Protective Measures to Enhance Human Longevity and Aging: A Review of Strategies to Minimize Cellular Damage
PDF

Keywords

Caloric restriction, cellular damage, bone mass, Mediterranean diet, mitochondria, telomere length.

How to Cite

Umesh C. Gupta, & Subhas C. Gupta. (2019). Protective Measures to Enhance Human Longevity and Aging: A Review of Strategies to Minimize Cellular Damage. Journal of Basic & Applied Sciences, 15, 92–105. https://doi.org/10.29169/1927-5129.2019.15.12

Abstract

Aging is a universal process in all life forms. The most current and widely accepted definition of human aging is a progressive loss of function and energy production that is accompanied by decreased fertility and increased mortality with advancing age. The most obvious and commonly recognized consequence of aging and energy decline is a decrease in skeletal muscle function, which affects every aspect of human life from the ability to walk and run, to chew, and swallow and digest food. Some crucial factors responsible for aging and longevity include genetics, environment, and nutrition, serious disease disorders such as cancer and cardio-vascular diseases, sarcoma and cell senescence. Oxidative damage caused due to the accumulation of molecular waste-by-products of the body’s metabolic processes, which our bodies are unable to break down or excrete, is chiefly responsible for aging and diseases. Regular physical activity, consumption of foods rich in phytochemicals and anti-oxidants, cessation of smoking, avoiding foods high in saturated and hydrogenated fats are some of the strategies that should be taken into account to delay aging and prolong longevity.

https://doi.org/10.29169/1927-5129.2019.15.12
PDF

References

Aalaei-Andabili SH, Rezaei N. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process. Intern Rev Immunol 2016; 35(1): 57-66. https://doi.org/10.3109/08830185.2015.1077828

Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: Lessons from mice and reprogrammed cells. Dis Model Mech 2016; 9(7): 719-35. https://doi.org/10.1242/dmm.024711

Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. J Appl Physiol 2018; 124(5): 1194-1202. https://doi.org/10.1152/japplphysiol.00670.2017

Calment Jeanne. Wikipedia. Oldest people 2019. [cited: Aug 10, 2019

Hoffman JM, Creevy KE, Franks A, O'Neill DG, Promislow DEL, Hoffman JM. The companion dog as a model for human aging and mortality. Aging Cell 2018; 17(3): e12737. https://doi.org/10.1111/acel.12737

W?troba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res Rev 2017; 40: 11-9. https://doi.org/10.1016/j.arr.2017.08.001

Alsaqati M, Thomas RS, Kidd EJ. Proteins Involved in Endocytosis Are Upregulated by Ageing in the Normal Human Brain: Implications for the Development of Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2018; 73(3): 289-98. https://doi.org/10.1093/gerona/glx135

Szalay J. What are free radicals? Life Science. 2016 [cited: May 27, 2016

Williams M. Nano-antioxidants prove their potential. Current news. 2015. [cited: February 09, 2015

Hekmatimoghaddam S, Firoozabadi A, RezaZare-Khormizi M, Fatemeh Pourrajab F. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev 2017; 40: 120-41. https://doi.org/10.1016/j.arr.2017.10.001

Lai M, Zhang H-J, Wang F, et al. Antiaging effects of ginseng and ginsenosides on the nervous system. Int J Pharmacol 2018; 14: 1188-97. https://doi.org/10.3923/ijp.2018.1188.1197

Bartlett Z. The Heyflick Limit. The Embryo Project Encyclopedia 2014. [cited: July 04, 2018

Basaraba S. Understanding and preventing the ageing process. Healthy aging. Very well health. [cited: Sept 06, 2018

Witkowski JM, Mikosik A, Bryl E, Fulop T. Proteodynamics in aging human T cells – The need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 2018; 107: 161-8. https://doi.org/10.1016/j.exger.2017.10.009

Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermetaol 2006; 31(4): 548-52. https://doi.org/10.1111/j.1365-2230.2006.02161.x

