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Abstract: Semiclassical limit of Schrödinger equation with zero far-field boundary conditions is investigated by the time-
splitting Chebyshev-spectral method. The numerical results of the position density and current density are presented. 
The time-splitting Chebyshev-spectral method is based on Strang splitting method in time coupled with Chebyshev-

spectral approximation in space. Compared with the time-splitting Fourier-spectral method, the time-splitting Chebyshev-
spectral method is unnecessary to treat the wave function as periodic and holds the smoothness of the wave function. 
For different initial conditions and potential (e.g. constant potential and harmonic potential), extensive numerical test 

examples in one-dimension are studied. The numerical results are in good agreement with the weak limit solutions. It 
shows that the time-splitting Chebyshev-spectral method is effective in capturing -oscillatory solutions of the 
Schrödinger equation with zero far-field boundary conditions. In addition, the time-splitting Chebyshev-spectral method 

surpasses the traditional finite difference method in the meshing strategy due to the exponentially high-order accuracy of 
Chebyshev-spectral method. 
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1. INTRODUCTION 

Many problems of solid state physics require the 
(numerical) solution of the following Schrödinger 
equation [1-3] in the case of a small Planck constant  
(0< <<1):

  
i u

t
=

2

2
u +V (x)u     t > 0,     x R

d (1)

  
u (x, t = 0) = u

0
(x)    x R

d (2)

where V(x) is a given real-valued electrostatic potential, 
and u

 
= u (x, t) is the complex-valued wave function 

which is used to compute observables (including the 
primary physical quantities) in classical quantum 
physics. The introduction of the small Planck constant  
in Schrödinger equation with oscillatory initial data 
offers great help for the equation resolution [4]. The 
work about the behavior of solutions of the nonlinear 
Schrödinger equation in the semiclassical limit ( 0) 
was entirely motivated by a natural mathematical 
question [5], however, in the recent years many 
researches show that the semiclassical limit of 
Schrödinger equation is also of direct importance to 
basic physics and technology in nonlinear optics [5-7]. 
As mentioned in [5], the semiclassical limit of nonlinear 
Schrödinger equation provides an idealized description 
of optical shocks and wave breaking in the nonlinear  
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propagation of laser pulses in optical fibers. In [6, 7], 
the semiclassical limit of nonlinear Schrödinger 
equation has also been applied to describe “nonreturn 
to zero” optical pulses in nonlinear fibers, a problem of 
central importance of the current technology of long 
distance (transoceanic) telephone communication. 
Investigations on the semiclassical limit of Schrödinger 
equation including theoretical analysis, numerical 
calculation and application have become an important 
subject, particularly by the introduction of tools from 
microlocal analysis, such as defect measures [8], H-
measures [9] and Wigner measures [10-12]. These 
studies have provided technical tools for exploiting 
properties of Schrödinger equation in the semiclassical 
regime. 

It is well known that Eq. (1) propagates oscillations 
of wave length O( ) in space and time, which inhibit u  
from converging strongly. This implies that the analysis 
of the so-called semiclassical limit ( 0) is a 
mathematically rather complex issue [1, 2, 13], and up 
to now there has not been a rigorous analytical theory 
of the semicalssical limit of Schrödinger equation [13], 
thus it is natural these days to study this problem 
numerically. Unfortunately, the highly oscillatory nature 
of the solutions of Schrödinger equation with small  
provides severe numerical burdens [2, 13, 14]. The 
semiclassical initial value problem, namely Eq. (1) and 
(2), is a classic example of a “stiff” problem, as it 
contains two vastly different spatial and temporal 
scales and involves essential competition between 
effects on these two scales [13]. Even for stable 
discretization schemes (or under mesh size restrictions 
which guarantee stability), the oscillations may very 
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well disturb the solution in such a way that the 
quadratic macroscopic quantities and other physical 
observables come out completely wrong unless the 
spatial-temporal oscillations are fully resolved 
numerically, i.e. using many grid points per wavelength 
of O( ) [1, 2]. Markowich [1, 15] et al. applied Wigner-
transform techniques to the analysis of finite difference 
methods for Schrödinger equation with small  and 

