Abstract
Haematococcus pluvialis Flotow and Dunaliella salina Teodoresco are commercially important because of their ability to accumulate very high carotenoid contents. However, their use is hindered by their slow growth rates. This paper reports a study on the effects of two growth regulators, 2,4-D (2,4-dichlorophenoxyacetic acid) and kin (kinetin), in concentrations of 0, 0.5, 1.0 and 2.0 mg l-1 each in a factorial design (24 combinations), as a possible means of enhancing the growth rates.
After 12-13 days of treatment with plant hormones, D. salina showed a significant increase in growth with all the hormone concentrations and combinations used and under 15% salinity (NaCl, w/v), (except for 0.5 mg l-12,4-D and no kin), with up to 410% more cells than the control; under 10% salinity (NaCl, w/v), the increase in growth was significant with 0.5 mg l-1 2,4-D and no kin (180% more cells than the control), and also with 1.0 mg l-1 2,4-D and no kin (126% more cells than the control) and 2.0 mg l-1 2,4-D and 0.5 mg l-1 kin (134% more cells than the control) in the culture medium. Cultures of H. pluvialis were significantly influenced under 1.0 mg l-1 2,4-D (with 320% more cells than the control), but alsoshowed a significant increase in the growth rate when the ratio auxin to cytokinin was 1 (equal concentrations of 1.0 mg l-1 of both growth regulators) with more than 290% cells than the control, and with 0.5 mg l-1 2,4-D and 2.0 mg l-1 kin (200% more cells than the control) in the culture medium.
References
Ben-Amotz A, Avron M. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 1990; 8(5): 121-6. http://dx.doi.org/10.1016/0167-7799(90)90152-N
Borowitzka MA. Comparing carotenogenesis in Dunaliella and Haematococcus: implications for commercial production strategies. In: Villa TG, Abalde J, editors. Profiles on Biotechnology. Servicio de Publicacions; Universidade de Santiago, Santiago de Compostela, Spain 1992; pp. 301-10.
Boussiba S, Fan L, Vonshak A. Enhancement and determination of astaxanthin accumulation in the green alga Haematococcus pluvialis. Methods Enzymol 1992; 213: 386-91. http://dx.doi.org/10.1016/0076-6879(92)13140-S
Wightman F, Lighty DG. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plant 1982; 55: 17-24. http://dx.doi.org/10.1111/j.1399-3054.1982.tb00278.x
Mowat JA. Survey on the results on the occurrence of auxins and gibberellins in algae. Bot Mar 1965; 8: 149-55. http://dx.doi.org/10.1515/botm.1965.8.1.149
Jennigs RC. Cytokinins as endogenous regulators in the algae Ecklonia (Phaeophyta) and Hypnea (Rhodophyta). Austr J Biol Sci 1969; 22: 621-7.
Buggeln RG, Craigie JS. Evaluation of the evidence of the presence of indole-3-acetic acid in marine algae. Planta 1971; 97: 173-8. http://dx.doi.org/10.1007/BF00386764
Grotbeck L, Vance BD. Endogenous levels of indole-3-acetic acid in synchronous cultures of Chlorella pyrenoidosa. J Phycol 1972; 8: 272-5.
Buggeln RG. Auxin, an endogenous regulator of growth in algae? J Phycol 1976; 12: 355-8.
Swaminathan S, Bock RM. Isolation and identification of cytokinins from Euglena gracilis var. bacillaris transfer-RNA Biochemistry 1977; 16: 1355-60.
Zhang W, Yamane H, Chapman DJ. The phytohormone profile of the red alga Porphyra perforata. Bot Mar 1993; 36: 257-66. http://dx.doi.org/10.1515/botm.1993.36.3.257
Mazur H, Konop A, Synak R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. J Appl Phycol 2001; 13: 35-42. http://dx.doi.org/10.1023/A:1008199409953
Ördög V, Stirk WA, van Staden J, Novak O, Strnad M. Endogenous cytokins in three genera of microalgae from the Chlorophyta. J Phycol 2004; 40: 88-95. http://dx.doi.org/10.1046/j.1529-8817.2004.03046.x
Pratt R. Influence of auxins on the growth of Chlorella vulgaris. Am J Bot 1938; 25(7): 498-501. http://dx.doi.org/10.2307/2436677
Davidson FF. The effects of auxins on the growth of marine algae. Am J Bot 1950; 37(7): 502-10. http://dx.doi.org/10.2307/2438025
Griffin DN. The effect of gibberellic acid upon Euglena. Proc Oklah Acad Sci 1958; 38: 14-5.
Bentley-Mowat JA. Do plant growth substances affect development and ecology of unicellular algae? Wiss Z Univ Rostock Reihe. Math Naturwiss Reihe 1967; 16: 445-9.
Ousheva N, Popov K, Manolova M. The effect of gibberellic acid and 6-benzylaminopurine on the accumulation of biomass in Chlorella. Compt Rend Academ. Bulg Sci 1968; 2l: 925-8.
