Hardenability is essentially the ease of forming martensite and reflects the ability of a steel to be hardened to a specified depth as found in prior's works of Kirkaldy and Feldman, [7]; and Rudnev et al, [8]. While Rakhit [9]; Rudnev et al., [8]; Smith [10], studied the factors that increase hardenability and they found those factors as dissolved elements in austenite (except CO), coarse grains of austenite, and homogeneity of austenite.

Automobile components such as rack and pinion, gears, cam, valve, rocker, shafts and axles, which require high fatigue resistance, are normally case hardened by carburizing. The carburizing furnaces are either gas fired or electrically heated. The carburizing temperature varies from 870 to 940 °C while the gas atmosphere for carburizing is produced from liquid or gaseous hydrocarbons such as propane, butane or methane as reported by Rajan, *et al.*, [11]. The study of process parameters in metals during heat treatment studied by Denis, [12], Leblond [13], Wang, *et al.*, [14]; Liu, *et al.*, [15] has been of considerable interest for some years but there has been relatively little work on process variables during the surface hardening process

reported by Xu and Kuang [15] since controlling parameters in carburization is a complex problem as stated by Aramide, *et al.*, [17]. The major influencing parameters in carburization are the holding time, carburizing temperature, carbon potential and the quench time in oil as reported by Shewmon [18].

Locally produced steel does not often meet the requirement for manufacturing spare parts due to their low carbon content. When there is need for high carbon steel case for special purposes, production of high carbon steel cases locally using abundant local materials becomes imperative. This will reduce the burden on foreign reserves and create employment opportunities. The present work focused on the effects carburizing process variables of (carburizers, carburizing temperature and holding time) on the mechanical and chemical properties of carburized mild steel. The study is aimed at determining the potential of materials such as seashell, palm kernel shell and animal bone as steel carburizers with results comparable to other commonly used carbonaceous materials.

EXPERIMENTAL METHODOLOGY

The as-received mild steel rod of 16 mm diameter was analyzed using spectrometric analyzer and it chemical composition is shown in Table 1. The various carburizing media – palmkernel shell, animal bone and sea shell were obtained and pulverized in ball milling machine into fine powder to increase the surface area. Three stainless steel boxes were fabricated to accommodate the carburizing media, as-received mild steel rod samples, and the energizer (BaCO₃) of 65% purity level.

These mild steel rods were cut and machined into tensile and hardness tests pieces. The surfaces of the samples were polished into mirror-like before the carburization process began.

The fabricated stainless steel boxes have its density as 700g/cm³. The weight of the carburizer was calculated from the volume of the container used and a known weight of each of the carburizer was packed into the stainless steel box with 20 wt % of Barium trioxocarbonate (iv) salt (BaCO₃). The 20 wt % BaCO₃

Table 1: Chemical Composition of Mild Steel Rod

Element	С	Ca	Zn	Si	S	Р	Mn	Ni	Cr	Мо	v	Cu	w	As	Sn	AI	Co	Fe
% comp	0.078	0.0001	0.005	0.15	0.06	0.05	0.58	0.13	0.11	0.02	0.001	0.38	0.007	0.005	0.04	0.003	0.01	98.24

is 140g and was thoroughly mixed with each carburizer in each of the boxes.

The BaCO₃ act as energizer and also promotes the formation of carbon (iv) oxide (CO₂) gas, which in turns react with the excess carbon in the media to produce carbon (ii) oxide (CO). This CO reacts with the low carbon steel surface to form atomic carbon which diffuses into the steel. Then the prepared samples were buried completely in the palm kernel shell, animal bone and seashell powder in the respective boxes.

The three boxes contained the carburizing powder and the steel samples were placed in the heat treatment chamber of the heat treatment furnace show in (**1a**). where they were heated to predetermined temperatures and held at these temperatures for a predetermined time as shown in Table **2**. At each temperature and holding time, the furnace was allowed to cool down before the samples were all removed. Hardening treatment was carried out on all the samples by heating them to a temperature of 850 °C for 30 minutes and then quenched in oil. The oil quenchant physical properties are shown in Table **3**.

(1a). Muffle Furnace.

 Table 2:
 Pack Carburizing Processes Done At Different

 Temperatures and Times

Treatment temperature (°C)	700	800	900	1000	1100
Holding time (hrs)	5	4	3	2	1

Fifteen (15) of these quenched samples were tempered at 350 $^{\circ}$ C for 2 hours to relieve internal stresses built up during quenching and to increase the toughness of the specimens while the remaining 15 samples were untempered after hardening.