zero far-field boundary conditions (
  
u (x, t)  decays to 

zero sufficiently fast as x [1, 2, 5]), they obtained 

sharp conditions on the spatial-temporal grid which 
guaranteed convergence for values of all observables 
as Plank constant  tended to zero. Their results show 
that, for the best combination of the time and space 
discretizations, one needs the following constraint: 
mesh size h = o( ) and time step k = o( ). Failure to 
satisfy this constraint leads to wrong numerical 
observables. It appears clearly that the finite difference 
methods for this problem have very high requirement in 
the meshing strategy when  inclines to zero. Since the 
solution of Schrödinger equation in the semiclassical 
regime is highly oscillatory but smooth, spectral method 
is perfect to compute the spatial derivatives of u  to 
high accuracy on a simple domain [16], and is helpful 
to solve the Schrödinger equation in the semiclassical 
regime. Feit [17] et al. used spectral method to 
determine the eigenvalues and eigenfunctions of 
Schrödinger equation. Pathria [18] et al. studied the 
time-splitting spectral discretizations of Schrödinger 
equation for  = O(1) which did not give any clue about 
the semiclassical limit. Recently, Bao et al. systemically 
investigated the time-splitting Fourier -spectral method 
[2, 19] and time-splitting sine-spectral method [20] for 
the semiclassical limit of Schrödinger equation with 
zero far-field boundary conditions and applied them 
successfully to simulate Bose-Einstein condensation 
[21]. Bao [22] also proposed the time-splitting 
Chebyshev-spectral method to preliminarily solve 
Schrödinger equation with nonzero far-field conditions. 
Moreover, Zhang [14, 23] et al. presented a time-
splitting and space-time adaptive wavelet scheme to 
solve Schrödinger equation with zero far-field boundary 
conditions. 

As a rule, Fourier-spectral method is used to 
compute the spatial derivatives of the periodic function 
[16]. For the mathematically nonperiodic function, if it is 
very close to zero (for example, exponentially decaying 
to zero) at the ends of the computing interval, one 
approach would be to regard the function as periodic 
and to use Fourier-spectral method approximately after 
choosing an appropriately large computing interval [16]. 
Based on this approach, although the solution of 
Schrödinger equation in the semiclassical regime is 
nonperiodic, Bao [2, 19] presented the time-splitting 
Fourier-spectral method to solve Schrödinger equation 
with zero far-field boundary conditions. However, this 
kind of approximation on periodicity usually damages 

the smoothness of the wave function, and sacrifices the 
accuracy advantages of the spectral methods because 
the accuracy of spectral methods depends on the 
smoothness of the functions being solved. Sometimes 
Gibbs phenomenon even occurs [16]. Now that the 
solution of Schrödinger equation with zero far-field 
boundary conditions is nonperiodic, it is a better choice 
to use the time-splitting Chebyshev-spectral method 
which is more applicable to the nonperiodic function 
[16]. 

In this paper, we derive the algorithmic formula of 
the time-splitting Chebyshev-spectral method and use 
it to solve Schrödinger equation with zero far-field 
boundary conditions which is previously solved by the 
time-splitting Fourier-spectral method [2, 19]. Extensive 
numerical test examples in one-dimension are studied 
for different initial conditions and potential (e.g. 
constant potential and harmonic potential). 
Comparisons between the numerical results and the 
weak limits verify the availability of the time-splitting 
Chebyshev-spectral method for Schrödinger equation 
with zero far-field boundary conditions. We also 
present the meshing strategy of the time-splitting 
Chebyshev-spectral method, and it surpasses the 
traditional finite difference method due to the 
exponentially high-order accuracy of Chebyshev-
spectral method. 

2. TIME-SPLITTING CHEBYSHEV-SPECTRAL 
METHOD 

In this section, we derive the algorithmic formula of 
the time-splitting Chebyshev -spectral method. We 
consider Eq. (1) and (2) with zero far-field boundary 
conditions in the case of one-dimension (d = 1): 

  
i u

t
=

2

2
u

xx
+V (x)u     a < x < b,    t > 0 (3)

  
u (x, t = 0) = u

0
(x)    a x b (4)

  
u (a, t) = 0    u (b, t) = 0    t 0 (5)

It must be pointed out that the solution of 
Schrödinger equation (3) with zero far-field boundary 
conditions (5) is nonperiodic. Compared with the time-
splitting Fourier-spectral method, we use time-splitting 
Chebyshev-spectral method to solve this nonperiodic 

problem. 