Birch-Machin MA, Russell EV, Latimer JA. Mitochondrial DNA damage as a biomarker for ultra violet radiation exposure and oxidative stress. Br J Dermatol 2013; 169 Suppl (2): 9-14. https://doi.org/10.1111/bjd.12207

Kirkey S. Do you really want to live forever(ish)? National Post 2018. [cited: June 26, 2018

Vitetta L, Anton B. Lifestyle and nutrition, caloric restriction, mitochondrial health and hormones: scientific interventions for anti-aging. Clin interv aging 2007; 2(4): 537-43. https://doi.org/10.2147/CIA.S866

Young VR. Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing 1990; 19(4): S10-S24. https://doi.org/10.1093/ageing/19.suppl_1.S10

Wang L, Zhou F, Zhang P. Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis 2017; 8(5)e 2760. https://doi.org/10.1038/cddis.2017.36

Zhou S, Glowacki J. Dehydroepiandrosterone and Bone. In: G. Litwack G, Eds. Vitamins and Hormones. Academic Press Inc. 2018; 108: pp. 251-71. https://doi.org/10.1016/bs.vh.2018.01.005

Melough MM, Sun X, Chun OK. The Role of AOPP in Age-Related Bone Loss and the Potential Benefits of Berry Anthocyanins: Dietary Bio actives and Bone Health. Nutrients 2017; 9(7): 789. https://doi.org/10.3390/nu9070789

Mundy GR. Nutritional modulators of bone remodeling during aging. Am J Clin Nutr 2006; 83(2): 427S-30S. https://doi.org/10.1093/ajcn/83.2.427S

Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol 2018; 9: 2263. https://doi.org/10.3389/fimmu.2018.02263

Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455: 148-57. https://doi.org/10.1016/j.mce.2017.04.011

Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: An emerging research field. Aging Cell 2006; 5(2): 97-108. https://doi.org/10.1111/j.1474-9726.2006.00202.x

Lane MA, Roth GS, Ingram DK. Caloric restriction mimetics: A novel approach for biogerontology. Methods Mol Biol 2007; 371: 143-9. https://doi.org/10.1007/978-1-59745-361-5_11

Villareal DT, Fontana L, Das SK, et al. Effect of Two-Year Caloric Restriction on Bone Metabolism and Bone Mineral Density in Non-Obese Younger Adults: A Randomized Clinical Trial. J Bone Miner Res 2016; 31(1): 40-51. https://doi.org/10.1002/jbmr.2701

Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 2015 218: 59-70. https://doi.org/10.1242/jeb.107110

McCarty MF, DiNicolantonio JJ. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age 2015; 37: (5) 96. https://doi.org/10.1007/s11357-015-9823-8

Bradlee ML, Mustafa J, Singer MR, Moore LL. High-protein foods and physical activity protect against age-related muscle loss and functional decline. J Gerontol A Biol Sci Med Sci 2018; 73(1): 88-94. https://doi.org/10.1093/gerona/glx070

Hall JA, Yerramilli M, Obare E. Nutritional interventions that slow the age-associated decline in renal function in a canine geriatric model for elderly humans. J Nutr Health Aging 2016; 20(10): 1010-23. https://doi.org/10.1007/s12603-015-0636-3

Letois F, Mura T, Scali J, Gutierrez L, Féart C, Berr C. Nutrition and mortality in the elderly over 10 years of follow-up: The Three-City study. Br J Nutr 2016; 116(5): 882-9. https://doi.org/10.1017/S000711451600266X

Spindler SR. Caloric restriction: From soup to nuts. Ageing Res Rev 2010; 9(3): 324-53. https://doi.org/10.1016/j.arr.2009.10.003

Tomiyama AJ, Milush JM, Lin J, et al. Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study. Nutrition and Healthy Aging 2017; 4(2): 147-56. https://doi.org/10.3233/NHA-160017