Table 3: Typical Characteristics of the Quenching Oil (As Specified by the Producer: Petro-Canada)

Characteristics	Values
Viscosity of cSt @ 40 °C	14.0
Viscosity of cSt @ 100 °C	3.2
Viscosity of SUS @ 100 °F	74
Viscosity of SUS @ 210 °F	37
Flash Point, °C/ °F	173/343
Ramsbottom Carbon Residue, Mass%	0.2
Quench Time, seconds	
Nickel Ball	16
Chromized Nickel Ball	19

Chemical Analysis

The chemical analysis of the as-received mild steel samples and after carburizing processes were carried on the carburized mild steel by sparking using spectrometric analyser. The results were shown in Tables **1** and **4**.

Table 4:	% Carbon at Various	Tempering	Temperatures
----------	---------------------	-----------	--------------

		% Carbon at Various Tempering Temperatures ([°] C)						
S/No	Carburizer	700	800	900	1000	1100		
1	SS	0.074	0.073	0.079	0.0094	0.0062		
2	PKS	0.004	0.066	0.101	0.151	0.53		
3	AB	0.078	0.084	0.128	0.131	0.426		
As received : 0.078%C								

SS=Sea Shell (Oyster Shell), PKS-Palm Kernel Shell; AB-Animal Bone (Mammilian Bone from Cattle).

Mechanical Test

In each case, test was conducted on three test samples and the mean value was taken.

The tensile tests were performed on various tensile samples using Monsanto tensometer. The fracture load for each sample was noted as well as the diameter at the point of fracture and the final gauge length. The initial diameter and initial gauge length for each sample was noted before applying load. The sample was subjected to uniaxial load, at a fixed crosshead speed of 10 mm/min. This test was performed in accordance with standard used by Aramide *et al.*, [17].

Rockwell hardness test was carried out on carburized, tempered mild steel samples. For each of the sample case the test was conducted 3 times and

the average value was taken. The test was performed in line with Oyetunji and Alaneme [19] previous work

RESULTS

The mechanical tests results are as presented in Figures (1-4).

DISCUSSION

From the hardness responses shown in Figures 1 and 2 the tempered samples have values which are inferior to the untempered ones at 700° C, 800° C and

 900° C. This is because tempering reduces the hardness and increases the toughness of the samples. The tensile strength results shown in Figures **3** and **4** revealed that samples carburized at 700° C, 1000° C and 1100° C in palm kernel shell carburizer have the tensile strength values for the tempered samples which are higher than the untempered ones due to increase in toughness resulting from tempering. While for animal bone carburizer, the steel samples show improved tensile strengths at 700° C over untempered samples. Thus at higher temperature the tensile strengths of samples in the animal bone carburizer declines. For samples carburized in sea shell, tensile strengths are

Figure 1: Hardness responses of quenched and tempered samples with carburizing temperature.

Figure 3: Tensile strengths of carburized, quenched and tempered steel samples with carburized temperature.

Figure 4: Tensile strengths of carburized and quenched steel samples with carburizing temperature. Definition: SS=Sea Shell (Oyster Shell), PKS-Palm Kernel Shell; AB-Animal Bone (Mammilian Bone from Cattle).

improved for tempered samples at 800° C, 900° C and 1000° C in similar pattern as reported by (Aramide *et al.*; [17]).

The result of the chemical analysis shown in Table 4 indicates that only palm kernel shell and animal bone have the potential to be used as carburizing media. These carburizers show considerable increase in percentage carbon released into the steel sample matrix at 900°C, 1000°C and 1100°C when compared to carbon percentage of the as-receive samples. The seashell does not have good carbon-release potential for use as a carburizer as it decarburizes the steel samples in the process. The presence of martensite in quenched steel, while greatly increasing its hardness and tensile strength, causes the material to be brittle as its formation is accompanied by severe matrix distortions. The hardness and strength of martensite structure increased sharply with increase in carbon content. Contribution to the strength arises from the carbon in solid solution, carbides precipitated during the quench, dislocations introduced during the transformation, and the grain size (Stephen and Edward) [5].

Through careful controlled tempering treatment, the quenching stresses can be relieved and some of the carbon can precipitate from the super saturated solid solution to a finely dispersed carbide phase. In this way, the toughness of the steel can be vastly improved with very little detriment to its hardness and tensile properties. In steel quenched to a microstructure consisting essentially of martensite, the iron lattice is strained by the carbon atoms, producing the high hardness of quenched steels and upon heating, the carbon atom diffuse and react in a series of distinct steps that eventually form Fe₃C or alloy carbide in a ferrite matrix of gradually decreasing stress level. The properties of the tempered steel are primarily

determined by the size, shape, composition and distribution of the carbide that forms with a relatively minor contribution from the solid solutions hardening of the ferrite. These changes in microstructure usually decrease hardness, tensile strength and yield strength but increase ductility and toughness (Stephen and Edward) [5].

