Silica-Supported Sulfuric Acid as Doping Agent in Synthesis of a New Composite of Poly(o-methoxyaniline) Under Solid-State Condition
PDF

Keywords

Poly(o-methoxyaniline)
composite
silica-supported sulfuric acid
solid-state (solvent-free)
doping

How to Cite

Modarresi-Alam, A. R., & Shariati, I. (2021). Silica-Supported Sulfuric Acid as Doping Agent in Synthesis of a New Composite of Poly(o-methoxyaniline) Under Solid-State Condition. Journal of Basic & Applied Sciences, 17, 115–126. https://doi.org/10.29169/1927-5129.2021.17.13

Abstract

 The objective of this research is the synthesis and characterization of the novel composite of poly(o-methoxyaniline)/silica-supported sulfuric acid (POMA-SSSA). The synthesis is done by doping of poly (o-methoxyaniline) emeraldine base in the presence of silica-supported sulfuric acid (SiO2-H2SO4, SSSA) under solid-state (solvent-free) conditions. Herein, poly(o-methoxyaniline) emeraldine salt (POMA-SA) is prepared simply by mixing the base form with H2SO4 in solid-state. The doping process is verified by ultraviolet-visible, Fourier transform infrared spectroscopy and elemental analysis. It is shown that the polymers and composites have maximum doping and the doping counter ion in POMA-SA and POMA-SSSA-bw (before work-up) is HSO4 and in the POMA-SSSA-aw (after work-up) is SO42-. The prepared composites show good conductivity. Scanning electron microscopy (SEM) images show that POMA molecules thoroughly have coated the surface of silica. Moreover, the morphology studies of composites show a smooth surface and sheet-like layer that have covered the particles within the range of 0.5 to 1 μm.

https://doi.org/10.29169/1927-5129.2021.17.13
PDF

References

a) Freund MS, Deore B. Self-Doped Conducting Polymers, Canada: John Wiley. 2007. b) Wallace G, Kane-Maguire LAP, Teasdale PR. Conductive Electroactive Polymers, 3th ed. CRC Press: Taylor & Francis Group, 2009. c) Eftekhari A. Nanostructured Conductive Polymers. John wiley & Sons Ltd. 2010.

Bhadra S, Khastgir D, Singha NK, Leeb JH. Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 2009; 34: 783-810. https://doi.org/10.1016/j.progpolymsci.2009.04.003

Kang ET, Neoh KG, Tan KL. Polyaniline: A polymer with many interesting intrinsic redox states. Prog Polym Sci 1998; 23: 277-324. https://doi.org/10.1016/S0079-6700(97)00030-0

a) Macinnes D, Funt BL. Poly-o-methoxyaniline: A new soluble conducting polymer. Synth Met 1988; 25: 235-242. b) Gupta MC, Umare SS. Studies on poly (o-methoxyaniline), Macromol 1992; 25: 138-142. c) Mattoso LHC, Bulhoes LOS. Synthesis and characterization of poly(o-anisidine) films. Synth Met 1992; 52: 171-181. d) Jamal R, Abdiryim T, Ding Y, Nurulla I. Comparative studies of solid-state synthesized poly(o-methoxyaniline) doped with organic sulfonic acids. J Polym Res 2008; 15: 75-82. e) Jamal R, Abdiryim T, Nurulla I. Comparative studies of solid state synthesized poly(o-mehoxy anilne) and Poly(o-toluidine). Polym Adv Technol 2008; 19: 1461-1466. f) Hasik M, Wenda E, Paluszkiewicz C, Bernasik A, Camra J. Poly(o-methoxyaniline)-palladium systems: Effect of preparation conditions on physico-chemical properties. Synth Met 2004; 143: 341-350. g) Kuramoto N, Takahashi Y, Nagai K, Koyama K. Electrorheological properties of poly(o-anisidine) and poly(o-anisidine)-coated silica suspensions. React Funct Polym 1996; 30: 367-373. h) Inamuddin, Ismail YA. Synthesis and characterization of electrically conducting poly-o-methoxyaniline Zr(1V) molybdate Cd(II) selective composite cation-exchanger. Desalination 2010; 250: 523-529. i) Malmonge LF, Mattoso LHC. Thermal analysis of conductive blends of PVDF and poly(o-methoxyaniline). Polym 2000; 41: 8387-8391. j) Sui J, Zhang L, Peng H, Travas-Sejdic J, Kilmartin PA. Self-assembly of poly(o-methoxyaniline) hollow nanospheres from a polymeric acid solution. Nanotechnology 2009; 20: 415606. k) Kulkarni MV, Viswanath AK. Spectroscopic, thermal and electrical properties of sulphonic acids doped poly(o-anisidine) and their application as humidity sensor. Sen. Actuators B 2005; 107: 791–797. l) Jiang J, Ai LH, Liu AH. A novel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties. Synth Met 2010; 160: 333-336. https://doi.org/10.1016/j.synthmet.2009.10.032

Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev 2008; 108: 3893-3957. https://doi.org/10.1021/cr068035q

a) Anand J, Palaniappan S, Sathyanarayana DN. Conducting Polyaniline Blends and Composites. Prog Polym Sci 1998; 23: 993-1018. b) Pud A, Ogurtsov N, Korzhenko A, Shapoval G. Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 2003; 28: 1701-1753. https://doi.org/10.1016/j.progpolymsci.2003.08.001

Avvaru NR, Detacconi NR, Rajeshwar K. Compositional Analysis of Organic-inorganic Semiconductor Composites. Analyst 1998; 123: 113-116. https://doi.org/10.1039/a703197a

Wan M, Zhou W, Li J. Composite of polyaniline containing iron oxides with nanometer size. Synth Met 1996; 78: 27-31. https://doi.org/10.1016/0379-6779(95)03562-1

Sivakumar M, Gedanken A. A Sonochemical method for the synthesis of Polyaniline and Au-polyaniline composites using H2O2 for enhancing rate and yield. Synth Met 2005; 148: 301-306. https://doi.org/10.1016/j.synthmet.2004.10.009

Oliveira MM, Castro EG, Canestraro CD, Zanchet D, Uqarte D, Roman LS, Zarbin AJG. A simple two-phase route to silver nanoparticles/polyaniline structures. J Phys Chem B 2006; 110: 17063-17069. https://doi.org/10.1021/jp060861f

Houdayer A, Schneider R, Billaud D, Ghanbaja J, Lambert J. New polyaniline/Ni(0) nanocomposites: synthesis, characterization and evaluation of their catalytic activity in Heck couplings. Synth Met 2005; 151: 165-174. https://doi.org/10.1016/j.synthmet.2005.04.003

Wang J, Neoh KG, Kang ET. Preparation of Nanosized Metallic Particles in Polyaniline. J Colloid Interface Sci 2001; 239: 78-86. https://doi.org/10.1006/jcis.2001.7576

Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF. One-pot Synthesis of Polyaniline-Metal Nanocomposites. Chem Mater 2005; 17: 5941-5944. https://doi.org/10.1021/cm050827y

Parida SK, Dash S, Patel S, Mishra BK. Adsorption of organic molecules of silica surface. Adv Colloid Interface Sci 2006; 121: 77-110. https://doi.org/10.1016/j.cis.2006.05.028

Zhuravlev LT. The surface chemistry of amorphous silica. Zhuravlev model, Colloids. Surf A 2000; 173: 1-38. https://doi.org/10.1016/S0927-7757(00)00556-2

a) Kuo CW, Wen TC. Dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid) via the interfacial polymerization route. Europ Polym J 2008; 44: 3393-3401. b) Costa LC, Rubinger CPL, Martins CR. Dielectric and morphological properties of PAni-DBSA blended with polystyrene sulfonic acid. Synth Met 2007; 157: 945-950. c) Kim SJ, Lee NR, Yi BJ, Kim SI. Synthesis and Characterization of Polymeric Acid-Doped Polyaniline Interpenetrating Polymer Networks. J Macrom Sci Part A: Pure Appl Chem 2006; 43: 497-505. d) Kulkarni MV, Viswanath AK, Khanna PK. Synthesis and Characterization of Conducting Polyaniline Doped with Polymeric Acids. J Macrom Sci Part A: Pure Appl Chem 2006; 43: 759-771. e) Kulkarni MV, Viswanath AK, Marimuthu R, Seth T. Spectroscopic, transport, and morphological studies of polyaniline doped with inorganic acids, Polym. Eng Sci 2004; 44: 1676-1681. f) Athawale AA, Kulkarin MV, Chabukswar VV. Studies on chemically synthesized soluble acrylic acid doped polyaniline. Met Chem Phys 2002; 73: 106-110. g) Fu Y, Weiss RA. Proton antion of polyaniline with lightly sulfonated polystyrene. Synth Met 1997; 84: 103-104. h) Liao YH, Levon K. Doping of polyaniline with polymeric dopants in solid state, gel state and solutions. Polym Adv Technol 1995; 6: 47-57. https://doi.org/10.1002/pat.1995.220060107

a) Modarresi-Alam AR, Pakseresht M, Solaimani M, Farzaneh Jobaneh E, Beladi Mousavi M, Pashaei M, Fathipour F, Azaroun M, Zafari S, Movahedifar F, Dindarloo Inaloo I, Faridkia B. Preparation and Characterization of New Nanocomposites of Polyaniline by in situ Polymerization and Doping of Aniline in the Presence of Nanosilica Sulfuric Acid under Solvent-Free Condition. In: Proceedings Inter Conf Nanotechnol: Fundamentals and Applications. (Ottawa Ontario Canada4-6 August) 2010; pp. 1-8. b) Khamooshi F, Modarresi-Alam AR. Solvent-free preparation of arylaminotetrazole derivatives using aluminum(III) hydrogensulfate as an effective catalyst. Chin Chem Lett 2010; 21: 892-896. c) Modarresi-Alam AR, Nasrollahzadeh M, Khamooshi F. Solvent-free preparation of primary carbamates using silica sulfuric acid as an efficient reagent, ARKIVOC xvi 2007; 238-245. https://doi.org/10.3998/ark.5550190.0008.g23

