Ascendancy of Solar Variability on Terrestrial Climate: A Review
PDF

Keywords

Solar activity, Total solar irradiance, Solar energetic particles, Terrestrial atmosphere, Climate change.

How to Cite

A.K. Singh, & Asheesh Bhargawa. (2020). Ascendancy of Solar Variability on Terrestrial Climate: A Review . Journal of Basic & Applied Sciences, 16, 105–130. https://doi.org/10.29169/1927-5129.2020.16.14 

Abstract

In the present paper, we have briefly reviewed the impact of solar activities on the terrestrial climate. Increased/decreased solar activity affects the various processes going on into the Sun-Earth system and alters the composition of parameters responsible for the climate change. The amount of high solar activity (sunspots) is directly related with the total solar irradiance (TSI) while the spectral index is associated with the ultraviolet (UV) radiations coming from the Sun. Contrary to the above, decreased solar activity is accountable for increased incidence of the galactic cosmic rays (GCR) which play significant role in cloud formation and ultimately responsible for the changed climate conditions of terrestrial environment. The influence of solar variability on the Earth's climate can be explained by exploring various mechanisms involved. There are no fool proof evidences that the solar variations are a major factor in driving recent global climate change but there are considerable evidences of solar influence on the climate of particular regions as well as throughout the terrestrial environment. During high solar activity, higher temperatures and larger ozone concentrations are observed in the tropical stratosphere. The solar influences on the Earth’s climate mainly includes; the changed occurred due to variations in the Sun's radiant output (TSI and UV) and the changes occurred due to the Sun's influence on the energetic particles reaching to the Earth (Solar Energetic Particles, Galactic Cosmic Rays).Following the above regime, we have provided the evidences for the existence of physical links between solar activity and terrestrial climate. Summary of our present understanding of the mechanisms involved in the Sun-climate dynamics are presented

https://doi.org/10.29169/1927-5129.2020.16.14 
PDF

References

Schwenn, R., 1990. Large-Scale Structure of the Interplanetary Medium, in Physics of the Inne Heliosphere, Vol. I: Large-Scale Phenomena, (Eds.) Schwenn, R., Marsch, E., vol. 20 of Physics and Chemistry in Space, pp. 99–181, Springer, Berlin, Germany; New York, U.S.A.

https://doi.org/10.1007/978-3-642-75361-9_3

Friis-Christensen, E., Lassen, K., 1991. Length of the solar cycle: an indicator of solar activity closely associated with climate. Science, 254, 698-700

https://doi.org/10.1126/science.254.5032.698

Pap J.M., Fox, P., Fröhlich, C., 2004. Solar activity and its effects on climate. Geophysical Monograph 141, AGU, Washington DC, USA, p. 97.

https://doi.org/10.1029/GM141

Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M., 2007. Solar Variability and Planetary Climates. Springer Science, Netherlands.

https://doi.org/10.1007/978-0-387-48341-2

Haigh, J.D., 2007. The Sun and the Earth’s Climate. Living Rev. Sol. Phys. 4, 02.

https://doi.org/10.12942/lrsp-2007-2

Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., et al., 2010. Solar Influences on Climate. Rev. Geophys. 48, 4001.

https://doi.org/10.1029/2009RG000282

Lockwood, M., 2012. Solar Influence on Global and Regional Climates. Surv Geophys 33, 503–534.

https://doi.org/10.1007/s10712-012-9181-3

Pesnell, W.D., Thompson, B.J., Chamberlin, P.C., 2012. The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3–15.

https://doi.org/10.1007/978-1-4614-3673-7_2

Bhargawa, A., Singh, A.K., 2019. Solar irradiance, climatic indicators and climate change – An empirical analysis. Advan. Space Res. 64, 271-277.

https://doi.org/10.1016/j.asr.2019.03.018

Herschel, W., 1801. Observations Tending to Investigate the Nature of the Sun, in Order to Find the Causes or Symptoms of Its Variable Emission of Light and Heat; With Remarks on the Use That May Possibly Be Drawn from Solar Observations. Philosophical Transactions of the Royal Society of London, 91, 265-318.

https://doi.org/10.1098/rstl.1801.0015

Herman, J.R., Goldberg, R.A., 1978. Sun, Weather and Climate. Scientific and Technical Information Branch, NASA. Washington, D.C. 426.