Kennedy BK, Pennypacker JK. Drugs that modulate aging: The promising yet difficult path ahead. Transl Res 2014; 163(5): 456-65. https://doi.org/10.1016/j.trsl.2013.11.007

Zeng HJ, Liu Z, Wang YP, Yang D, Yang R, Qu LB. Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu.) and its regulation on klotho gene expression in mice kidney. Int J Biol Macromol 2018; 119: 470-6. https://doi.org/10.1016/j.ijbiomac.2018.07.157

Fimognari C, Lenzi M, Hrelia P. Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: Pharmacological and toxicological implications. Curr Drug Metabol 2008; 9(7): 668-78. https://doi.org/10.2174/138920008785821675

Zanichelli F, Capasso S, Di Bernardo G, et al. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage. Apoptosis 2012; 17(9): 964-74. https://doi.org/10.1007/s10495-012-0740-3

Gabriel D, Roedl D, Gordon LB, Djabali K. Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell 2015; 14(1): 78-91. https://doi.org/10.1111/acel.12300

Hariton F, Xue, M, Rabbani, N, Fowler, M, Thornalley, PJ. Sulforaphane Delays Fibroblast Senescence by Curbing Cellular Glucose Uptake, Increased Glycolysis, and Oxidative Damage. Oxid Med Cell Longev 2018: 5642148. https://doi.org/10.1155/2018/5642148

Jeffery EH, Araya M. Physiological effects of broccoli consumption. Phytochem Rev 2009; 8(1): 283-98. https://doi.org/10.1007/s11101-008-9106-4

Sikdar S, Papadopoulou M, Dubois J. What do we know about sulforaphane protection against photoaging? J Cosmet Dermatol 2016; 15(1): 72-7. https://doi.org/10.1111/jocd.12176

Park KY, Jeong JK, Lee YE, Daily JW. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 2014; 17(1): 6-20. https://doi.org/10.1089/jmf.2013.3083

Finch CE, Beltrán-Sánchez H, Crimmins EM. Uneven futures of human lifespans: Reckonings from gompertz mortality rates, climate change, and air pollution. Gerontol 2014; 60(2): 183-8. https://doi.org/10.1159/000357672

Mangino M. Genomics of ageing in twins. Proc Nutr Soc 2014; 73(4): 526-31. https://doi.org/10.1017/S0029665114000640

Willix Jr. RD, Nechas E, Foley D. Cure almost every disease. Special supplements to health and longevity. 1995, Dr Willix’s Health and longevity LLC, Baltimore, MD 1995; pp. 1-15.

Ighodaro OM, Kinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 2018; 54(4): 287-93. https://doi.org/10.1016/j.ajme.2017.09.001

Cesari F, Sofi F, Molino Lova R, et al. Aging process, adherence to Mediterranean diet and nutritional status in a large cohort of nonagenarians: Effects on endothelial progenitor cells. Nutr Metab Cardiovasc Dis 2018; 28(1): 84-90. https://doi.org/10.1016/j.numecd.2017.09.003

Martucci M, Ostan R, Biondi F, et al. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 2017; 75(6): 442-55. https://doi.org/10.1093/nutrit/nux013

Merino J, Kones R, Ros E. Effects of Mediterranean Diet on Endothelial Function. In: Da Luz PL, Libby P, Chagas ACP, Laurindo FRM, Eds. Endothelium and Cardiovascular Diseases: Vascular Biology and Clinical Syndromes. Elsevier: 2018; pp. 363-89. https://doi.org/10.1016/B978-0-12-812348-5.00025-8

Prinelli F, Yannakoulia M, Anastasiou CA, et al. Mediterranean diet and other lifestyle factors in relation to 20-year all-cause mortality: A cohort study in an Italian population. Br J Nutr 2015; 113(6): 1003-11. https://doi.org/10.1017/S0007114515000318