By classical quantum physics [24] the wave function 
u  is an auxiliary quantity used to compute the primary 
physical quantities, which are quadratic functions of u , 

e.g. the position density 

(x, t) =| u (x, t) |2 (6)

and the current density 
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J (x, t) = Im(u (x, t) u (x, t)) (7)

where “ ” denotes complex conjugation. 

2.1. Grid Partitioning 

For simplicity, we choose the spatial grid points as 
Chebyshev-Gauss-Lobatto interpolation points [25, 26], 
then let the grid points be 

  
x

j
:=

b a

2
cos

j

M
+

b + a

2
        j = 0,1,......, M (8)

We choose the time step size k and let time steps 

be 
  
t

n
:= nk        n = 0,1,2,......  

2.2. Strang Splitting Method 

As preparatory steps, we begin by introducing the 
splitting method [27] for a general evolution equation 

i
t
u = f (u) = Au + Bu (9)

where f(u) is a operator and the splitting f(u) = Au+ Bu 
can be quite arbitrary. For a given time step k, let tn = 
nk, n = 0,1,2, … and u

n
 be the approximation of u(tn). 

Also known as the symmetric operator splitting, a 
standard second-order Strang splitting method [28-32] 
in time is as follows: 

  

u
*
= e

ikA/2
u

n

u
**
= e

ikB
u

*

u
n+1

= e
ikA/2

u
**

(10)

then we can obtain u
n+1

 from u
n
 by solving Eq. (10).  

Eq. (3) multiplying by 1/ , we get 

iu
t
=

2
u

xx
+

V (x)
u (11)

Comparing Eq. (11) with Eq. (9), let 

  
Au =

V (x)
u     Bu =

2
u

xx
(12)

then from time t = tn to time t = tn+1 Eq. (11) can be 
solved by the following three steps via Strang splitting 
method , namely Eq. (10). 

First, we solve 

  
i u

t
= V (x)u (13)

for half of one time step (of length k), followed by 
solving 

  

i u
t
=

2

2
u

xx
(14)

with the boundary condition (5) for one time step k. 

Finally, we solve 

  
i u

t
= V (x)u (15)

for half of one time step again. 

Note that the ODE (13), (15) can be solved exactly: 

  
u (x, t) = e

iV ( x )(t t
n

)/
u (x, t

n
)    t [t

n
, t

n+1
] (16)

therefore we only need to solve Eq. (14) subject to the 
boundary condition (5). 

2.3. Chebyshev-Spectral Method 

Eq. (14) with the boundary condition (5) can be 
discretized in space by Chebyshev-spectral method 
[25, 26] and integrated in time exactly by applying a 
diagonalization technique for the ODE system in phase 
space. 

Using Chebyshev interpolation [25, 26], let 

  

u
M

(x, t) = a
m

(t)T
m

(
x (b + a) / 2

(b a) / 2
)    a x b

m=0

M

(17)

where Tm(x) is the m-th Chebyshev polynomial. 

  
T

m
(x) = cos(marccos x) (18)

Plugging the expansion (17) into the boundary 
condition (5), we have 

  

u (a, t) = a
m

(t)T
m

( 1)
m=0

M

= ( 1)m
a

m
(t)

m=0

M

= 0 (19)

  

u (b, t) = a
m

(t)T
m

(1)
m=0

M

= a
m

(t)
m=0

M

= 0 (20)

simplifying as 

  

a
m

m=0

m  even

M

= 0    a
m

m=1

m  odd

M

= 0 (21)

Plugging the expansion (17) into Eq. (14), we can 
obtain the following ODE system by using the property 
of the expansion coefficients of Chebyshev 
interpolation [25]: 
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i a
m

' (t) +
2 2

(b a)2 c
m

p( p2 m2 )a
p
(t)

p=m+2
p+m  even

M

= 0   

 0 m M - 2 

(22)

where c0 = 2, cm = 1 (m>0).