Hoyt, D.V., Schatten, K.H., 1998. Group Sunspot Numbers: A New Solar Activity Reconstruction. Sol. Phys. 181, 491-512.

https://doi.org/10.1023/A:1005056326158

Waple, A.M., Mann, M.E., Bradley R.S., 2002. Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Climate Dynamics 18, 563.

https://doi.org/10.1007/s00382-001-0199-3

Fröhlich, C., 2006. Solar Irradiance Variability since 1978. Space Science Reviews 90, 1-13.

https://doi.org/10.1007/s11214-006-9046-5

Haigh, J.D., 1999. Modeling the impact of solar variability on climate. J. Atmos. Solar-Terr. Phys. 61, 63.

https://doi.org/10.1016/S1364-6826(98)00117-5

Hood, L.L., 2004. Effects of solar UV variability on the stratosphere. In: Pap, J. and Fox, P. (Eds.) Solar variability and its effects on climate. Geophysical monograph 141, AGU, Washington DC, USA, 2004, p. 283.

https://doi.org/10.1029/141GM20

Veretenenko, S.V, Pudovkin M.I., 1999. Variations of solar radiation input to the lower atmosphere associated with different helio/geophysical factors. J. Atm. Solar-Terr. Phys. 61, 521.

https://doi.org/10.1016/S1364-6826(99)00014-0

Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S., Chapman, G.A., 1981. Observations of Solar Irradiance Variability. Science 211, 700-702.

https://doi.org/10.1126/science.211.4483.700

Wald, L., 2018. Basics in solar radiation at Earth surface. ffhal-01676634f

Rind, D., Lonergan, P., Balachandran, N.K., Shindell, D., 2002. 2 × CO2 and solar variability influences on the troposphere through wave‐mean flow interactions, J. Meteorol. Soc. Jpn. 80, 863–876.

https://doi.org/10.2151/jmsj.80.863

Fröhlich, C., Lean J., 2004. Solar radiative output and its variability: evidence and mechanisms. The Astron. Astrophys. Rev. 12, 273-320

https://doi.org/10.1007/s00159-004-0024-1

Fröhlich, C., 2009. Evidence of a long-term trend in total solar irradiance. Astron. Astophy. 501, L27 - L30.

https://doi.org/10.1051/0004-6361/200912318

Lean J, 2000. Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett. 27, 2425-2428.

https://doi.org/10.1029/2000GL000043

Haberreiter, M., Krivova, N.A., Schmutz, W., Wenzler, T., 2005. Reconstruction of the solar UV irradiance back to 1974. Advances in Space Research 35, 365-369.

https://doi.org/10.1016/j.asr.2005.04.039

Wang, Y.M., Lean, J.L., Sheeley Jr., N.R., 2005. Modeling the Sun’s Magnetic Field and Irradiance since 1713. Astrophy. J. 625, 522–538.

https://doi.org/10.1086/429689

Fröhlich, C., 2013. Solar Constant and Total Solar Irradiance Variations. In: Richter C., Lincot D., Gueymard C.A. (eds) Solar Energy. Springer, New York, NY.

https://doi.org/10.1007/978-1-4614-5806-7_443

Singh, A.K., Bhargawa, A., 2019. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys. Space Sci. 364, 12.

https://doi.org/10.1007/s10509-019-3500-9

Unruh, Y.C., Solanki, S.K., Fligge, M., 1999. The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophy. 345, 635–642.

Ortiz, A., Solanki, S.K., Domingo, V., Fligge, M., Sanahuja, B., 2002. On the intensity contrast of solar photospheric faculae and network elements. Astron. Astrophy. 388, 1036–1047.

https://doi.org/10.1051/0004-6361:20020500

Singh, A.K., Singh, R.P., Siingh, D., 2014. Solar Variability, Galactic Cosmic Rays and Climate: a review. Earth Science India 07,15-36.

https://doi.org/10.31870/ESI.07.1.2014.2

Ridder, H.G., 2017. The theory contribution of case study research designs. Business Res., 10, 281–305.

https://doi.org/10.1007/s40685-017-0045-z

Crawford, J., Shetter, R.E., Lefer, B., Cantrell, C., Junkermann, W., Madronich, S., Calvert, J., 2003. Cloud impacts on UV spectral actinic flux observed during the International Photolysis Frequency Measurement and Model Intercomparison (IPMMI). J. Geophys. Res. Atmos. 108, D002731.

https://doi.org/10.1029/2002JD002731

Lean, J.L., Rottman, GJ, Kyle, H.L., Woods, T.N., Hickey, J.L., Puga, L.C., 1997. Detection and parameterization of variations in solar mid and near ultraviolet radiation (200 to 400 nm). Journal of Geophysical Research 102, 29939-29956.