Wengreen H, Munger RG, Cutler A, et al. Prospective study of Dietary Approaches to Stop Hypertension-and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. Am J Clin Nutr 2013; 98(5): 1263-71. https://doi.org/10.3945/ajcn.112.051276

Waijers PMCM, Ocké MC, Van Rossum, CTM, et al. Dietary patterns and survival in older Dutch women. Am J Clin Nutr 2006; 83(5): 1170-6. https://doi.org/10.1093/ajcn/83.5.1170

Szakiel A, P?czkowski C, Pensec F, Bertsch C, et al. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev 2012; 11(2-3): 263-84. https://doi.org/10.1007/s11101-012-9241-9

Cheng Z, Hu H, Yang L, Wang C, Guo W, Yang L, et al. Overexpression of EutPDS gene from elaeagnus umbellata increases lycopene content in tomato fruit. Linye Kexue/Scientia Silvae Sinicae 2017; 53(1): 62-9.

De Lira Júnior JS, Bezerra JEF, Lederman IE, Correia LCSA, Maciel MIS. Antioxidant compounds in fruits of averrhoa carambola accessions under different environments in the state of pernambuco, Brazil. Rev Bras de Frutic 2014; 36(4): 813-9. https://doi.org/10.1590/0100-2945-306/13

Mudryj AN, Yu N, Aukema HM. Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 2014; 39(11): 1197-1204. https://doi.org/10.1139/apnm-2013-0557

Rondini EA, Barrett KG, Bennink MR. 2012. Nutrition and Human Health Benefits of Dry Beans and Pulses. In: Siddiq M, Uebersax MA, Eds. Dry Beans and Pulses Production, Processing and Nutrition, Blackwell Publishing Ltd. 2012; pp 335-57. https://doi.org/10.1002/9781118448298.ch14

Farooqui T, Farooqui AA. Summary and Perspective. In: Farooqui T, Farooqui AA, Eds. Neuroprotective Effects of Phytochemicals in Neurological Disorders: John Wiley and Sons Inc. 2017; pp 581-94. https://doi.org/10.1002/9781119155195.ch29

Kawai Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo: Toward new strategies for effective utilization of natural polyphenols in human health. J Med Invest 2018; 65(3-4): 162-5. https://doi.org/10.2152/jmi.65.162

Qiu D, Guo J, Yu H, et al. Antioxidant phenolic compounds isolated from wild Pyrus ussuriensis Maxim. fruit peels and leaves. Food Chem 2018; 241: 182-7. https://doi.org/10.1016/j.foodchem.2017.08.072

Park SK, Seong RK, Kim JA, et al. Oligonol promotes anti-aging pathways via modulation of SIRT1-AMPK-autophagy pathway. Nutr Res Pract 2016; 10(1): 3-10. https://doi.org/10.4162/nrp.2016.10.1.3

Ryeom GGM, Bang WJ, Kim YB, Lee GE. Gallotannin improves the photoaged-related proteins by extracellular signal-regulated Kinases/c-Jun N-Terminal kinases signaling pathway in human epidermal keratinocyte cells. J Med Food 2018; 21(8): 785-92. https://doi.org/10.1089/jmf.2017.4096

Wunjuntuk K, Kettawan A, Charoenkiatkul S, Rungruang T. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats. J Med Food 2016; 19(1): 15-23. https://doi.org/10.1089/jmf.2015.3460

Ding Q, Yang D, Zhang W. Antioxidant and anti-aging activities of the polysaccharide TLH-3 from Tricholoma lobayense. Intern J Biol Macromol 2016; 85: 133-40. https://doi.org/10.1016/j.ijbiomac.2015.12.058

Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jäger S, Aguilaniu H. A salicylic acid derivative extends the lifespan of Caenorhabditis elegans by activating autophagy and the mitochondrial unfolded protein response. Aging Cell 2018; 17(6): e12830. https://doi.org/10.1111/acel.12830