Removing all aM-1(t) and aM(t) in Eq. (22) by 
employing Eq. (21), let 

�
a(t) =

a
0
(t)

a
1
(t)

a
2
(t)

   �
a

M 2
(t)

(23)

thus the ODE system (22) can now be written as 

   

d
�
a(t)

dt
=

2i

(b a)2
T

�
a(t) (24)

where T = (tjk) is an (M-1) (M-1) constant matrix with 

entries: 

  

t
jk
=

1

c
j

M ( M 2 j2 )                                     0 k j    j, k  even

k(k 2 j2 ) M ( M 2 j2 )                    j + 2 k M - 2     j, k  even

( M 1)(( M 1)2 j2 )                      1 k j    j, k  odd

k(k 2 j2 ) ( M 1)(( M 1)2 j2 )    j + 2 k M - 2     j, k  odd

0                                                          else

                                                       

                                                j, k = 0,1,2,......, M - 2

(25)

2.4. Solving via Diagonalization Technique 

The matrix T has M-1 distinct negative eigenvalues 
[25], therefore it is diagonalizable, i.e. there exists an 
invertible matrix P and a diagonal matrix D such that 

  T = PDP
1 (26)

Let

   
�
b(t) = P

1 �
a(t) (27)

Eq. (24) multiplying by the matrix P
-1

, we obtain 

   

d
�
b(t)

dt
=

2i

(b a)2
D

�
b(t) (28)

Since the matrix D is diagonal, the equations in 
ODE system (28) are actually independent of each 
other. After a simple calculation, we can get 

   

�
b(t) = exp(

2i (t t
n
)

(b a)2
D)

�
c     t [t

n
, t

n+1
] (29)

where  
�
c  is a vector to be determined. 

Combining Eq. (27) and Eq. (29), we have 

  

�
a(t) = P

�
b(t) = P exp(

2i (t t
n
)

(b a)2
D)

�
c (30)

Choosing t = tn in Eq. (30), we obtain 

  

�
a(t

n
) = P

�
c (31)

then 

  

�
c = P

1 �
a(t

n
) (32)

Substituting Eq. (32) into Eq. (30), we get 

  

�
a(t) = P exp(

2i (t t
n
)

(b a)2
D)P

1 �
a(t

n
)    t [t

n
, t

n+1
] (33)

This implies that we can get    
�
a(t

n+1
)  from 

  

�
a(t

n
)  via 

Eq. (33).  

2.5. Algorithmic Formula 

Finally, we state the result for the algorithmic 
formula of the time-splitting Chebyshev -spectral 
method. 

Let 
  
U

j

,n  be the numerical approximation of u (xj, tn) 

and U
,n

 be the solution vector at time t = tn = nk with 

components 
  
U

j

,n . 

From time t = tn to t = tn+1, we combine Eq. (16), 
(17), (21) and (33) via the standard second-order 
Strang splitting and obtain the time-splitting 
Chebyshev-spectral method. The steps for obtaining 

  
U

j

,n+1  from 
  
U

j

,n  are given by: 

1. Solving Eq. (13) for half of one time step 

  
U

j

,*
= e

iV ( x
j
)k /2

U
j

,n     0 j M (34)

2. Utilizing Chebyshev transform [26] 

a
l

,*
=

1

l

U
m

,*

m
T

l
(
x

m
(b + a) / 2

(b a) / 2
)  

m=0

M

    0 l M (35)

where 

  

w
0
= w

M
=

2M
     w

m
=

M
 (1 m M 1)

0
=

M
=      

m
=

2
 (1 m M 1)

(36)
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3. According to Eq. (33), we obtain 

�
a

,**
= Pexp(

2i k

(b a)2
D)P 1�

a
,* (37)

for one time step k. 

4. Based on Eq. (21), we get 

a
M 1

,**
= a

m

,**

m=1
m  odd

M 2

    a
M

,**
= a

m

,**

m=0
m  even

M 2

(38)

5. According to Eq. (17), we have 

U
j

,**
= a

m

,**T
m

(
x

j
(b + a) / 2

(b a) / 2
)  

m=0

M

    0 j M (39)

6. Solving Eq. (15) for half of one time step again 

  
U

j

,n+1
= e

iV ( x
j
)k /2

U
j

,**     0 j M (40)

In the above progress, we used the second-order 
Strang splitting method. For different precision 
requirement, we could choose other high-order splitting 
methods [33]. 

