Growth of Magnesium Oxide Thin Films Using Molecular Beam Epitaxy
PDF

Keywords

 Ultra thin films, MgO, molecular beam epitaxy (MBE), atomic force microscopy (AFM), X-ray diffraction (XRD).

How to Cite

S. Rizwan Ali, S. Qaseem, S. Imran Ali, & M. Naeem. (2017). Growth of Magnesium Oxide Thin Films Using Molecular Beam Epitaxy. Journal of Basic & Applied Sciences, 13, 347–350. https://doi.org/10.6000/1927-5129.2017.13.57

Abstract

Ultra thin MgO films (1-2 nm) are grown on Si/SiO2 substrates using molecular beam epitaxy (MBE). Different growth conditions such as substrate temperatures, annealing conditions and growth rates are tested in order to achieve optimum parameters for the smooth and uniform growth. The films were characterized ex-situ using atomic force microscopy and x ray diffractio. Our results demonstrate MBE growth of MgO films with an rms roughness better than 0.5 nm on Si/SiO2 substrates. These results are important for the applications of MgO films as tunnel barriers in spintronic devices.

https://doi.org/10.6000/1927-5129.2017.13.57
PDF

References

Zhao M, Chen XL, Zhang XN, Li H, Li HQ, Wu L. Preparation and characterization of networked rectangular MgO nanostructures. Chemical Physics Letters 2004; 388(1): 7-11. https://doi.org/10.1016/j.cplett.2004.02.044

Vayssières L, Chanéac C, Tronc E, Jolivet JP. Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. Journal of Colloid and Interface Science 1998; 205(2): 205-12. https://doi.org/10.1006/jcis.1998.5614

Parkin SS, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials 2004; 3(12): 862-7. https://doi:10.1038/nmat1256

Butler WH, Zhang XG, Schulthess TC, MacLaren JM. Spin-dependent tunneling conductance of Fe| MgO| Fe sandwiches. Physical Review B 2001; 63(5): 054416. https://doi.org/10.1103/PhysRevB.63.054416

Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction. Physical Review B 2001; 63(22): 220403. https://doi.org/10.1103/PhysRevB.63.220403

Arthur JR. Molecular beam epitaxy. Surface Science 2002; 500(1): 189-217. https://doi.org/10.1016/S0039-6028(01)01525-4

Yang TY, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali SR, Pachoud A, Zeng M, Popinciuc M, Güntherodt G. Observation of long spin-relaxation times in bilayer graphene at room temperature. Physical Review Letters 2011; 107(4): 047206. https://doi.org/10.1103/PhysRevLett.107.047206

Wang WH, Han W, Pi K, McCreary KM, Miao F, Bao W, Lau CN, Kawakami RK. Growth of atomically smooth MgO films on graphene by molecular beam epitaxy. Applied Physics Letters 2008; 93(18): 183107. http://dx.doi.org/10.1063/1.3013820

Stan L, Arendt PN, DePaula RF, Usov IO, Groves JR. Effect of substrate temperature on the texture of MgO films grown by ion beam assisted deposition. Superconductor Science and Technology 2006; 19(4): 365. https://doi.org/10.1088/0953-2048/19/4/020

Li Y, Wong LM, Xie H, Wang S, Su PC. Pulsed laser deposition of epitaxial MgO buffer layer for proton-conducting ceramic electrolytes. Surface and Coatings Technology 2017; 320: 339-43. https://doi.org/10.1016/j.surfcoat.2016.12.052

Zhang Z, Lagally MG. Atomistic processes in the early stages of thin-film growth. Science 1997; 276(5311): 377-83. https://doi:10.1126/science.276.5311.377

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2017 Journal of Basic & Applied Sciences