Dielectric Properties of Filled Composites of Epoxy Resin
PDF

Keywords

 Dielectric Properties, fillers, loss peak, Debye loss Peak, Power law, localization.

How to Cite

Fareeda Farrukh, & Shahid H. Zaidi. (2014). Dielectric Properties of Filled Composites of Epoxy Resin. Journal of Basic & Applied Sciences, 10, 455–460. https://doi.org/10.6000/1927-5129.2014.10.60

Abstract

The addition of fillers in composite of epoxies, improves the dielectric response of the epoxies. The dielectric properties of unfilled and filled composites of epoxy resins have been studied as a function of thickness in the frequency range 10-1 Hz to 105 Hz at room temperature. The response of the unfilled samples shows that the composites behave as an insulator for all thickness. In filled composites at small thickness (0.32 mm) the response shows a loss peak in low frequency regime. The peak is broader than the Debye loss peak which is obscured by the dc conductance. At frequencies greater than p the response shows a well defined power law behaviour after the subtraction of C. Similar behaviour has been observed at different thickness.

https://doi.org/10.6000/1927-5129.2014.10.60
PDF

References

Kang S, Hong S, Choe CR, Park M, Rim S, Kim J, Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer 2001; 42: 879.

Punchaipetch, Ambrogi V, Giamberini M, Brostow W, Carfagna C, D'Souza NA. Epoxy+liquid crystalline epoxy coreacted networks: I. Synthesis and curing kinetics. Polymer 2001; 42: 2067.

Kraig M. Complete PCB Design Using OrCAD Capture and PCB Editor. Burlington, MA: Elsevier, Inc. 2009; pp. 9-10.

Lau JH. Flip Chip Technologies; McGraw Hill: New York, NY, USA 1996; pp. 223-267.

Manzione LT. Plastic Packaging of Microelectronic Devices; Van Nostrand Reinhold: New York, NY, USA 1990; pp. 81-89.

Feng J, Chan C-M. Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene-ethylene containing carbon black-filled HDPE particles. Polymer 2000; 41: 7279.

Ventura G, Bianchini G, Gottardi E, Peroni I, Peruzzi A. Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics 1999; 39: 481.

Eytan G, Rosenbaum R, McLachlan DS, Albers A. Resistivity and magnetoresistivity measurements near the metal-insulator and superconductor-insulator transition in granular Al-Ge. Phys Rev B 1993; 48: 6342.

Hassan HH, Abdel-Bary EM, El-Mansy MK, Shash NM. Enhancement of the thermal stability of chemically synthesized polypyrrole. Appl Phys Commun 1989-1990; 9(4): 267.

Child AD, Kuhn HH. Enhancement of the thermal stability of chemically synthesized polypyrrole. Synth Met 1997; 84: 141.

Omar MA. Elementary Solid State Physics Principals and Application, Addision -Wesley Publishing Company, London 1975.

Wade LG Jr. Organic Chemistry, Fourth Edition, Prentice Hall, New Jersey, USA 2000.

Dekker AJ. Solid State Physics, Macmillan, London 1969.

Du Pont De Nemours & Co (Inc.), Product data sheet.

Buxly Paints Limited, X/3, SITE, Manghopir Road, P.O. Box. 3630, Karachi.

Farrukh F, Zaidi SH. Dielectric Spectroscopy of Composites of Epoxy Resin. J Basic Appl Sci 2013; 9: 348-351.

Hussain, Arshad, M. Phil. Thesis, Karachi University 1997.

Nicholson JW. The Chemistry of Polymers, Second Edition, The Royal Society of Chemistry, Turpin Distribution Services limited, Blackhorse Road, UK 1997.

Tsangaris GM, Psarras GC. Permittivity and loss of composites of epoxy resin and Kevlar fibers. Adv Comp Lett 1995; 4(4): 125.

Jonscher AK. Dielectric Relaxation in Solids, Chelsea Dielectrics Press, Bristol, London 1983.

Jonscher AK. The “Universal” Dielectric Response: Part II, UK 1990; Vol. 6(3): p. 24.

Böttger H, Bryskin UV. Hopping conduction in solids, Akademie Verlag, Berlin 1985; pp. 169-213.

Bakr AA, North AM. Charge carriers hopping in Poly (arylenevinylenes). Eur Polym Sci 1977; 13: 799-803. http://dx.doi.org/10.1016/0014-3057(77)90025-8

Paipetis SA, Tsangaris GM, Tsangaris JM. Polym Commun 1983; 24: 373.

Tsangaris GM, Psarras GC, Kouloumbi N. Modelling the dielectric behaviour of composites of epoxy resin and Kevlar fibers. Adv Comp Lett 1995; 4(6): 175-180.

Tsangaris GM, Psarras GC, Kouloumbi N. Evaluation of the dielectric behaviour of particulate composites consisting of a polymeric matrix and conductive filler. Mater Sci Technol 1996; 12: 533-538. http://dx.doi.org/10.1179/mst.1996.12.7.533

Malecki J, Hilczer B. Dielectric behavior of polymers and composites. Ferroelectr Polym Ceram-Polym Compos 1994; 92-99: 181-215.

Johari GP. In Disorder Effects on Relaxation Processes, Ed by Richert R and Blumen A, Springer, Berlin 1994; pp. 627-657. http://dx.doi.org/10.1007/978-3-642-78576-4_23

Jonscher AK. Review article, Dielectric relaxation in solids. J. Phys D: Appl Phys Vol 1999; 32: R57.

Hill RM, Pickup C. Barrier effects in Dispersive Media, The Dielectric Group, Chelsea College, London SW6 5PR.

Reid JD, Buck RP. Dielectric properties of an epoxy resin and its composite II. Solvent effects on dipole relaxation. J Appl Polym Sci 1987; 33(7) 2293-2303.

Psarras GC, Manolakaki E, Tsangaris GM. Dielectric dispersion and ac conductivity in—Iron particles loaded—Polymer Composites 2003; 34(12): 1187-1198.

Tsangaris GM, Psarras GC, Kontopoulos AJ. Dielectric permittivity and loss of an aluminum-filled epoxy resin. J Non-Cryst Solids 1991; 31: 1164-1168. http://dx.doi.org/10.1016/0022-3093(91)90747-T

Baziard Y, Breton S, Toutain S, Gourdenne A. Dielectric properties of aluminium powder-epoxy resin composites. Eur Polym J 1988; 24: 521-526. http://dx.doi.org/10.1016/0014-3057(88)90043-2

La Mantia FP, Schifani R, Acierno D. Effect of a filler on the dielectric properties of an epoxy resin. J Appl Polym Sci 1983; 28(10): 3075-3080. http://dx.doi.org/10.1002/app.1983.070281007

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Journal of Basic & Applied Sciences