Land Cover Dynamics in Beni Chougrane Mountains, North West of Algeria, Using Remote Sensing
PDF

Keywords

 Remote sensing, change detection, Landsat, anthropogenic, Beni-Chougrane.

How to Cite

Tayeb Si Tayeb, & Benabdeli Kheloufi. (2014). Land Cover Dynamics in Beni Chougrane Mountains, North West of Algeria, Using Remote Sensing. Journal of Basic & Applied Sciences, 10, 257–266. https://doi.org/10.6000/1927-5129.2014.10.34

Abstract

Land cover change is the result of complex interactions between social and environmental systems, systems that evolve over time. While climate and biophysical phenomena have long been the main drivers of changes in land surfaces, the human is now behind most of the changes affecting terrestrial ecosystems. The main objective of this work is to show the characterization and monitoring of land cover change in semi-arid Mediterranean area. The changes in agro-forest area which is a land use mode in the mountains of Beni-Chougrane at local scale.
We used Support Vector Machines method for classification of Landsat TM image, and change detection technique to analyze change of land cover types by comparing the satellite observations of Landsat TM from 1984 to 2009.
Our analysis showed that proportion of forest cover decreased from 41% in 1984 to 14% in 2009 that from approximately 190 hectares/year and agriculture land from 18 % to 1.5 %. The results showed that all land cover and lad use area have experienced structural changes in it's globally, Intensive regression of woody natural vegetation imposed by fires and unsustainable use of resources, a remarkable decline in land occupied by agriculture. Suggesting an immediate response to a policy based on priorities for the preservation, protection, development and rational use of land areas.

https://doi.org/10.6000/1927-5129.2014.10.34
PDF

References

Manière R. Télédétection spatiale et aéroportée et systèmes d’information géocodée sur l’environnement: principes généraux et étude de quelques domaines d’applications. Université d’Aix-Marseille III, Phd thesis 1987.

Julien Y, Sobrino JA, Jiménez-Mu_noz J-C. Land use classification from multitemporal Landsat imagery using Yearly Land Cover Dynamics (YLCD) method. Int J Appl Earth Obser Geoinform 2011; 13: 711-20. http://dx.doi.org/10.1016/j.jag.2011.05.008

Liying G, Daolong W, Jianjun Q, Ligang W, Yu L. Spatio-temporal patterns of land use change along the Bohai Rim in China during 1985e2005. J Geograp Sci 2009; 19: 568-76. http://dx.doi.org/10.1007/s11442-009-0568-0

Güler M, Yomralio_glu T, Reis S. Using Landsat data to determine land use/land cover changes in Samsun, Turkey. Environ Monitor Assess 2007; 127: 155-67. http://dx.doi.org/10.1007/s10661-006-9270-1

Dewan AM, Yamaguchi Y. Land use and land cover change in greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl Geograp 2009; 29(4): 390-401. http://dx.doi.org/10.1016/j.apgeog.2008.12.005

Gao J, Liu Y, Chen Y. Land cover changes during agrarian restructuring in northeast China. Appl Geograp 2006; 26(4): 312-22. http://dx.doi.org/10.1016/j.apgeog.2006.09.001

Kaiser MF. Environmental changes, remote sensing, and infrastructure development: the case of Egypt’s East Port Said Harbor. Appl Geograp 2009; 29(3): 280-88. http://dx.doi.org/10.1016/j.apgeog.2008.09.008

Serra P, Pons X, Sauri D. Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geograp 2008; 28(3): 189-209. http://dx.doi.org/10.1016/j.apgeog.2008.02.001

Siren AH, Brondizio ES. Detecting subtle land use change in tropical forests. Appl Geograp 2009; 29(2): 201-11. http://dx.doi.org/10.1016/j.apgeog.2008.08.006

Yuan D, Elvidge CD, Lunetta RS. Survey of multispectral methods for land cover change analysis. In: Lunetta RS, Elvidge C (eds) Remote sensing change detection: environmental monitoring methods and applications. Taylor & Francis, London 1998; pp. 21-39.

Singh A. Digital change detection techniques using remotely sensed data. Int J Remote Sens 1989; 10: 989-1003. http://dx.doi.org/10.1080/01431168908903939

Ridd MK, Liu J. A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 1998; 63: 95-100. http://dx.doi.org/10.1016/S0034-4257(97)00112-0

Jensen JR. Digital change detection. Introductory digital image processing: A remote sensing perspective. New Jersey’ Prentice-Hall 2004; pp. 467-494.

Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME. Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 2005; 98: 317-28. http://dx.doi.org/10.1016/j.rse.2005.08.006

Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 2004; 25: 1565-96. http://dx.doi.org/10.1080/0143116031000101675

Micheletti N, Kanevski M, Bai SB, Wang J, Hong T. Intelligent analysis of landslide data using machine learning algorithms. Procedings of the Second World Landslide Forum 3-7 October 2011; Rome.

Yao X, Tham LG, Dai FC. Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China. Geomorphology 2008; 101(4): 572-82. http://dx.doi.org/10.1016/j.geomorph.2008.02.011

Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 2010; 61(4): 821-36. http://dx.doi.org/10.1007/s12665-009-0394-9

Huang C, Davis L, Townshend J. An assessment of Support Vector Machines for land cover classification. Int J Remote Sensing 2002; 23: 725-49. http://dx.doi.org/10.1080/01431160110040323

Schott J, Salvaggio C, Volchok W. Radiometric scene normalization using pseudoinvariant features. Remote Sensing Environ 1988; 26: 1-16. http://dx.doi.org/10.1016/0034-4257(88)90116-2

Dai XL, Khorram S. Remotely sensed change detection based on artificial neural networks. Photogrammetr Eng Remote Sensing 1999; 65(10): 1187-94.

Chavez PS. Image-based atmospheric corrections revisited and improved. Photogrammetr Eng Remote Sensing 1996; 62: 1025-36.

Jensen JR. Introductory digital image processing: A remote sensing perspective. Prentice Hall 1996.

Thome K, Markham BL, Barker J, et al. Radiometric calibration of Landsat. Photogrammetr Eng Remote Sensing 1997; 63: 853-58.

Teillet PM, Barker JL, Markham BL, et al. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing Environ 2001; 78: 39-54. http://dx.doi.org/10.1016/S0034-4257(01)00248-6

Chander G, Markham B. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Trans Geosci Remote Sensing 2003; 41: 11. http://dx.doi.org/10.1109/TGRS.2003.818464

Markham BL, Barker JL. Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectance and at-satellite temperature. EOSAT Landsat Technical Notes 1986; 1: 3-8.

Bernstein LS, Adler-Golden SM, Sundberg RL, et al. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. In: SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI 2005; 5806: 668-678.

Bernstein LS, Adler-Golden SM, Sundberg RL, Ratkowski A. Improved Reflectance Retrieval from Hyper- and Multispectral Imagery without Prior Scene or Sensor Information. In: SPIE Proceedings, Remote Sensing of Clouds and the Atmosphere XI 2006; vol. 6362.

Chi M, Feng R, Bruzzone L. Advances in Space Research 2008; 41: 1793. http://dx.doi.org/10.1016/j.asr.2008.02.012

Ancona N, Maglietta R, Stella E. Pattern Recognition 2006; 39: 1588. http://dx.doi.org/10.1016/j.patcog.2005.11.025

Janz A, vander-Linden S, Waske B, Hostert P. image SVM A user-oriented tool for advanced classification of hyperspectral data using Support Vector Machines 2007.

Huang C, Goward S, Schleeweis K, Thomas N, Masek J, Zhu Z. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sensing of Environ 2009; 113: 1430-42. http://dx.doi.org/10.1016/j.rse.2008.06.016

Petropoulos G, Knorr W, Scholze M, Boschetti L, Karantounias G. Combining ASTER multispectral imagery analysis and support vector machines for rapid and cost-effective post-fire assessment: a case study from the greek fires of 2007. Nat Hazards Earth Syst Sci 2010; 10: 305-17. http://dx.doi.org/10.5194/nhess-10-305-2010

Petropoulos G, Kontoes C, Keramitsoglou I. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines. Int J Appl Earth Obser Geoinform 2010; 13: 70-80. http://dx.doi.org/10.1016/j.jag.2010.06.008

Mundia C, Aniya M. Dynamics of land use/ cover changes and degradation of Nairobi City, Kenya. Land Degradation Development 2006; 17(1): 97-108. http://dx.doi.org/10.1002/ldr.702

Alphan H. Land use change and urbanization in Adana, Turkey. Land Degradation Development 2003; 14(6): 575-86. http://dx.doi.org/10.1002/ldr.581

Howarth PJ, Wickware GM. Procedures for change detection using Landsat digital data. Int J Remote Sensing 1981; 2(3): 277-91. http://dx.doi.org/10.1080/01431168108948362

Girard MC, Girard CM. Traitement des données de télédétection. Dundo, Paris 1999.

Benchetrit M. L'érosion actuelle et ses conséquences sur l'aménagement en Algérie. P.U.F. Paris 1973.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Tayeb Si Tayeb, Benabdeli Kheloufi