https://doi.org/10.1029/97JD02092

Loukitcheva, M.A., Solanki, S.K., White, S.M., 2009. in Strassmeier K. G., Kosovichev S. G., Beckman J. E., eds, Proc. IAU Symp. 259, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. Kluwer, Dordrecht, p. 185

Lee, C.O., Luhmann, J.G., Hoeksema, J.T. et al., 2011. Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered. Sol Phys 269, 367–388

https://doi.org/10.1007/s11207-010-9699-9

Floyd L., Rottman, G., Deland, M., Pap, J., 2003. 11 years of solar UV irradiance measurements from UARS, in ESA SP-535: Solar Variability as an Input to the Earth’s Environment, (Ed.) A. Wilson, pp. 195–203

van Loon, H., Meehl, G.A., Shea, D.J., 2007, Coupled air–sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108

https://doi.org/10.1029/2006JD007378

Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., van Loon, H., 2009. Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing. Science 325, 1114.

https://doi.org/10.1126/science.1172872

Harder, J.W., Beland, S., Snow, M., 2019. SORCE‐based Solar Spectral Irradiance (SSI) record for input into chemistry climate studies. Earth and space sciences. 06, 2487-2507.

https://doi.org/10.1029/2019EA000737

Jackman, C.H., McPeters, R.D., Labow, G.J., Fleming, E.L., Praderas, C.J., Russell, J.M., 2001. Northern Hemisphere atmospheric effects due to the July 2000 solar proton event. Geophysical Research Letters 28, 2883-2886.

https://doi.org/10.1029/2001GL013221

Jackman, C.H., et al., 2008. Short‐ and medium‐term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8, 765-785.

https://doi.org/10.5194/acp-8-765-2008

Potgieter, M.S., Burger, R.A., Ferreira, S.E.S., 2001. Modulation of Cosmic Rays in the Heliosphere from Solar Minimum to Maximum: A Theoretical Perspective. In: Marsden R.G. (eds) The 3-D Heliosphere at Solar Maximum. Springer, Dordrecht.

https://doi.org/10.1007/978-94-017-3230-7_49

Usoskin, I.G., Schüssler, M., Solanki, S.K., Mursula, K., 2005. Solar activity, cosmic rays, and Earth’s temperature: A millennium-scale comparison. Journal of Geophysical Research (Space Physics) 110, A10102.

https://doi.org/10.1029/2004JA010946

Rycroft, M.J., Harrison, R.G., Nicoll, K.A., Mareev, E.A., 2008. An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity. In: Leblanc F., Aplin K.L., Yair Y., Harrison R.G., Lebreton J.P., Blanc M. (eds) Planetary Atmospheric Electricity. Space Sciences Series of ISSI, vol 30. Springer, New York, NY.

https://doi.org/10.1007/978-0-387-87664-1_6

Svensmark, H., Friis‐Christensen, E., 1997. Variation of cosmic ray flux and global could coverage – a missing link in solar‐climate relationships. Journal of Atmospheric and Solar‐Terrestrial Physics 59, 1225– 1232.

https://doi.org/10.1016/S1364-6826(97)00001-1

Labitzke, K., 1987. Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophysical Research Letters, 14, 535-537.

https://doi.org/10.1029/GL014i005p00535

Labitzke, K., van Loon, H., 1988. Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter. Journal of Atmospheric and Terrestrial Physics 50, 197-206.

https://doi.org/10.1016/0021-9169(88)90068-2

Baldwin, M.P., Gray, L.J., Dunkerton, T.J., et al., 2001. The quasi‐biennial oscillation. Rev. of Geophy. 39, 179-229.

https://doi.org/10.1029/1999RG000073

Eddy, J.A., 1976. The Maunder Minimum. Science, 192, 1189-1202.

https://doi.org/10.1126/science.192.4245.1189

Wang, Y.M., Sheeley Jr., N.R., 1995. Solar Implications of ULYSSES Interplanetary Field Measurements. Astrophy. J. 447, L143–L146.

https://doi.org/10.1086/309578

Ermolli, I., Berrilli, F., Florio, A., 2003. A measure of the network radiative properties over the solar activity cycle, A&A, 412, 857-864.

https://doi.org/10.1051/0004-6361:20031479

Usoskin, I.G., Korte, M., Kovaltsov, G.A., 2008. Role of centennial geomagnetic changes in local atmospheric ionization. Geophys Res Lett 35, L05811

https://doi.org/10.1029/2007GL033040

Stuiver, M., 1961. Variations in radiocarbon concentration and sunspot activity. J Geophys Res 66, 273–276.