Pedersén M. Ectocarpus fasciculatus: marine brown alga requiring kinetin. Nature London 1968; 218: 776. http://dx.doi.org/10.1038/218776a0
Burkiewicz K. The influence of gibberellins and cytokinins on the growth of some unicellular Baltic algae. Bot Mar 1987; 30: 63-9. http://dx.doi.org/10.1515/botm.1987.30.1.63
Vance BD. Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05) (Chlorellaceae). J Plant Growth Regul 1987; 5: 169-73. http://dx.doi.org/10.1007/BF02087185
Bajguz A, Czerpak R. Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerink (Chlorophyceae). J Plant Growth Reg 1996; 15: 153-6. http://dx.doi.org/10.1007/BF00198931
Yi Z. The influence of plant growth regulators on three species of marine microalgae. Wuyi Sci J 1997; 13: 273-5.
Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Rus J Plant Physiol 2007; 54(2): 163-70. http://dx.doi.org/10.1134/S1021443707020021
Rayle DL, Cleland RE. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 1992; 17: 439-58.
Hobbie L, Timpte C, Estelle M. Molecular genetics of auxin and cytokinin. Plant Mol Biol 1994; 26: 1499-19. http://dx.doi.org/10.1007/BF00016487
Dibb-Fuller JE, Morris DA. Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 1992; 186: 219-26. http://dx.doi.org/10.1007/BF00196251
Wareing PF, Phillips IDJ. The control of growth and differentiation in plants. Pergamon Press; Oxford 1970.
Aloni R. The induction of vascular tissues by auxin. In: Davies PJ, Eds. Plant hormones and their role in plant growth and development. London: Kluwer Academic Publishers 1990; pp. 363-74.
Cleland RE. Auxin and Cell Elongation. In: Davies PJ. Ed. Plant hormones and their role in plant growth and development. London: Kluwer Academic Publishers 1990: pp. 132-48.
Stirk WA, van Staden J. Comparison of cytocinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 1997; 8: 503-8. http://dx.doi.org/10.1007/BF02186328
Stirk WA. Ördög V, van Staden J, Jager K. Cytokinin- and auxin-like activity in cyanophyta and microalgae. J Appl Phycol 2002; 14: 215-21. http://dx.doi.org/10.1023/A:1019928425569
Skoog F, Schmitz R. Cytokinins. In: Steward F, Ed. Plant physiology: a treatise. New York: Academic Press 1972; Vol. 6B: pp. 181-213.
Leopold AC. Hormonal Regulating Systems in Plants. In: Sem SP, Ed. Recent developments in plant science. New Delhi: Today and Tomorrow Publishers 1980; pp. 33-41.
Mader SS. Control of Plant Growth and Development: In: Mader SS, Ed. Biology: evolution, diversity and the environment. Dubuque, Iowa: Wm C Brown Publishers 1985; pp. 407-23.
Bold HC. The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 1949; 76: 101-8. http://dx.doi.org/10.2307/2482218
Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BF. Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol 1968; 95(4): 1661-8.
Sundaralingam VS, Govindaraj A. Effect of IAA and kinetin on the growth of Cosmarium subtriordinatum West and West. Phykos 1977; 16: 55-8.
Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Reg 1997; 22: 79-85. http://dx.doi.org/10.1023/A:1005862809711
Tominaga N, Takahata M, Tominaga H. Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (Chlorophyta). Hydrobiol 1993; 267: 163-8. http://dx.doi.org/10.1007/BF00018798
Cowan AK, Rose PD. Abscisic acid metabolism in salt stressed cells of Dunaliella salina. Plant Physiol 1991; 97: 798-803. http://dx.doi.org/10.1104/pp.97.2.798
Czerpak R, Bajguz A, Bialecka B, Wierzcholowska L, Wolanska MM. Effect of auxin precursors and chemical analogues on the growth and chemical composition in Chlorella pyrenoidosa Chick. Acta Soc Bot Pol 1994; 63: 279-86. http://dx.doi.org/10.5586/asbp.1994.038
Czerpak R, Krotke A, Mical A. Comparison of stimulatory effect of auxins and cytokinins on protein, saccharides and chlorophylls content in Chlorella pyrenoidosa Chick. Pol Arch Hygrobiol 1999; 46: 71-82.
Prasad PVD. Effect of some growth substances on three freshwater green algae. Crypt Algol 1982; 4: 315-21.
Hunt RW, Chinnasamy S, Bhatnazar A, Das KC. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga Chlorella sorokiniana. Appl Biochem Biotechnol 2010; 162: 2400-14. http://dx.doi.org/10.1007/s12010-010-9012-2
Bradley PM, Cheney DP. Some effects of plant growth regulators on tissue cultures of the marine red alga Agardhiella subulata (Gigartinales, Rhodophyta). Hydrobiol 1990; 204-5(1): 353-60. http://dx.doi.org/10.1007/BF00040256
Sitnik KM, Musatenko LI, Vasyuk VA, et al. Hormonal complex in plants and funghi. Kiiv Akad Periodika 2003.
Hertel R, Thomson K-St, Russo VEA. In vitro auxin binding to particulate cell fractions from maize coleoptiles. Planta 1972; 107: 325-40. http://dx.doi.org/10.1007/BF00386394
Maan AC, van der Linde PCG, Harkes PAA, Libbenga KR. Correlation between the presence of membrane-bound auxin binding proteins in tobacco. In: Klämbt D, Ed. Plant hormones receptors. NY: Springer-Verlag 1985; pp. 51-62.
Palme K. From binding proteins to hormone receptors? J Plant Reg 1993; 12: 171-8. http://dx.doi.org/10.1007/BF00213035
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2013 Maria Filomena de Jesus Raposo , Rui Manuel Santos Costa de Morais