Daskalopoulou C, Koukounari A, Ayuso-Mateos JL, Prince M, Prina AM. Associations of Lifestyle Behaviour and Healthy Ageing in Five Latin American and the Caribbean Countries-A 10/66 Population-Based Cohort Study. Nutrients 2018; 10(11): 1593. https://doi.org/10.3390/nu10111593

Sowa A, Tobiasz-Adamczyk B, Topór-M?dry R, Poscia A, Ignazio D, la Milia DI. Predictors of healthy ageing: Public health policy targets. BMC Health Services Res BMC series 2016; 16 (Suppl 5): 289. https://doi.org/10.1186/s12913-016-1520-5

van Doorn-van Atten MN, de Groot LCPGM, de Vries JHM, Haveman-Nies A. Determinants of behaviour change in a multi-component telemonitoring intervention for community-dwelling older adults. Nutrients 2018; 10(8). https://doi.org/10.3390/nu10081062

Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr 2011; 94(1): 240-6. https://doi.org/10.3945/ajcn.110.009340

Grigaravicius P, Monajembashi S, Hoffmann M, Altenberg B, Greulich KO. Laser microbeams for DNA damage induction, optical tweezers for the search on blood pressure relaxing drugs: Contributions to ageing research. 2009; SPIE NanoScience + Engineering; SPIE(7400). https://doi.org/10.1117/12.825616

Bar-Am O, Amit T, Youdim MB, Weinreb O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. J Neural Transm (Vienna) 2016; 123(2): 125-35. https://doi.org/10.1007/s00702-015-1395-3

Carter RJ, Parsons JL. Base excision repair, a pathway regulated by posttranslational modifications. Mol Cell Biol 2016; 36(10): 1426-37. https://doi.org/10.1128/MCB.00030-16

Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes 2017; 8(12): 398. https://doi.org/10.3390/genes8120398

Kaczanowski S. Apoptosis: Its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13(3): 031001. https://doi.org/10.1088/1478-3975/13/3/031001

Kirkwood TBL. Why and how are we living longer? Exp Physiol 2017; 102(9): 1067-74. https://doi.org/10.1113/EP086205

Gefen T, Papastefan ST, Rezvanian A, et al. Von Economo neurons of the anterior cingulate across the lifespan and in Alzheimer's disease. Cortex 2018; 99: 69-77. https://doi.org/10.1016/j.cortex.2017.10.015

Shimokata H. Physiological requirements for longevity. Nippon Ronen Igakkai zasshi. Jpn J Geriatr 2001; 38(2): 174-6. https://doi.org/10.3143/geriatrics.38.174

Salem AF, Al-Zoubi MS, Whitaker-Menezes D, et al. Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. Cell Cycle 2013; 12(5): 818-25. https://doi.org/10.4161/cc.23722

Rosenberg IH. Nutrition and the biology of human ageing: Proceedings of the ninth nestle international nutrition symposium. J Nutr Health Aging 2013; 17(8): 706. https://doi.org/10.1007/s12603-013-0371-6

Dönerta? HM, Fuentealba Valenzuela M, Partridge L, Thornton JM. Gene expression-based drug repurposing to target aging. Aging Cell 2018; 17(5):e 12819. https://doi.org/10.1111/acel.12819

Le Bourg É. The Search for the "Anti-Aging Pill": A Critical Viewpoint. Anti-aging Drugs: In: Thurston DT, Vaiserman AM, Eds. From Basic Research to Clinical Practice. RSC Drug Discovery Series 2017 (5). Royal Society of Chemistry, 2017; pp 35-50. https://doi.org/10.1039/9781782626602-00035

Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb Perspect Med 2015; 5(11). https://doi.org/10.1101/cshperspect.a025114

Kang H, Shibata D. Direct measurements Kang of human colon crypt stem cell niche genetic fidelity: The role of chance in non-Darwinian mutation selection. Front Oncol 2013; 3:264. https://doi.org/10.3389/fonc.2013.00264

