3-Aminopropyltriethoxysilane-Based Bioanalytical Procedures for Potential In Vitro Diagnostics
PDF

How to Cite

Sandeep Kumar Vashist. (2014). 3-Aminopropyltriethoxysilane-Based Bioanalytical Procedures for Potential In Vitro Diagnostics. Journal of Basic & Applied Sciences, 10, 469–474. https://doi.org/10.6000/1927-5129.2014.10.62

Abstract

Editorial

https://doi.org/10.6000/1927-5129.2014.10.62
PDF

References

Vashist SK, et al. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 2014. http://dx.doi.org/10.1021/cr5000943

Dixit CK, et al. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal Chem 2010; 82: 7049-7052. http://dx.doi.org/10.1021/ac101339q

Vashist SK, Saraswat M, Holthöfer H. Comparative study of the developed chemiluminescent, ELISA and SPR immunoassay formats for the highly sensitive detection of human albumin. Procedia Chemistry 2012; 6: 184-193. http://dx.doi.org/10.1016/j.proche.2012.10.145

Vashist SK, Saraswat M, Holthöfer H. Development of a rapid sandwich enzyme linked immunoassay procedure for the highly sensitive detection of human lipocalin-2/NGAL. Procedia Chemistry 2012; 6: 141-148. http://dx.doi.org/10.1016/j.proche.2012.10.140

Dixit CK, et al. Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Nat Protoc 2011; 6: 439-445. http://dx.doi.org/10.1038/nprot.2011.304

Vashist SK. Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics 2012; 2: 23-33. http://dx.doi.org/10.3390/diagnostics2030023

Vashist SK. A sub-picogram sensitive rapid chemiluminescent immunoassay for the detection of human fetuin A. Biosens Bioelectron 2013; 40: 297-302. http://dx.doi.org/10.1016/j.bios.2012.07.067

Vashist SK, et al. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011; 136: 4431-4436. http://dx.doi.org/10.1039/c1an15325k

Zheng D, et al. Graphene versus Multi-Walled Carbon Nanotubes for electrochemical glucose biosensing. Materials 2013; 6: 1011-1127. http://dx.doi.org/10.3390/ma6031011

Zheng D, et al. Mediatorless amperometric glucose biosensing using 3-aminopropyltriethoxysilane-functionalized graphene. Talanta 2012; 99: 22-28. http://dx.doi.org/10.1016/j.talanta.2012.05.014

Vashist SK, et al. One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics. Sci Rep 2014; 4: 4407. http://dx.doi.org/10.1038/srep04407

Vashist SK, Schneider EM, Luong JHT. Rapid sandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of Human fetuin A. Biosens Bioelectron 2014. http://dx.doi.org/10.1016/j.bios.2014.06.058

Vashist SK, Schneider EM, Luong JHT. Surface plasmon resonance-based immunoassay for human fetuin A. Analyst 2014; 139: 2237-2242. http://dx.doi.org/10.1039/c4an00149d

Vashist SK, et al. A multi-well plate for biological assays. 2010; WIPO Publication No. WO2010044083.

Vashist SK. Graphene-based immunoassay for human lipocalin-2. Anal Biochem 2014; 446: 96-101. http://dx.doi.org/10.1016/j.ab.2013.10.022

Vashist SK, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min. Anal Biochem 2014; 456: 32-37. http://dx.doi.org/10.1016/j.ab.2014.04.004

Vashist SK, et al. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron 2014. http://dx.doi.org/10.1016/j.bios.2014.08.027

Zheng D, et al. Effect of 3-aminopropyltriethoxysilane on the electrocatalysis of carbon nanotubes for reagentless glucose biosensing. Journal of Nanopharmaceutics and Drug Delivery 2013; 1: 64-73. http://dx.doi.org/10.1166/jnd.2013.1017

Zheng D, et al. Rapid and simple preparation of a reagentless glucose electrochemical biosensor. Analyst 2012; 137: 3800-3805. http://dx.doi.org/10.1039/c2an35128e

Vashist SK, et al. A mediator-less electrochemical glucose sensing procedure employing the leach-proof covalent binding of an enzyme(s) to electrodes and products thereof. 2013; WIPO Publication No. WO2013165318 A1.

Vashist SK, et al. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta 2011; 703: 124-136. http://dx.doi.org/10.1016/j.aca.2011.07.024

Vashist SK, et al. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012; 750: 16-27. http://dx.doi.org/10.1016/j.aca.2012.03.043

Vashist SK. Continuous glucose monitoring systems: a review. Diagnostics 2013; 3: 385-412. http://dx.doi.org/10.3390/diagnostics3040385

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Sandeep Kumar Vashist