Effect of Dietary Selenium Supplementation on Morphology and Antioxidant Status in Testes of Goat
PDF

Keywords

Male reproduction, selenium, Oxidative stress, Antioxidant.

How to Cite

Iqra Bano, M. Malhi, S.A. Soomro, Safia Kandhro, Muhammad Awais, Seema Baloch, Saba Perveen, & Hira Sajjad. (2018). Effect of Dietary Selenium Supplementation on Morphology and Antioxidant Status in Testes of Goat. Journal of Basic & Applied Sciences, 14, 53–61. https://doi.org/10.6000/1927-5129.2018.14.08

Abstract

The fitness of animal has an enormous influence on its reproductive capability, nowadays feeding of microelements is practiced in many feed formulations because micro-nutrient possesses strong influence on animal’s reproductive ability. The male generative zone produces spermatozoa which needs a little number of free radicals for the maturation as well as for smooth fertilization. Whereas the raised level of these free radicals disturbs the entire process of sperm formation and also lead to infertility. The Selenium is a micro nutrient which naturally possess some enzymes and selenoproteins which diminish manufacture of unnecessary free radicals by acting as an antioxidant. Subsequently, it protects male gamete from destruction triggered by oxidative stress. Selenium also assistance in maintenance of semen quality by declining construction of atypical spermatozoa. Additionally, some studies have revealed that it possesses striking influence on both gross and histological characteristics of male reproductive organ, feeding this mineral improved circumference, size, the mass of the testis and speed up sperm construction by means of having a solid effect on seminiferous tubules histology. Hence, selenium shortage can cause infertility and further reproductive syndromes.

https://doi.org/10.6000/1927-5129.2018.14.08
PDF

References

Tuormaa TE. Chromium, selenium and copper and other trace minerals in health and reproduction. Journal of Orthomolecular Medicine 2000; 15(3): 145-56.

Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and develop-ment. Trends in Biochemical Sciences 2014; 39(3): 112-20. https://doi.org/10.1016/j.tibs.2013.12.007

Riaz M, Mehmood KT. Selenium in human health and disease: a review. Journal of Postgraduate Medical Institute (Peshawar-Pakistan) 2012; 26(2).

Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomedicine & Pharmacotherapy 2003; 57(3): 134-44. https://doi.org/10.1016/S0753-3322(03)00035-0

Beckett GJ, Arthur JR. Selenium and endocrine systems. Journal of Endocrinology 2005; 184(3): 455-65. https://doi.org/10.1677/joe.1.05971

McKenzie RC, Rafferty TS, Beckett GJ. Selenium: an essential element for immune function. Immunology Today 1998; 19(8): 342-5. https://doi.org/10.1016/S0167-5699(98)01294-8

Schrauzer GN. The nutritional significance, metabolism and toxicology of selenomethionine. Advances in Food and Nutrition Research 2003; 47: 73-112. https://doi.org/10.1016/S1043-4526(03)47002-2

Wastney ME, Combs GF, Canfield WK, Taylor PR, Patterson KY, Hill AD, Moler JE, Patterson BH. A human model of selenium that integrates metabolism from selenite and selenomethionine. The Journal of Nutrition 2011; 141(4): 708-17. https://doi.org/10.3945/jn.110.129049

Schrauzer GN. Nutritional selenium supplements: product types, quality, and safety. Journal of the American College of Nutrition 2001; 20(1): 1-4. https://doi.org/10.1080/07315724.2001.10719007

Burk RF, Hill KE, Motley AK. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. The Journal of Nutrition 2003; 133(5): 1517S-20S. https://doi.org/10.1093/jn/133.5.1517S

Song YX, Hou JX, Zhang L, Wang JG, Liu XR, Zhou ZQ, Cao BY. Effect of dietary selenomethionine supplementation on growth performance, tissue Se concentration, and blood glutathione peroxidase activity in kid boer goats. Biological Trace Element Research 2015; 167(2): 242-50. https://doi.org/10.1007/s12011-015-0316-5

Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Analytical and Bioanalytical Chemistry 2006; 385(7): 1304-23. https://doi.org/10.1007/s00216-006-0529-8

Daniels LA. Selenium metabolism and bioavailability. Biological Trace Element Research 1996; 54(3): 185-99. https://doi.org/10.1007/BF02784430

Tomasi N, Pinton R, Gottardi S, Mimmo T, Scampicchio M, Cesco S. Selenium fortification of hydroponically grown corn salad (Valerianella locusta). Crop and Pasture Science 2015; 66(11): 1128-36. https://doi.org/10.1071/CP14218

Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Molecular and Cellular Biology 2002; 22(11): 3565-76. https://doi.org/10.1128/MCB.22.11.3565-3576.2002

Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiological Reviews 2014; 94(3): 739-77. https://doi.org/10.1152/physrev.00039.2013

Rahmanto AS, Davies MJ. Selenium?containing amino acids as direct and indirect antioxidants. IUBMB Life 2012; 64(11): 863-71. https://doi.org/10.1002/iub.1084

Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Archives of Biochemistry and Biophysics 2013; 536(2): 152-7. https://doi.org/10.1016/j.abb.2013.02.021

Benjamin M, Kaiser E, Milz S. Structure?function relationships in tendons: a review. Journal of Anatomy 2008; 212(3): 211-28. https://doi.org/10.1111/j.1469-7580.2008.00864.x

Robert G, Septimus S, James DG. Sisson & Grossman’s The Anatomy of the Domestic Animals. Vol.(1): 5th ed., WB Saunders Company, Philadelphia 1975; 552-3.