Lee D, Son HG, Jung Y, Lee S-JV. The role of dietary carbohydrates in organismal aging. Cell Mol Life Sci 2017; 74(10): 1793-1803. https://doi.org/10.1007/s00018-016-2432-6

Huang Y, Rosenberg M, Hou L, Hu M. Relationships among environment, climate, and longevity in China. Huang Intern J Environ Res Public Health 2017; 14(10). https://doi.org/10.3390/ijerph14101195

Nobbs HM, Yaxley A, Thomas J, et al. Do dietary patterns in older age influence the development of cancer and cardiovascular disease: A longitudinal study of ageing. Clin Nutr 2016; 35(2): 528-35. https://doi.org/10.1016/j.clnu.2015.04.003

Hoffman JM, Lyu Y, Pletcher SD, Promislow, DEL. Proteomics and metabolomics in ageing research: From biomarkers to systems biology. Essays Biochem 2017; 61(3): 379-88. https://doi.org/10.1042/EBC20160083

Bartke A, Darcy J. GH and ageing: Pitfalls and new insights. Best Pract Res: Clin Endocrinol Metab 2017; 31(1): 113-25. https://doi.org/10.1016/j.beem.2017.02.005

Klentze M. The Effect of Growth Hormone on the Human Aging Process. Part 1. J Gynakol Endokrinol 2018; 28(3): 84-91. https://doi.org/10.1007/s41974-018-0058-4

Makpol S, Zainuddin A, Hui Chua K, Anum Mohd Yusof Y, Zurinah Wan Ngah W. Gamma-tocotrienol modulated gene expression in senescent human diploid fibroblasts as revealed by microarray analysis. Oxid Med Cell Longev 2013; 2013: 454328. https://doi.org/10.1155/2013/454328

Zhou H, Wang C, Ye J, Chen H, Tao R, Cao F. Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innov Food Sci Emerg Technol 2016; 34: 187-95. https://doi.org/10.1016/j.ifset.2016.02.001

Clement I. Lessons from basic research in selenium and cancer prevention. J Nutr 1998; 128(11): 1845-54. https://doi.org/10.1093/jn/128.11.1845

Favrot C, Beal D, Blouin E, Leccia MT, Roussel EM, Rachidi W. Age-Dependent Protective Effect of Selenium against UVA Irradiation in Primary Human Keratinocytes and the Associated DNA Repair Signature. Oxid Med Cell Longev Volume 2018, [cited: Feb 22, 2018

Ford DW, Jensen GL, Hartman TJ, Wray L, Smiciklas-Wright H. Association between Dietary Quality and Mortality in Older Adults: A Review of the Epidemiological Evidence. J Nutr Gerontol Geriatr 2013; 32(2): 85-105. https://doi.org/10.1080/21551197.2013.779622

Houchins JA, Cifelli CJ, Demmer E, Fulgoni VL III. Diet modeling in older Americans: The impact of increasing plant-based foods or dairy products on protein intake. J Nutr Health Aging 2017; 21(6): 673-80. https://doi.org/10.1007/s12603-016-0819-6

Kiefte-De Jong JC, Mathers JC, Franco OH. Nutrition and healthy ageing: The key ingredients. Proc Nutr Soc 2014; 73(2): 249-59. https://doi.org/10.1017/S0029665113003881

Lee JY, Lee S. Dietary Patterns Related to Appendicular Skeletal Muscle Mass: The Korea National Health and Nutrition Examination Survey 2008 - 2011. J Am Coll Nutr 2019; 8(4): 358-63. https://doi.org/10.1080/07315724.2018.1523759

Milner C. Coping with the Oxygen Paradox. Understanding disease formation and why vegetables trump supplements. Better Life 2019. [cited: June 12, 2019

Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 2017; 18(10): 595-609. https://doi.org/10.1038/nrm.2017.68

