
362 Journal of Basic & Applied Sciences, 2012, 8, 362-365

 ISSN: 1814-8085 / E-ISSN: 1927-5129/12 © 2012 Lifescience Global

Evaluation of Basic Data Compression Algorithms in a Distributed
Environment

Minhaj Ahmad Khan*

Department of Computer Science, Bahauddin Zakariya Univ. Multan, Pakistan
Abstract: Data compression methods aim at reducing the data size in order to make data transfer more efficient. To
accomplish data compression, the basic algorithms such as Huffman, Lempel-Ziv (LZ), Shannon-Fano (SF) and Run-
Length Encoding (RLE) are widely used. Most of the applications incorporate different variants of these algorithms.

This paper analyzes the execution times, compression ratio and efficiency of compression methods in a client-server
distributed environment. The data from a client is distributed to multiple processors/servers, subsequently compressed
by the servers at remote locations, and sent back to the client. Our experimentation has been carried out using Simgrid
Framework. Our results show that the LZ algorithm attains better efficiency/scalability and compression ratio, however, it
works slower than other algorithms.

Keywords: Distributed Computing, Compression, LZ, Shannon-Fano, RLE, Huffman, Scalability.

1. INTRODUCTION

Distributed computing environments make use of
multiple computing resources simultaneously. The
resources exist at various locations and are
interconnected through high speed networks. A large
application with inherent parallelism may be distributed
among the computing resources in order to achieve
better performance. The speedup or the performance
improvement thus achieved mainly depends upon the
amount of parallelism. Data compression that aims at
reducing the size of data also represents a problem
that can be parallelized.

Data compression techniques [1-6] are widely used
for various applications including graphics and
audio/video. The compressor/de-compressor
combination termed as a CODEC reduces the data
size using compression and is able to generate original
data using de-compression. Lossless compression
algorithms generate compressed data in such a form
so that the original input data can be later retrieved with
no distortion. In contrast, the lossy compression
methods discard some of data considered redundant in
producing the original or near to original data during
de-compression. The lossless compression techniques
are therefore suitable for input data in text form,
whereas the lossy compression methods are useful for
input data in multimedia form such as audio and video
[3, 4, 7, 8].

Most of the compression algorithms are variants of
the basic compression algorithms including the

*Address corresponding to this author at the Department of Computer Science,
Bahauddin Zakariya Univ. Multan, Pakistan; E-mail: mik@bzu.edu.pk

Huffman [1], Lempel-Ziv (LZ) [5], Shannon-Fano (SF)
[6] and Run-Length Encoding (RLE) [8]. These
algorithms are normally evaluated using the metric of
compression ratio that represents the ratio of the data
size after compression to the data size before
compression [3, 4]. Similarly, the time taken for
compressing data is also of utmost importance
especially when working in a real-time environment.

To increase performance, the compression
algorithms can be parallelized by distributing input data
among several processors with each processor
operating on a small part of input data. Consequently,
an improved performance is obtained in the distributed
environment. For evaluating the performance of a
parallel algorithm, the metric speedup refers to the ratio
of time for sequential execution to the time for parallel
execution. Another metric termed as efficiency refers to
the ratio of speedup to the number of processors.
Algorithms with an increase in efficiency corresponding
to the increase in the number of processors are
considered as scalable algorithms [9-11]. For a
distributed computing environment, an efficient
algorithm is therefore able to exploit the resources in
an effective way and must require a small execution
time.

This paper performs a comparative analysis of four
compression algorithms: Huffman, Lempel-Ziv (LZ77),
Shannon-Fano (SF) and Run-Length Encoding (RLE).
The algorithms are executed for a distributed
environment where the systems are connected via a
high speed network. A client sends compression
requests to multiple servers that are homogenous
systems placed at remote locations. The data is
compressed by each server and then sent back to the

Evaluation of Basic Data Compression Algorithms Journal of Basic & Applied Sciences, 2012 Volume 8 363

client. We perform experimentation using GRAS
interface of the Simgrid framework [12] and analyze
results for execution time, efficiency and compression
ratio. The rest of the paper is organized as follows.
Section 2 provides a succinct description of the working
of the considered compression algorithms. Section 3
describes the configurations and the setup used for
experimentation. The results are presented and
analyzed in Section 4 followed by the conclusion in
Section 5.

2. COMPRESSION ALGORITHMS

We consider four data compression algorithms:
Huffman, LZ, Shannon-Fano and RLE. The working
and implementation details of these algorithms are
elaborated as follows.

