Effect of Acid Treatment on the Recovery of Valuable Metals from Steel Plant Exhaust
PDF

Keywords

 Electric arc furnace dust, Sulphuric acid, Leaching, Sustainable environment, Zn recovery.

How to Cite

Zeeshan A. Hameed, Junaid Saleem, Hira Lal, Ahsan Abdul Ghani, & Muhammad Shoaib. (2016). Effect of Acid Treatment on the Recovery of Valuable Metals from Steel Plant Exhaust. Journal of Basic & Applied Sciences, 12, 323–328. https://doi.org/10.6000/1927-5129.2016.12.50

Abstract

The response of different metals such as Zn, Fe, Pb, Cr and Mn during leaching of Electric Arc Furnace (EAF) dust in acid medium has been investigated. The major proportion of EAF dust constitutes of these metals and their recovery by means of a chemical process is not only economical but also imparts positive impact on the environment. The leaching of metals from dust is achieved using different concentration of sulphuric acid, and the dust samples have been characterized both before and after leaching. Based on the results, several recommendations have been suggested for the optimization of H2SO4 concentration,that lead to the maximum recovery of these metals. Under the optimized conditions, it has been determined that the satisfactory leaching yield of Zn (95%) can be obtained at a concentration of 1M.

https://doi.org/10.6000/1927-5129.2016.12.50
PDF

References

Boyanov BS, Baev TB. Utilization of zinc in powders from electric arc furnaces in steel production. J Min Metall Sect B Metall 2009; 45(1): 15-22. http://dx.doi.org/10.2298/JMMB0901015B

Grillo FF, Coleti JL, Espinosa DCR, Oliveira JR, Tenório JAS. Zn and Fe Recovery from Electric Arc Furnace Dusts. Mater Trans 2014; 55(2): 351-356.

Montenegro V, Oustadakis P, Tsakiridis P. Hydrometallurgical Treatment of EAF Dust by Direct Sulphuric Acid Leaching at Atmospheric Pressure. Waste and Biomass Valorization 2016: 1-18.

Youcai Z, Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J Hazard Mater 2000 223-240. http://dx.doi.org/10.1016/S0304-3894(00)00305-8

Järup L. Hazards of heavy metal contamination. Br Med Bull 2003; 68: 167-82. http://dx.doi.org/10.1093/bmb/ldg032

Environmental Protection Agency, “Land disposal Restric-tions for Electric Arc Furnace Dust,.” 1991; 56(160): 41164.

Erdem M, Yurten M. Kinetics of Pb and Zn leaching from zinc plant residue by sodium hydroxide. J Min Metall Sect B Metall 2015; 51(1): 89-95. http://dx.doi.org/10.2298/JMMB140503012E

Yan H, Chai LY, Peng B, Li M.. A novel method to recover zinc and iron from zinc leaching residue. Min Engg 2014: 103-110.

Kekki A, Aromaa J, Forsen O. Leaching characteristics of eaf and aod stainless steel production dusts. Physicochem Prob of Min Processing 2012; 48(2): 599-606.

Dutra AJB, Paiva PRP, Tavares LM. Alkaline leaching of zinc from electric arc furnace steel dust. Miner Eng 2006; 19(5): 478-85. http://dx.doi.org/10.1016/j.mineng.2005.08.013

Jezierski J, Janerka K. Selected aspects of metallurgical and foundry furnace dust utilization. PL. J Envir. Stud 2011; 20(1): 101-105.

Kul M, Oskay KO, ?imur M, Subutay H, Kirgezen H. Optimization of selective leaching of Zn from electric arc furnace steelmaking dust using response surface methodology. Trans Nonferrous Met Soc China 2015; 25(8): 2753-62. http://dx.doi.org/10.1016/S1003-6326(15)63900-0

Dodson JR, Hunt AJ, Parker HL, Yang Y, Clark JH. Elemental sustainability: Towards the total recovery of scarce metals. Chem Eng Process Process Intensif. Elsevier B.V.; 2012; 51: 69-78.