Luu J, Palczewski K. Human aging and disease: Lessons from age-related macular degeneration. Proc Natl Acad Sci USA 2018; 115(12): 2866-72. https://doi.org/10.1073/pnas.1721033115

Murtaza G, Khan AK, Rashid R, Muneer S, Muhammad Farid Hasan S, Chen J. FOXO Transcriptional Factors and Long-Term Living. Oxid Med Cell Longev 2017, 8 pages. https://doi.org/10.1155/2017/3494289

Martins R, Lithgow GJ, Link W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016; 15(2): 196-207. https://doi.org/10.1111/acel.12427

Navarro S, Driscoll B. Regeneration of the Aging Lung: A Mini-Review. Gerontol 2017; 63(3): 270-80. https://doi.org/10.1159/000451081

Ren J, Zhang Y. 2018. Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends Pharmacol Sci 2018; 39(12): 1064-76. https://doi.org/10.1016/j.tips.2018.10.005

Friedman PK, Lamster IB. Tooth loss as a predictor of shortened longevity: exploring the hypothesis. Periodontol 2016; 72(1): 142-52. https://doi.org/10.1111/prd.12128

Natapov L, Kushnir D, Goldsmith R, Dichtiar R, Zusman SP. Dental status, visits, and functional ability and dietary intake of elderly in Israel. Isr J Health Policy Res 2018; 7: 58. https://doi.org/10.1186/s13584-018-0252-x

Bolukbasi E, Khericha M, Regan JC, et al. Intestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity. Cell Reports 2017; 21(3): 641-53. https://doi.org/10.1016/j.celrep.2017.09.042

Moreno-Villanueva M, Bürkle A. Epigenetic and redox biomarkers: Novel insights from the MARK-AGE study. Mechanisms of Ageing and Development. Mech Ageing Dev 2019; 177:128-34. https://doi.org/10.1016/j.mad.2018.06.006

Perek B, Casadei V, Pu?lecki M, et al. Clinical presentation, surgical management, and outcomes of patients treated for aortic stenosis and coronary artery disease. Does age matter? Kardiologia Polska 2018; 76(3): 655-61. https://doi.org/10.5603/KP.2018.0005

Nguyen H, Zarriello S, Coats A, et al. Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Disease 2019; 126:85-104. https://doi.org/10.1016/j.nbd.2018.09.011

Totey S. Blood to blood: A new therapeutic opportunity for age-related diseases. Regenerative Medicine: In: Mukhopadhyay A, Ed. Laboratory to Clinic. Springer Singapore: 2017; pp. 449-70. https://doi.org/10.1007/978-981-10-3701-6_26

Barreto FM, Colado Simão AN, Morimoto HK, Batisti Lozovoy MA, Dichi I, Helena da Silva Miglioranza L. Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition 2014; 30(7-8): 939-42. https://doi.org/10.1016/j.nut.2013.12.004

Maximov VN, Malyutina SK, Orlov PS, et al. Leukocyte telomere length as an aging marker and risk factor for human age-related diseases. Adv Gerontol 2017; 7(2): 101-6. https://doi.org/10.1134/S2079057017020102

Babizhayev MA, Kasus-Jacobi A, Vishnyakova KS, Yegorov YE. Novel neuroendocrine and metabolic mechanism provides the patented platform for important rejuvenation therapies: Targeted therapy of telomere attrition and lifestyle changes of telomerase activity with the timing of neuron-specific imidazole-containing dipeptide-dominant pharmaconutrition provision. Recent Pat Endocr Metab Immune Drug Discov 2014; 8(3): 153-79. https://doi.org/10.2174/1872214808666140608145810

Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev 2019; 49: 1-10. https://doi.org/10.1016/j.arr.2018.11.001

Silva LCR, de Araújo AL, Fernandes JR, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age 2016; 38(1): 24. https://doi.org/10.1007/s11357-016-9879-0

