Synthesis of Superabsorbent Polymer (SAP) via Industrially Preferred Route
PDF

Keywords

 Copolymer, SAP, swelling capacity, swelling rate, solution polymerization.

How to Cite

R. Ahmed, & K. Ali Syed. (2016). Synthesis of Superabsorbent Polymer (SAP) via Industrially Preferred Route. Journal of Basic & Applied Sciences, 12, 383–387. https://doi.org/10.6000/1927-5129.2016.12.59

Abstract

The assigned study is dedicated to the synthesis, improvement and characterization of acrylic-based superabsorbent polymers (SAPs) which can be used in versatile applications notably in disposable diapers and pharmaceutics. The industrially preferred solution polymerization route and low cost monomers were used to synthesize SAPs. Homopolymer and copolymer based SAPs were prepared with varying amount of cross-linker and initiator concentrations and compared for swelling rate with a commercially available SAP sample. Swelling capacity linearly decreases with increase in cross-linker content for both the synthesized SAPs samples whereas it first increases and then decreases with initiator content for the synthesized copolymer SAP. Swelling kinetics of the synthesized and commercial SAPs were modelled using model equation proposed by Omidian et al. Both the synthesized SAPs showed substantial increase in swelling capacity whereas copolymer SAP exhibited the highest swelling rate (rate parameter 2.78 min) when compared to homopolymer SAP and the commercially available SAP samples. Accordingly, the copolymer SAP may find its application in disposable diapers or pharmaceutics where the higher swelling rate is of prime importance. Copolymer and commercially available SAPs depicted significant decrease in swelling capacity even at very low saline solution concentration (0.01 %).

https://doi.org/10.6000/1927-5129.2016.12.59
PDF

References

Buchholz FL, Graham AT, Eds., Modern Superabsorbent Polymer Technology, Wiley-VCH & Sons, December 1997.

Gross JA, Studies in Polymer Science. Absorbent Polymer Technology 1990; Vol. 8.

Shimomura T. Polym Mater Sci Eng 1993; 69: 485.

Po` R. J Macromol Sci Rev Macromol Chem Phys 1994; C34(4): 607.

Zohuriaan-Mehr MJ, Super-Absorbents (in Persian), Iran Polymer Society, Tehran, 2006; 2-4.

Zohuriaan-Mehr MJ, Kabiri K. Iranian Polymer Journal 2008; 17(6): 451.

Zu X, Lu J, Gu M. Gaofenzi Cailiao Kexue Yu Gongcheng 1983; 9(4): 19.

Quidian H, Hashemi SA, Askari F, Nafisi S. J Appl Polym Sci 1994; 54: 241. http://dx.doi.org/10.1002/app.1994.070540210

Quidian H, Hashemi SA, Askari F, Nafisi S. J Appl Polym Sci 1994; 54: 251. http://dx.doi.org/10.1002/app.1994.070540211

Scott RA, Peppas NA. AIChE J 1997; 43(1): 135. http://dx.doi.org/10.1002/aic.690430116

Hua F, Qian M, Xie S. Gongneng Gaofenzi Xuebao 1995; 8(3): 367.

Hua F, Qian M, Tan C. Gongneng Gaofenzi Xuebao 1996; 9(4): 589.

Driva P, Bexis P, Pitsikalis M. Eur Polym J 2011; 47: 762. http://dx.doi.org/10.1016/j.eurpolymj.2010.09.032

Ahmed EM. Journal of Advanced Research 2015; 6: 105. http://dx.doi.org/10.1016/j.jare.2013.07.006

Mathur AM, Moorjani SK, Scranton AB. J Macromol Sci Part C: Polymer Reviews 1996; 36: 405. http://dx.doi.org/10.1080/15321799608015226

Dayal U, Mehta SK, Choudhary MS, Jain RC. J Macromol Sci Part C: Polymer Reviews 1999; 39: 507. http://dx.doi.org/10.1081/MC-100101426

Ma Z, Li Q, Yue Q, Gao B, Xu X, Zhong Q. Bioresour Technol 2011; 102: 2853. http://dx.doi.org/10.1016/j.biortech.2010.10.072

Liu X, Xiang S, Yue YM, Su X, Zhang W, Song C, Wang P. Colloid Surface 2007; A 311: 131.

Walsh K, Gain B. Chem Week 1997; 23.

Mattiasson B, Kumar A, Galaev IY, Eds., Macroporous Polymers: Production Properties Biotechnological/Biomedical Applications, CRC Press, 2009. http://dx.doi.org/10.1201/9781420084627

Chavda HV, Patel CN. Int J Pharm Investig 2011; 1: 17-21. http://dx.doi.org/10.4103/2230-973X.76724

Sadegi M, Heidari B. Materials 2011, 4: 543. http://dx.doi.org/10.3390/ma4030543

Sadegi M, Ghasemi N, Kazemi M. World Appl Sci J 2012; 16(1): 113.

Jiang J-Q, Zhao S. Iran Polym J 2014; 23: 405.

Yu Y, Liu L, Kong Y, Zhang E, Liu Y. J Polym Environ 2011; 19: 926. http://dx.doi.org/10.1007/s10924-011-0340-2

Hosseinzadeh H, Sadeghzadeh M, Babazadeh M. Journal of Biomaterials and Nanobiotechnology 2011; 2: 311. http://dx.doi.org/10.4236/jbnb.2011.23038

Branrup J, Immergut EH. Polymer Handbook, Newyork, Wiley, 3rd Ed. 1989.

Kalaleh HA, Tally M, Attasi Y. Online: http://arxiv.org/ftp/arxiv/ papers/1502/1502.03639.pdf, visted on April 28, 2016 at 15:00 hours.

Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ. European Polymer Journal 2003; 39: 1341. http://dx.doi.org/10.1016/S0014-3057(02)00391-9

Omidian H, Hashemi SA, Sammes PG, Meldrum I. Polymer 1998; 39: 6697. http://dx.doi.org/10.1016/S0032-3861(98)00095-0

Pourjavadi A, Soleyman R, Bardajee GR, Seidi F. Transactions C: Chemistry and Chemical Engineering 2010; 17(1): 15.

Fallahi H-R, Taherpour Kalantari R, Aghhavani-Shajari M, Soltanzadeh M-G. Not Sci Biol 2015; 7(3): 338. http://dx.doi.org/10.15835/nsb.7.3.9626

Rousta MJ, Soltani M, Besharat N, Soltani V, Salehi M, Rangbar GH. Iranian Water Research Journal 2013; 12: 241.

Rahbar E, Banedjschafie S. Iranian Journal of Range and Desert Research 2009; 16(2): 209.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 R. Ahmed , K. Ali Syed