3. EXAMPLES AND NUMERICAL RESULTS 

In this section, for different initial conditions and 
potential, we study numerically the meshing strategy of 
time-splitting Chebyshev-spectral method for 
Schrödinger equation with zero far-field boundary 
conditions and investigate the semiclassical limit ( 0) 
of Schrödinger equation in one-dimension. 

In our computations, the initial condition is always 
chosen in the classical WKB form: 

  
u (x, t = 0) = u

0
(x) = A

0
(x)e

iS
0

( x )/
=

0
(x)e

iS
0

( x )/
(41)

with A0 and S0 independent of , real valued and with 

A0(x) decaying to zero sufficiently fast as x  We 

remark that the initial condition (41) is oscillatory, and 
Schrödinger equation (3) propagates oscillations of 
wave length O( ) in space and time. 

We choose an appropriately long interval [a, b] for 
the computations such that the zero far-field boundary 
conditions (5) do not introduce a significant error 
relative to the whole space problem. 

As already pointed out, the main goal when solving 
Schrödinger equation is to compute macroscopic 
quantities (e.g. the position density and the current 
density) associated to the wave function, in the 
following computations we therefore give the numerical 
results of the position density (x, t) and the current 
density J (x, t) rather than the results of wave function 
u (x, t). 

Two sets of numerical experiments are designed in 
the following. 

Example 1 (Markowich, Pietra and Pohl [1, 15]) 

The initial condition is taken as 

  0
(x) = (e 25( x 0.5)2

)2       S
0
(x) = 0.2(x

2
x) (42)

We solve on the x-interval [0, 1], i.e. a = 0 and b = 
1. Let V(x) = 100 be a constant potential. 

In order to test the meshing strategy of the time-
splitting Chebyshev-spectral method and to investigate 
the semiclassical limit ( 0), we compute the following 
three cases with different combinations of  and M 

    

Figure 1: (a) position density and (b) current density at t1 = 0.54, 1 = 0.0256, M1 = 16, k1 = 0.03. 
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Case (I):  
  
(t

1
,

1
, M

1
, k

1
) = (0.54,  0.0256,  16,  0.03)  

Case (II):  (t
2
,

2
, M

2
, k

2
) = (0.54,  0.0064,  64,  0.03)  

Case (III):  
  
(t

3
,

3
, M

3
, k

3
) = (0.54,  0.0008,  512,  0.03)  

They are all under the meshing strategy: 

  

b a

M
= O( ) , k  O( ). The results are displayed in 

Figures 1, 2 and 3, respectively. 

The weak limits 
0
(x, t), J

0
(x, t) of (x, t), J (x, t), 

respectively, as 0, have been given in [1, 2, 15]. As 

a reference purposes, we also plot them at t = 0.54 in 

Figures 1, 2 and 3. 

In case (I), as shown in Figure 1, 1 = 0.0256 is too 
large compared to zero, and the error between 
numerical results and weak limits is large. 

In case (II), we perform tests similar to those in case 
(I). Figure 2 shows the corresponding results. Due to 2 

= 0.0064 close to zero, the error between numerical 
results and weak limits is much smaller than the error 
in Figure 1. 

In case (III), 3 = 0.0008 is sufficiently small, thus the 
numerical solutions capture the correct weak limits in 
Figure 3. 

Although the macroscopic quantities (x, 0.54) and 
J (x, 0.54) for the initial condition (42) have no 
oscillations in Figure 1, 2 and 3, respectively, the wave 
function u  has oscillations in the phase [1]. A choice of 
the discretization parameters that does not take care of 
the oscillations can give the wrong results [1]. As far as 
this example is concerned, in order to guarantee good 
approximations for  small, the traditional finite 
difference method needs the following constraint [1]: h 
= o( ), k = o( ). However, in Figure 1, 2 and 3, we can 
observe numerical convergence (in the weak sense) to 

    

Figure 2: (a) position density and (b) current density at t2 = 0.54, 2 = 0.0064, M2 = 64, k2 = 0.03. 