https://doi.org/10.1029/JZ066i001p00273

Peristykh, A.N., Damon, P.E. 2003. Persistence of the Gleissberg 88-year solar cycle over the last ∼12,000 years: evidence from cosmogenic isotopes. J Geophys Res 108, 1003.

https://doi.org/10.1029/2002JA009390

Steinhilber, F., Abreu, J.A., Beer, J., McCracken, K.G., 2010. Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J Geophys Res 115, A01104.

https://doi.org/10.1029/2009JA014193

Weimer D.R., King J.H., 2008. Improved calculations of interplanetary magnetic field phase front angles and propagation time delays. Journal of Geophysical Research 113, A01105.

https://doi.org/10.1029/2007JA012452

Wik, M., Pirjola, R., Lundstedt, H., Viljanen, A., Wintoft, P., Pulkkinen, A., 2009. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 27, 1775–1787.

https://doi.org/10.5194/angeo-27-1775-2009

Singh, A.K., Siingh, D., Singh, R.P., 2010. Space Weather: Physics, Effects and Predictability. Surv. Geophys. 31, 581-638.

https://doi.org/10.1007/s10712-010-9103-1

Hu, H., Liu, Y.D., Wang, R., Möstl, C., Yang, Z., 2016. Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness. Astrophys. J. 829, 97-106.

https://doi.org/10.3847/0004-637X/829/2/97

Usoskin, I.G., 2017. A history of solar activity over millennia. Living Rev Sol Phys 14, 03.

https://doi.org/10.1007/s41116-017-0006-9

Parker, E.N., 1958. Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128, 664–676.

https://doi.org/10.1086/146579

Neugebauer, M., Goldstein, R., 1997. Particle and field signatures of coronal mass ejections in the solar wind, in Washington DC. American Geophysical Union Geophysical Monograph Series 99, 245–251.

https://doi.org/10.1029/GM099p0245

Marsch, E., 2006. Solar wind responses to the solar activity cycle. Adv. Space Res. 38, 921-930.

https://doi.org/10.1016/j.asr.2005.07.029

Milan, S.E., Clausen, L.B.N., Coxon, J.C., Carter, J.A., Walach, M.T., et al., 2017. Overview of solar wind-magnetosphere-ionosphere atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 206, 547–573.

https://doi.org/10.1007/s11214-017-0333-0

McComas, D.J., Ebert, R.W., Elliot, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug J., 2008. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35.

https://doi.org/10.1029/2008GL034896

Cowley, S.W.H., 1991. The structure and length of tail-associated phenomena in the solar wind downstream from the Earth. Planetary and Space Science 39, 1039-1043

https://doi.org/10.1016/0032-0633(91)90110-V

Thayer, J.P., Semeter, J., 2004. The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Solar Terr. Phys. 66, 807.

https://doi.org/10.1016/j.jastp.2004.01.035

Fuller-Rowell, T., Codrescu, M., Maruyama, N., et al., 2007. Observed and modeled thermosphere and ionosphere response to superstorms. Radio science 42, RS4S90.

https://doi.org/10.1029/2005RS003392

Siingh, D, Singh, R.P., Singh, A.K., Kulkarni, M.N., Gautam, A.S., Singh, A.K., 2011. Solar Activity, Lightning and Climate. Surveys in Geophysics 32, 659-703.

https://doi.org/10.1007/s10712-011-9127-1

Veretenenko, S., Ogurtsov, M., 2020. Manifestation and Possible Reasons of ~60-Year Climatic Cycle in Correlation Links Between Solar Activity and Lower Atmosphere Circulation. In: Yanovskaya T., Kosterov A., Bobrov N., Divin A., Saraev A., Zolotova N. (eds) Problems of Geocosmos–2018. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham

https://doi.org/10.1007/978-3-030-21788-4_30

Easterbrook, D.J., 2011. Geologicl evidence of recurring climate cycles and their implications for the cause of global climate change - the past is the key to the future. In: Evidenced-based Climate Science (D.J. Easterbrook, Ed.), p. 3-51, Elsevier.

https://doi.org/10.1016/B978-0-12-385956-3.10001-4

Matuszko, D., 2014. Long‐term variability in solar radiation in Krakow based on measurements of sunshine duration. Int. J. climatology. 34, 228-234.

https://doi.org/10.1002/joc.3681

Syrovatskii, S.I., 1966. Dynamic dissipation of magnetic energy in the vicinity of a neutral magnetic field line. J. Exp. Theor. Phys. 23, 754–762.

