Synthesis and Structural Studies on MgO Nanoparticles Suitable for Tunnel Barrier Applications
PDF

Keywords

 Metallic oxide, MgO, Nanoparticles, chemical synthesis, tunnel barrier..

How to Cite

S. Rizwan Ali, M. Naeem, S. Imran Ali, Sajida Azam, S. Naseem Shah, Zia-ur-Rehman, & S. Masood Raza. (2015). Synthesis and Structural Studies on MgO Nanoparticles Suitable for Tunnel Barrier Applications. Journal of Basic & Applied Sciences, 11, 645–648. https://doi.org/10.6000/1927-5129.2015.11.86

Abstract

Magnesium oxide (MgO) nanoparticles are synthesized by a simple coprecipitation method. XRD studies reveal that nanoparticles are predominantly (100) textured with an average crystallite size of 19 nm.The relative peak intensities for (100) and (110) textured grains i.e., I(100)/I(110) is found to be ~ 2. Scanning electron microscope (SEM) pictures of our samples indicate that our synthesized nanoparticles are spherically shaped. Due to excellent electron tunneling features of (100) textured MgO nanoparticles, our synthesis method is suitable for cost effective and simple synthesis of pure MgO nanoparticles for applications involving electron tunneling.

https://doi.org/10.6000/1927-5129.2015.11.86
PDF

References

Guimarâes AP. Principles of Nanomagnetism. Berlin: Springer; 2009: Available from: http://link.springer.com/ http://dx.doi.org/10.1007/978-3-642-01482-6

Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science 2001; 292: 1897-1899. http://dx.doi.org/10.1126/science.1060367

Krunks M, Katerski A, Dedova T, Oja-Acik I, Mere A. Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Solar Energy Mater Solar Cells 2008; 92: 1016-1019. http://dx.doi.org/10.1016/j.solmat.2008.03.002

Hsu CL, Chang SJ, Lin YR, Li PC, Lin TS, Tsai SY, Lu TH, Chen IC. Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires. Chem Phys Lett 2005; 416: 75-78. http://dx.doi.org/10.1016/j.cplett.2005.09.066

Parkin SP, Jiang X, Kaiser C, Panchula A, Roche K, Samant M. Magnetically Engineered spintronic sensors and Memory. Proceedings of the IEEE 2003; 91(5): 661-680. http://dx.doi.org/10.1109/JPROC.2003.811807

Butler WH, Zhang XG, Schulthess TC, MacLaren JM. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 2001; 63: 054416. http://dx.doi.org/10.1103/PhysRevB.63.054416

Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van-Wees BJ. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007; 448: 571. http://dx.doi.org/10.1038/nature06037

Tombros N, Tanabe S, Veligura A, Jozsa C, Popinciuc M, Jonkman HT, van-Wees BJ. Anisotropic Spin Relaxation in Graphene. Phys Rev Lett 2008; 101: 046601. http://dx.doi.org/10.1103/PhysRevLett.101.046601

Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys Rev B 2001; 63: 220403. http://dx.doi.org/10.1103/PhysRevB.63.220403

Parkin S P, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials 2004; 3(12): 862-867. http://dx.doi.org/10.1038/nmat1256

Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials 2004; 3: 868-871. http://dx.doi.org/10.1038/nmat1257

Hsiang-I H, Yao R-Q. Hexagonal ferrite powder synthesis using chemical coprecipitation. Materials Chemistry and Physics 2007; 104(1): 1-4. http://dx.doi.org/10.1016/j.matchemphys.2007.02.030

Fierro JLG. Metal Oxides: Chemistry & Applications. CRC Press (2006). Available from: https://www.crcpress.com/

Duan G, Yang X, Chen J, Huang G, Lu L, Wang X. The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate. Powder Technol 2007; 172(1): 27-29. http://dx.doi.org/10.1016/j.powtec.2006.10.038

Huining L, Zhang L, Hongxing D, Hong H. Facile Synthesis and Unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-Alumina, and ceria?zirconia solid solutions with crystalline mesoporous walls. Inorg Chem 2009; 48(10): 4421-4431. http://dx.doi.org/10.1021/ic900132k

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 S. Rizwan Ali, M. Naeem, S. Imran Ali, Sajida Azam, S. Naseem Shah, Zia-ur-Rehman , S. Masood Raza