Bunprajun T, Henriksen TI, Scheele C, Pedersen BK, Green CJ. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression. PLOS ONE 2013; 8(6). https://doi.org/10.1371/journal.pone.0066628

Silva C, Annamalai K. Entropy generation and human aging: Lifespan entropy and effect of physical activity level. Entropy 2008; 10(2): 100-23. https://doi.org/10.3390/entropy-e10020100

Kane AE, Howlett SE. Differences in cardiovascular aging in men and women. Advances in Experimental Medicine and Biology, Springer New York LLC. 2018; 1065: 389-411. https://doi.org/10.1007/978-3-319-77932-4_25

Kelly NA, Hammond KG, Bickel CS, Windham ST, Tuggle SC, Bamman MM. Effects of aging and Parkinson's disease on motor unit remodeling: Influence of resistance exercise training. J Appl Physiol 2018; 124(4): 888-98. https://doi.org/10.1152/japplphysiol.00563.2017

Ji N, Zhao W, Qian H, et al. Aerobic exercise promotes the expression of ERCC1 to prolong lifespan: A new possible mechanism. Med Hypotheses 2019; 122: 22-5. https://doi.org/10.1016/j.mehy.2018.10.012

Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A rare misfortune in aging human cartilage? The role of stem and progenitor cells in proliferation, malignant degeneration and therapeutic resistance. Int J Mol Sci 2018; 21; 19(1). https://doi.org/10.3390/ijms19010311

Wu RTY, Cheng WH. Selenium and Senescence: Centering on Genome Maintenance. In: Watson RR, ed. Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. Elsevier Inc. 2015; pp. 211-29. https://doi.org/10.1016/C2013-0-00305-2

Wang JY, Chen W-M, Wen C-S, Hung S-C, Chen P-W, Chiu J-H. Du-Huo-Ji-Sheng-Tange and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. J Ethnopharmacol 2017; 198: 64-72. https://doi.org/10.1016/j.jep.2016.12.011

Rossman MJ, Kaplon RE, Hill SD. Endothelial cell senescence with aging in healthy humans: Prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol - Heart Circ Physiol 2017; 313(5): H890-H5. https://doi.org/10.1152/ajpheart.00416.2017

Weintraub K. Aging is reversible – at least in human cells and live mice. Scientific American 2016. [cited: Dec 15, 2016

Xia L, Jinyan H, Taotao C, Ying W, Shunmei X, Jian L, et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res 18, pages1177–1189 (2008) [cited: Nov 25, 2008

Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: The ultimate preventative medicine. Science 2015; 350 (6265): 1191-1193. https://doi.org/10.1126/science.aad3267

Graham J. A doctor speaks about ageism in medicine. Kaiser Health News. 2019 [cited: May 30, 2019

Buettner D. A 'blue zones' diet: Live longer from what you eat. Live Longer CNN Health 2019.[cited: Dec 03, 2019

Jafari MR, Angali KA, Mohamadian H. Explaining Continuance Intention of Fruit and Vegetable Consumption among the Rural Elderly: 2017. An Application of the Expectancy Confirmation Model. Sci World J Vol 2017, 9 pp. https://doi.org/10.1155/2017/1808475

Bustos V, Partridge L. Good Ol’ Fat: Links between Lipid Signaling and Longevity. Trends Biochem Sci 2017; 42(10): 812-23. https://doi.org/10.1016/j.tibs.2017.07.001

Wang ZH, Li H-Y, Qu J, Zhang W-Q, Liu, G-H. Premature aging disorders: Mechanisms and potential therapeutic interventions. Prog Biochem Biophys 2018; 45(9): 926-34.

Munoz K. How to Lengthen Your Telomeres & Unlock the Key to Longevity 2015. Dr. Axe > Health > Anti-Aging [cited: November 13, 2015

Petre A. 13 habits linked to a long life (Backed by Science). Health line 2019 [cited: April 08, 2019

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Umesh C. Gupta , Subhas C. Gupta