 

   

Figure 3: (a) position density and (b) current density at t3 = 0.54, 3 = 0.0008, M3 = 512, k3 = 0.03. 
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the limit solution as 0 under the meshing strategy 

“
  

b a

M
= O( ) , k  O( )”. This shows that the time-

splitting Chebyshev-spectral method has much better 
resolution for oscillatory solutions of Schrödinger 
equation than the finite difference method. 

Example 2 (Gasser, Markowich [10]) 

The initial condition is taken as 

  0
(x) = (e 25( x 0.5)2

)2       S
0
(x) = x +1 (43)

We solve on the x-interval [-2, 2], i.e. a = -2 and b = 
2. Let V(x) = x

2
/2, which is a harmonic oscillator. 

Once more, in order to test the meshing strategy of 
the time-splitting Chebyshev-spectral method and to 
investigate the semiclassical limit ( 0), we compute 
the following two cases with different combinations of  
and M 

Case (I):  (t
1
,

1
, M

1
, k

1
) = (0.52,0.0025,1024,0.02)  

Case (II):  
  
(t

2
,

2
, M

2
, k

2
) = (3.6,0.0025,1024,0.02)  

They are all under the meshing strategy: 

  

b a

M
= O( ), k  O( ). The results are displayed in 

Figures 4 and 5, respectively. 

The weak limits 
0
(x, t), J

0
(x, t) of (x, t), J (x, t), 

respectively, as 0, have been given in [2, 10]. As a 
reference purposes, we also plot them at t1 = 0.52 in 
Figure 4 and t2 = 3.6 in Figure 5, respectively. 

To obtain a better visualization in Figures 4 and 5, 
we depict the solutions in a subinterval instead of in the 
whole computational interval [-2, 2]. In Figures 4 and 5, 
we can see numerical convergence to the weak limits 
for different t with  = 0.0025 which is very close to 
zero. 

 

    

Figure 4: (a) position density and (b) current density at t1 = 0.52, 1 = 0.0025, M1 = 1024, k1 = 0.02. 

 

    

Figure 5: (a) position density and (b) current density at t2 = 3.6, 2 = 0.0025, M2 = 1024 k2 = 0.02. 
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Remark 1. From the numerical results of these two 
examples, in which different initial conditions and 
potential are studied, we can see that the time-splitting 
Chebyshev-spectral method gives very promising 

results under the meshing strategy “
  

b a

M
= O( ) , k  

O( )” for Schrödinger equation with zero far-field 
boundary conditions. 

4. CONCLUSIONS 

Semiclassical limit ( 0) of Schrödinger equation 
with zero far-field boundary conditions is investigated 
by the time-splitting Chebyshev-spectral method. The 
time-splitting Chebyshev-spectral method is based on 
Strang splitting method in time coupled with 
Chebyshev-spectral approximation in space. 
Compared with the time-splitting Fourier-spectral 
method, the time-splitting Chebyshev-spectral method 
is unnecessary to treat the wave function as periodic 
and holds the smoothness of the wave function. It must 
be pointed out that the solution of Schrödinger equation 
with zero far-field boundary conditions is nonperiodic 
and the accuracy of spectral methods depends on the 
smoothness of the functions being approximated. 
Therefore, the time-splitting Chebyshev-spectral 
method can elude the risk of sacrificing the accuracy 
advantages of the spectral methods and the risk of 
Gibbs phenomenon. For different initial conditions and 
potential (e.g. constant potential and harmonic 
potential), our numerical results capture the correct 
weak limits as 0 and show that the time-splitting 
Chebyshev-spectral method gives promising results for 
 small when the meshing strategy satisfies 

“
  

b a

M
= O( ) , k  O( )”, while the frequently used finite 

difference methods require mesh size and time step 
much smaller than Plank constant . It appears clearly 
that the time-splitting Chebyshev-spectral method has 
much better resolution for oscillatory solutions of 
Schrödinger equation than the finite difference 
methods. In addition, the application of the 
diagonalization technique greatly simplifies the 
calculation process, in which the equations in ODE 
system are transformed to be independent of each 
other. Hence, the time-splitting Chebyshev-spectral 
method is very effective in capturing -oscillatory 
solutions of Schrödinger equation with zero far-field 
boundary conditions in the semiclassical regime and it 
is a better choice compared with the time-splitting 
Fourier-spectral method and the finite difference 
methods in the case of zero far-field boundary 
conditions. 
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