CONCLUSIONS

In this study, pack carburization of mild steel rod using palm kernel shell, animal bone, and seashell as carburizers were examined at 700-1100°C. And from the results obtained, the following deductions can be made:

- 1. The hardness of the untempered samples carburized in palm kernel shell and animal bone showed higher values than the tempered samples.
- 2. The tensile strengths of the samples carburized in powdered palm kernel shell at 1000[°]C and 1100[°]C and tempered showed higher values than the untempered ones.
- 3. For the samples carburized using powdered palm kernel shell and animal bone, the carbon content in solid solution increases as temperatures increased from 800[°]C-1100[°]C.
- 4. Palm kernel shell and animal bone carburizers have good potential to be used as a carburizer for mild steel, while seashell has decline propensity to be used as a carburizer.

ACKNOWLEDGMENT

Alhassan Ogwu of The Department of Metallurgical and Materials Engineering of The Federal University of Technology, Akure Nigeria contribution in the area of data collection is highly appreciated.

REFERENCES

- [1] Child HC. Surface Hardening of Steel. Oxford University Press. UK 1980; pp.10-24
- [2] Higgins RA. Engineering Metallurgy. (part 1, Applied physical metallurgy).5th ed. Kent: ELBS; Edward Arnold Publishers Ltd. 1991; pp. 40-162.
- [3] Prime MB, Prantil VC, Rangaswamy P, García FP. In: Böttger AJ, Delhez R, Mittemeijer EJ, Eds. Residual Stress Measurement and Prediction in a Hardened Steel Ring. *Materials Science Forum;* Residual Stress ECRS 5. Stamford: Thomson Scientific; 2006; pp. 223-228.
- [4] Craig F. Case hardening In a Home Garage. 2006.
- [5] Stephen MC, Edward LL. ASM Handbook- Heat Treating, 1991; Vol. 4.
- [6] Schimizu N, Tamura I. (1997) An examination of the relation between quench-hardening behaviour of steel and cooling curve in oil. Trans ISIJ 1978; 18: pp. 445-50.
- [7] Kirkaldy JS, Feldman SE. J Heat Treating 1989; 7(1): 57-64. http://dx.doi.org/10.1007/BF02833188
- [8] Rudnev VD. Loveless RC, Black M. Handbook of Induction Heating, Marcel Dekker, Inc., New York, 2003; pp. 39-43.
- [9] Rakhit AK. Heat Treatment of Gears: A Practical Guide for Engineers, ASM International, Metals Park, OH, 2000; pp. 44-50, 86-90.
- [10] Smith WF. Structure *and Properties of Engineering Alloys*, 2nd ed., McGraw-Hill, Inc., New York, 1993; pp. 132-141.
- [11] Rajan TV, Sharma CP, Sharma A. Heat Treatment Principles and Techniques. New Delhi: Prentice Hall 1994.

Accepted on 12-05-2012

Published on 05-06-2012

http://dx.doi.org/10.6000/1927-5129.2012.08.02.11

2012 Oyetunji and Adeosun; Licensee Lifescience Global.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (<u>http://creativecommons.org/licenses/by-nc/3.0/</u>) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- Oyetunji and Adeosun
- [12] Denis S. Coupled temperature stress, phase transformation calculation model numerical illustration of the internal stresses evolution during cooling of a eutectoid carbon steel cylinder. Metallurgical Transaction A; 1987; 18A: 1203-87. http://dx.doi.org/10.1007/BF02647190
- [13] Leblond JB. Mathematical modeling of transformation plasticity in steels II: Coupling with strain hardening phenomena. Int J Plast 1989; 5(6): 573-1. http://dx.doi.org/10.1016/0749-6419(89)90002-8
- [14] Wang KF, Chandrasekar S, Yang HTY. Experimental and computational study of the quenching of carbon steel. Intl JI Manufact Sci Eng 1997; 119(3): 257-65. <u>http://dx.doi.org/10.1115/1.2831102</u>
- [15] Liu CC, Xu X, Liu ZA. FEM modeling of quenching and tempering and its application in industrial engineering. Finite Elements in Analysis and Design 2003; 39(11): 1053-70. <u>http://dx.doi.org/10.1016/S0168-874X(02)00156-7</u>
- [16] Xu DH, Kuang ZB. A study on the distribution of residual stress due to surface induction hardening. Int J Eng Mater Technol 1996; 118(2): 571-75. <u>http://dx.doi.org/10.1115/1.2805958</u>
- [17] Aramide FO, Ibitoye SA, Oladele IO, Borode JO. Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon as Carburizer. Mater Res 2009; 12(4): 483-87. http://dx.doi.org/10.1590/S1516-14392009000400018
- [18] Shewmon GP. Diffusion in solids, series in material science and Engineering. Tokyo: McGraw Hill; 1963.
- [19] Oyetunji A, Alaneme KK. Influence of the Silicon Content and Matrix Structure on the Mechanical Properties of Al-Si Alloy. West Indian J Eng 2005; 28(1): 36-44.

Received on 02-04-2012