2.1. Huffman Algorithm

The Huffman algorithm [1] is a lossless data
compression technique that makes use of binary tree in
a bottom-up approach. Every letter is a part of a tree
and the frequency of occurrence of letters in the input
data is used to define the ordering. The letters having
least frequencies are combined to form a larger tree
whose frequency is computed as the sum of the
frequencies of the child nodes. The binary tree then
continues to grow with the new trees being added at
sorted locations. Consequently, a single tree is formed
as a combination of different trees and is termed as
Huffman tree.

In contrast to other algorithms, the Huffman
algorithm is considered to be efficient for the cases
where the data is noisy [13]. Furthermore, the optimal
code lengths are used by the algorithm when the
symbols not appearing in the data are skipped.

2.2. Lempel-Ziv (LZ) Algorithm

The LZ algorithm [5] is a lossless data compression
technique similar to the Huffman coding, however it
incorporates a sliding window during compression. The
input string is parsed to form blocks that are encoded.
Subsequent blocks are encoded by reference to
previous blocks. The encoding is represented by a
tuple having length and offset as its members. The
length describes the number of characters that are
equal to the characters at the specified offset in the
input data. To match occurrences of data, a buffer of
data is maintained that is called a sliding window.

In general, due to string matching at each step, the
LZ compression technique is considered to be very

slow. However, its good compression ratio and
straightforward implementation make it a widely used
compression technique.

2.3. Shannon-Fano (SF) Algorithm

The SF algorithm [6] is also a lossless data
compression technique very similar to the Huffman
coding, however, in contrast to the Huffman coding, it is
not able to generate an optimal code length. In this
coding technique, the symbols are initially arranged in
order of their probabilities thereby generating two sets
of symbols. The code assignment for the input symbols
starts by assigning a '1' or '0' to the symbols and
subsequent codes are generated by recursively
dividing symbols in the sets into subgroups and adding
bits to the codes for the symbols.

In general, the SF algorithm is very easy to
implement, however, the generation of suboptimal code
lengths makes is less widely used when compared with
the Huffman coding technique.

2.4. Run-Length Encoding (RLE)

The RLE algorithm [8] is also a lossless data
compression technique and is considered to be the
simplest in that the repeated occurrences of a
character are replaced by the length of the character
followed by the character itself. It is also used in the
Graphics Interchange Format (GIF) images.

As RLE works very well for the data in which a
character has many repeated occurrences, it is widely
used for simple images that use a limited set of
colours.

3. EXPERIMENTAL SETUP AND CONFIGURATION

For evaluating the performance of the compression
algorithms, we used the Grid Reality and Simulation
(GRAS) interface of the Simgrid Framework [12]. The
GRAS interface enables to write distributed client and
server code. Two configuration files specifying the
hardware configurations for the client and the servers
are input to the Simgrid Framework that simulates the
code on the specified hardware. We have used a
diverse number of servers (processors) 1,2,4,8,16 for
each run of the implementation code. The clients and
servers are connected using star topology via a high
speed network operating at 1GBps. The client is
configured to support a maximum of 30GFlops,
whereas each server is configured to support a
maximum of 50GFlops.

364 Journal of Basic & Applied Sciences, 2012 Volume 8 Minhaj Ahmad Khan

Each scenario implements a distributed
environment with a client sending data to server(s) with
each server being capable of executing the
compression algorithm and returning result to the
client. On the server side, we have used the
compression algorithm implementations from the BCL
library [13] written in C language. We have used the
binary utilities/programs existing on a linux-based
systems as described in Table 1. We also used a large
sized Pdf file (~20MB) and replicated its data to
generate files of larger size.

4. PERFORMANCE RESULTS

Figure 1 shows the results obtained for the
compression ratio for all the algorithms using a single
processor. The results of compression ratio are almost
the same while using multiple processors. This is due
to the fact that in case of multiple processors, each
server operates on a small part of data, and
consequently, the main compressed data returned to
the client by multiple servers is the same as obtained
using a single processor.

It is evident from the results that the LZ
compression algorithm achieves the best compression
ratio which implies that it produces the minimum data
size of compressed data. On average, the LZ
compression algorithm performs 31.55%, 31.79% and

40.75% better than the Huffman, SF and RLE
compression algorithms respectively.

Figure 2 shows the average execution time in
seconds for each algorithm using different number of
servers (1,2,4,8 & 16). The addition of multiple servers
makes the code execute faster significantly in
comparison with the single server system.
Corresponding to all the processors, the Huffman, LZ,
SF and RLE algorithm have average execution times of
0.76, 2.63, 0.75 and 0.42 seconds respectively. The
RLE algorithm therefore performs better than all other
algorithms. The complex buffer manipulation by the LZ
algorithm makes it execute slower than other
algorithms.