Habashi F. Recent trends in extractive metallurgy. J Min Metall Sect B Metall 2009; 45(1): 1-13. http://dx.doi.org/10.2298/JMMB0901001H

Nyirenda RL. The processing of steelmaking flue-dust: A review. Miner Eng 1991; 4(7-11): 1003-25. http://dx.doi.org/10.1016/0892-6875(91)90080-F

Havlik T, Souza B, Bernardes A, Schneider I, Miskufova A. Hydrometallurgical processing of carbon steel EAF dust. J Hazard Mater 2006; 135(1-3): 311-8. http://dx.doi.org/10.1016/j.jhazmat.2005.11.067

Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. J Hazard Mater 2008; 158(2-3): 228-56. http://dx.doi.org/10.1016/j.jhazmat.2008.02.001

Zhang Y, Yu X, Li X. Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy. Elsevier B.V.; 2011; 109(3-4): 211-4. http://dx.doi.org/10.1016/j.hydromet.2011.07.002

Kukurugya F, Vindt T, Havlík T. Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: Thermodynamic and kinetic aspects. Hydrometallurgy 2015; 154: 20-32.

Havlik T, Turzakova M, Stopic S, Friedrich B. Atmospheric leaching of EAF dust with diluted sulphuric acid. In: Hydrometallurgy 2005. http://dx.doi.org/10.1016/j.hydromet.2015.03.008

Havlik T, Friedrich B, Stopic S. Pressure leaching of EAF dust with sulphuric acid. Erzmetall 2004; 113-20.

D.K. Xia§ CAP. Microwave caustic leaching of electric arc furnace dust. Miner Eng 2000; 13(1): 79-94. http://dx.doi.org/10.1016/S0892-6875(99)00151-X

Herrero D, Arias PL, Güemez B, Barrio VL, Cambra JF, Requies J. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning. Miner Eng . Elsevier Ltd; 2010; 23(6): 511-7.

Ruiz O, Clemente C AM. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J Hazard Mater 2006; 141(1): 33-6. http://dx.doi.org/10.1016/j.jhazmat.2006.06.079

Shawabkeh RA. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy 2010; 104: 61-65. http://dx.doi.org/10.1016/j.hydromet.2010.04.014

Asadi Zeydabadi B, Mowla D, Shariat MH, Fathi Kalajahi J. Zinc recovery from blast furnace flue dust. Hydrometallurgy 1997; 47(1): 113-25. http://dx.doi.org/10.1016/S0304-386X(97)00039-X

D K X, Pickles C a. Microwave caustic leaching of electric arc furnace dust. Miner Eng 2000; 13(1): 79-94. http://dx.doi.org/10.1016/S0892-6875(99)00151-X

Trung ZH, Kukurugya F, Takacova Z, Orac D, Laubertova M, Miskufova A, et al. Acidic leaching both of zinc and iron from basic oxygen furnace sludge. J Hazard Mater. Elsevier B.V.; 2011; 192(3): 1100-7.

Tomas H. “The possibility of treatment of the EAF dusts and sludges. Present Futur Metall Mater Sci Refract Proc 50th Anniv Metall Fac Tech Univ Kosice, 2002; 93.

Langová Š, Leško J, Matýsek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 2009; 95(3-4): 179-82. http://dx.doi.org/10.1016/j.hydromet.2008.05.040

Mordo?an H, Çïçek T, I?ik a. Caustic soda leach of electric arc furnace dust. Turkish J Eng Environ Sci 1999; 23(3): 199-207.

Jezierski J, Janerka K. Selected aspects of metallurgical and foundry furnace dust utilization. Polish J Environ Stud 2011; 20(1): 101-5.

Lenz DMM, Martins F. B. Lead and zinc selective precipitation from leach electric arc furnace dust solutions. Rev Matéria 2007; 12(3): 503-9. http://dx.doi.org/10.1590/s1517-70762007000300011

Wang JC, Hepworth MT, Reid KJ. Recovering Zn, Pb, Cd and Fe from electric furnace dust. JOM. 42(4): 42-5. http://dx.doi.org/10.1007/BF03220923

Hong-xu L, Yang W, Da-qiang C. Zinc leaching from electric arc furnace dust in alkaline medium. J Cent South Univ Technol (Engl Ed) 2010; 17(6): 967-71.

Yu B-S, Wang Y-R, Chang T-C. Hydrothermal treatment of electric arc furnace dust. J Hazard Mater. Elsevier B.V.; 2011; 190(1-3): 397-402.

Gargul K, Boryczko B. Removal of zinc from dusts and sludges from basic oxygen furnaces in the process of ammoniacal leaching. Arch of Civil and Mech Eng 2015; 15: 179-187.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Zeeshan A. Hameed, Junaid Saleem, Hira Lal, Ahsan Abdul Ghani , Muhammad Shoaib