Forbes, T.G., 1991. Magnetic reconnection in solar flares. Geophys. Astrophys. Fluid Dyn. 62, 15-36.

https://doi.org/10.1080/03091929108229123

Podgorny, A.I., Podgorny, I.M., 2006. A model of a solar flare: Comparisons with observations of high-energy processes. Astron. Rep. 50, 842–850.

https://doi.org/10.1134/S106377290610009X

Aulanier, G., Torok, T., Demoulin, P., DeLuca, E.E., 2010. Formation of torus-unstable flux ropes and electric currents in erupting sigmoid. Astrophys. J. 708, 314-333.

https://doi.org/10.1088/0004-637X/708/1/314

Jiang, C., Wu, S.T., Yurchyshyn, V., et al., 2016. How did a major confined flare occur in super solar active region 12192? Astrophys. J. 828, 62.

https://doi.org/10.3847/0004-637X/828/1/62

Maehara, H., Shibayama, T., Notsu, S., et al., 2012. Super flares on solar-type stars. Nature. 485, 478–481.

https://doi.org/10.1038/nature11063

Podgorny, A.I., Podgorny, I.M., 2013. Magnetic field distribution in the flare productive active region NOAA 10720. J. Atmos. Sol. Terr. Phys. 92, 59–64.

https://doi.org/10.1016/j.jastp.2012.09.012

Zuccarello, F.P., Aulanier, G., Dudik, J., et al., 2017. Vortex and sink flows in eruptive flares as a model for coronal implosions. Astrophys. J. 837, 11

https://doi.org/10.3847/1538-4357/aa6110

Shibayama, T., Maehara, H., Notsu, S., et al., 2013. Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophys. J. Suppl. 209, 05.

https://doi.org/10.1088/0067-0049/209/1/5

Marov, M.Y., Kuznetsov, V.D., 2014. Solar Flares and Impact on Earth. In: Allahdadi F., Pelton J. (eds) Handbook of Cosmic Hazards and Planetary Defense. Springer, Cham

https://doi.org/10.1007/978-3-319-02847-7_1-1

Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C., 2000. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145.

https://doi.org/10.1029/1999GL003639

Nagai, T., Fujimoto, M., Nakamura, R., Baumjohann, W., Ieda, A., Shinohara, I., Machida, S., Saito, Y., Mukai, T., 2005. Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. J. Geophys. Res. Space Phys. 110, A09208.

https://doi.org/10.1029/2005JA011207

Hudson, H.S., Cliver, E.W., 2001. Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106, 25199.

https://doi.org/10.1029/2000JA004026

Kaymaz, Z., Siscoe, G., 2006. Field-Line Draping Around ICMES. Solar Phys. 239, 437-448.

https://doi.org/10.1007/s11207-006-0308-x

Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G., 2010. Comprehensive Analysis of

Coronal Mass Ejection Mass and Energy Properties Over a Full Solar Cycle. Astrophys. J. 722, 1522–1538.

https://doi.org/10.1088/0004-637X/722/2/1522

Webb, D.F., Howard, T.A., 2012. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys. 09, 03.

https://doi.org/10.12942/lrsp-2012-3

Richardson JD, Liu Y., Wang, C., Burlaga, L.F., 2006. ICMES at very large distances. Adv. Space Res. 38, 528–534.

https://doi.org/10.1016/j.asr.2005.06.049

Aguilar-Rodriguez, E., Blanco-Cano, X., Gopalswamy, N., 2006. Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Adv. Spa. Res. 36, 522.

https://doi.org/10.1016/j.asr.2005.01.051

Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I., 2017. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys.14, 05.

https://doi.org/10.1007/s41116-017-0009-6

Engvold, O., 1980. Thermodynamic models and fine structure of prominences. Solar Phys. 67, 351–355.

https://doi.org/10.1007/BF00149812

Feldman, U., 1992. Elemental abundances in the upper solar atmosphere. Phys. Scripta 46, 202-220.

https://doi.org/10.1088/0031-8949/46/3/002

Jing, J., Lee, J., Spirock, T.J., Wang, H., 2006. Periodic Motion Along Solar Filaments. Solar Phys. 236, 97-109.

https://doi.org/10.1007/s11207-006-0126-1

Joshi, A.D., Srivastava, N., Mathew, S.K., 2010. Automated Detection of Filaments and Their Disappearance Using Full-Disc H

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Journal of Basic & Applied Sciences