Figure 3 shows the efficiency results obtained for all
the algorithms using different number of servers. The
efficiency increases with two servers, however there is
a gradual decrease in efficiency as the number of
servers grows. In terms of efficiency, the largest impact
is produced by the LZ compression algorithm which
implies that the algorithm is scalable and is able to
exploit additional resources effectively in comparison
with other algorithms.

5. CONCLUSION AND FUTURE WORK

We compare four data compression algorithms
Huffman, LZ, SF and RLE in terms of the compression

Table 1. The Benchmarks and the Sizes of Input Data Used for Compression

Benchmark Size (~MB) Benchmark Size (~MB) Benchmark Size (~MB) Benchmark Size (~MB)

Automake 0.2 evince 0.5 assistant-qt4 1 smbspool 2

Ccmake 3 rpcclient 4 Doxygen 5 fdebuginfo 7

Iidb 15 Pdf File 1 20 Pdf File 2 40 Pdf File 3 60

Pdf File 4 80 Pdf File 5 100 Pdf File 6 200 Pdf File 7 500

Figure 1: Compression Ratio for benchmarks of different sizes using the compression algorithms.

Evaluation of Basic Data Compression Algorithms Journal of Basic & Applied Sciences, 2012 Volume 8 365

ratio, execution time and the efficiency. We used as
benchmarks several binary utilities in Linux and
different Pdf files. The algorithms were set to execute
in a client-server based distributed environment with
variant number of servers (1, 2, 4, 8 & 16) using
Simgrid Framework.

For our scenarios, the LZ algorithm has the best
compression ratio, however it works with a large
overhead of memory buffer processing thereby
executing slower than other techniques. In terms of
efficiency or scalability the LZ algorithm is better than
all other algorithms and reduces significantly its
execution time when new servers are added to the
system. As future work, we intend to analyze the
efficiency results on large multi-core systems and
modify the LZ algorithm to adapt to the underlying
architecture.

REFERENCES

[1] Huffman DA. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the I.R.E. Sep. 1952;
1098-102.

[2] Vitter JS. Design and Analysis of Dynamic Huffman Codes. J
ACM 1987; 34(4): 825-45.
http://dx.doi.org/10.1145/31846.42227

[3] Blelloch GE. Introduction to Data Compression. Carnegie
Mellon Univ., 2010.

[4] Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction
to Algorithms (2nd ed.). McGraw-Hill Higher Education 2001.

[5] Shannon CE. A Mathematical Theory of Communication. Bell
Syst Tech J 1948; 27: 379-23.

[6] Ziv J, Lempel A. A universal Algorithm for Sequential Data
Compression. IEEE Trans Inform Theory 1977; 23(3): 337-
43.

[7] Ziv J, Lempel A. Compression of Individual Sequences via
Variable-Rate Coding. IEEE Trans Inform Theory 1978;
24(5): 530-36.

[8] Leurs L. RLE Compression.
http://www.prepressure.com/library/compression_algorithms/r
le, 2012.

[9] Bondi AB. Characteristics of scalability and their impact on
performance. Proceedings of the 2nd international workshop
on Software and performance, Ottawa Canada, 2000; pp.
195-203.

[10] Fox G, Johnson M, Lyzenga G, Otto S, Salmon J, Walker D.
Solving Problems on Concurrent Processors. Prentice-Hall,
Englewood Cliffs, NJ 1988; Vol. 1.

[11] Kumar V, Grama A, Gupta A, Karypis G. Introduction to
Parallel Computing - Design and Analysis of Algorithms. The
Benjamin/Cummings Publishing Company, Inc., Redwood
City, CA, 1994.

[12] Casanova H, Legrand A, Quinson M. SimGrid: a Generic
Framework for Large-Scale Distributed Experimentations.
Proceedings of the 10th IEEE International Conference on
Computer Modelling and Simulation (UKSIM/EUROSIM'08),
2008.

[13] Geelnard M. Basic Compression Library. 2006; Available:
http://bcl.comli.eu/.

Received on 12-06-2012 Accepted on 30-06-2012 Published on 04-07-2012

http://dx.doi.org/10.6000/1927-5129.2012.08.02.18

© 2012 Minhaj Ahmad Khan; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

Figure 2: Execution times for benchmarks of different sizes
corresponding to different number of processors.

Figure 3: Efficiency results for benchmarks of different sizes
corresponding to different number of processors.