Ozegbe PC, Aire TA, Madekurozwa MC, Soley JT. Morphological and immunohistochemical study of testicular capsule and peritubular tissue of emu (Dromaius novaehollandiae) and ostrich (Struthio camelus). Cell and Tissue Research 2008; 332(1): 151-8. https://doi.org/10.1007/s00441-007-0515-2

Chung SS, Wang X, Wolgemuth DJ. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development 2009; 136(12): 2091-100. https://doi.org/10.1242/dev.020040

Foley GL. Overview of male reproductive pathology. Toxicologic Pathology 2001; 29(1): 49-63. https://doi.org/10.1080/019262301301418856

Agarwal A, Majzoub A. Free Radicals in Andrology. InAntioxidants in Andrology. Springer International Publishing 2017; pp. 1-21.

Ames BN. An enthusiasm for metabolism. Journal of Biological Chemistry 2003; 278(7): 4369-80. https://doi.org/10.1074/jbc.X200010200

Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian Journal of Andrology 2011; 13(1): 43. https://doi.org/10.1038/aja.2010.76

Surai PF. Selenium in nutrition and health. Nottingham: Nottingham university press 2006.

Alomar M, Alzoabi M, Zarkawi M. Kinetics of hydrogen peroxide generated from live and dead ram spermatozoa and the effects of catalase and oxidase substrates addition. Czech Journal of Animal Science 2016; 61(1): 1-7. https://doi.org/10.17221/8662-CJAS

Barciela J, Herrero C, García-Martín S, Peña RM. A brief study of the role of selenium as antioxidant. EJEAFChe 2008; 7: 3151-5.

Kehr S, Malinouski M, Finney L, Vogt S, Labunskyy VM, Kasaikina MV, Carlson BA, Zhou Y, Hatfield DL, Gladyshev VN. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. Journal of Molecular Biology 2009; 389(5): 808-18. https://doi.org/10.1016/j.jmb.2009.04.024

Noblanc A, Kocer A, Chabory E, Vernet P, Saez F, Cadet R, Conrad M, Drevet JR. Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. Journal of Andrology 2011; 32(6): 641-50. https://doi.org/10.2164/jandrol.110.012823

Adaramoye OA, Akanni OO, Adewumi OM, Owumi SE. Lopinavir/ritonavir, an antiretroviral drug, lowers sperm quality and induces testicular oxidative damage in rats. Tokai J Exp Clin Med 2015; 40(2): 51-7.

Kuijper EA, Van Kooten J, Verbeke JI, Van Rooijen M, Lambalk CB. Ultrasonographically measured testicular volumes in 0-to 6-year-old boys. Human Reproduction 2008; 23(4): 792-6. https://doi.org/10.1093/humrep/den021

Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxidants & Redox Signaling 2009; 11(11): 2685-700. https://doi.org/10.1089/ars.2009.2695

Ufer C, Wang CC. The roles of glutathione peroxidases during embryo development. Frontiers in Molecular Neuroscience 2011; 4. https://doi.org/10.3389/fnmol.2011.00012

Behne D, Kyriakopoulos A. Mammalian selenium-containing proteins. Annual Review of Nutrition 2001; 21(1): 453-73. https://doi.org/10.1146/annurev.nutr.21.1.453

Marin-Guzman J, Mahan DC, Chung YK, Pate JL, Pope WF. Effects of dietary selenium and vitamin E on boar performance and tissue responses, semen quality, and subsequent fertilization rates in mature gilts. Journal of Animal Science 1997; 75(11): 2994-3003. https://doi.org/10.2527/1997.75112994x

Behne D, Kyriakopoulos A. Mammalian selenium-containing proteins. Annual Review of Nutrition 2001; 21(1): 453-73. https://doi.org/10.1146/annurev.nutr.21.1.453

Ibrahim HA, Zhu Y, Wu C, Lu C, Ezekwe MO, Liao SF, Haung K. Selenium-enriched probiotics improves murine male fertility compromised by high fat diet. Biological Trace Element Research 2012; 147(1-3): 251-60. https://doi.org/10.1007/s12011-011-9308-2

Chavatte-Palmer P, Dupont C, Debus N, Camous S. Nutritional programming and the reproductive function of the offspring. Animal Production Science 2014; 54(9): 1166-76. https://doi.org/10.1071/AN14470

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Journal of Basic & Applied Sciences