Salehi P, Zolfigol MA, Shirini F, Baghbanzadeh M. Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Curr Org Chem 2006; 10: 2171-2189. https://doi.org/10.2174/138527206778742650

a) Riego JM, Sedin Z, Zaldivar JM, Marziano NC, Tortato C. Sulfuric Acid on Silica-gel: an Inexpensive Catalyst for Aromatic Nitration, Tetrahedron. Lett 1996; 37: 513-516. b) Maleki B, Keshvari Shirvan H, Taimazi F, Akbarzadeh E. Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles. Int J Org Che 2012; 2: 93-99. c) Modarresi-Alam AR, Irandoost B, The In-Situ Copolymerization of Aniline and o-Toluidine in the Presence of Nanosilica-Supported Sulfuric Acid Under Solvent-Free Condition. In: Proceedings of ICNS5 Conference. (Kish Island Iran March) 2014; pp.1257-1259. https://doi.org/10.1016/0040-4039(95)02174-4

a) Stejskal J, Sapurina I, Trchova M, Prokes J, Krivka I, Tobolkova E. Solid-state protonation and electrical conductivity of polyaniline. Macromol 1998; 31: 2218-2222. b) Gong J, Cui XJ, Xie ZW, Wang SG, Qu LY. The solid-state synthesis of poly- aniline/H4SiW12CO40 materials. Synth Met 2002; 129: 187-192. c) Huang J, Moore JA, Acquaye JH, Kaner RB. A mechanochemical route to the conducting polymer polyaniline, Macromol. 2005; 38: 317-321. d) Yoshimoto S, Ohashi F, Kameyama T. Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci Part B: Polym Phys. 2005; 43: 2705-2714. e) Zhou CF, Du XS, Liu ZW, Ringer SP, Mai YW. Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synth Met 2009; 159: 1302-1307. f) Bhadra S, Kim NH, Rhee KY, Lee JH. Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polym Int 2009; 58: 1173-1180. g) Sedenkova I, Konyushenko EN, Stejskal J, Trchova M, Prokes J, Solid-state oxidation of aniline hydrochloride with various oxidants. Synth Met 2011; 161: 1353-1360. h) Ubul A, Jamal R, Rahman A, Awut T, Nurulla I, Abdiryim T. Solid-state synthesis and characterization of polyaniline/multi-walled carbon nanotubes composite. Synth Met 2011; 161: 2097-2102. https://doi.org/10.1016/j.synthmet.2011.07.027

Musić S, Filipović-Vinceković N, Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 2011; 28: 89-94. https://doi.org/10.1590/S0104-66322011000100011

Trchová M, Stejskal J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes. Pure Appl Chem 2011; 83:1803-1817. https://doi.org/10.1351/PAC-REP-10-02-01

Kulkarni MV, Viswanath AK, Marimuthu R, Seth T. Spectroscopic, transport, and morphological studies of polyaniline doped with inorganic acids, Polym. Eng Sci 2004; 44: 1676-1681. https://doi.org/10.1002/pen.20167

Yacovitch TI, Wende T, Jiang L, Heine N, Meijer G, Neumark DM, Asmis KR. Infrared Spectroscopy of Hydrated Bisulfate Anion Clusters: HSO4-(H2O)1-16. J Phys Chem Lett 2011; 2: 2135–2140. https://doi.org/10.1021/jz200917f

Adler HH, Kerr PF. Variations in Infrared Spectra, Molecular Symmetry and Site Symmetry of Sulfate Minerals. Am Mineral 1965; 50: 32-147.

Xis Y, Wiesinger JM, MacDiarmid AG, Epstein AJ. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method. Chem Mater 1995; 7: 443-445. https://doi.org/10.1021/cm00051a002

MacDiarmid AG, Epstein AJ. The concept of secondary doping as applied to polyaniline. Synth Met 1994; 65: 103-116. https://doi.org/10.1016/0379-6779(94)90171-6

Ozdemir C, Can HK, Colak N, Guner A. Synthesis, Characterization, and Comparison of Self-Doped, Doped, and Undoped Forms of Polyaniline, Poly(oanisidine), and Poly[aniline-co-(o-anisidine)]. J Appl Polym Sci 2006; 99: 2182-2192. https://doi.org/10.1002/app.22718

Stejskal J, Gilbert RG. Polyaniline Preparation of a conducting polymer (IUPAC Technical Report), Pure. Appl Chem 2002; 74: 857-867. https://doi.org/10.1351/pac200274050857

Zaidi NA, Foreman JP, Tzamalis G, Monkman SC, Monkman AP. Alkyl Substituent Effects on the conductivity of Polyaniline. Adv Funct Mater 2004; 14: 479-486. https://doi.org/10.1002/adfm.200305488

Yoshimoto S, Ohashi F, Kameyama T. Zero-order kinetics of the thermal degradation of polypropylene/clay nanocomposites, J Polym Sci Part B: Polym Phys 2005; 43: 2705–2714. https://doi.org/10.1002/polb.20561

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.