A Review on the Mechanical Behavior of Size-Dependent Beams and Plates using the Nonlocal Strain-Gradient Model
PDF

Keywords

Nonlocal strain-gradient continuum mechanics model
Mechanical loadings
Micro-/nano-beams/-plates

How to Cite

Jorshari, T. D., & Roudbari, M. A. (2021). A Review on the Mechanical Behavior of Size-Dependent Beams and Plates using the Nonlocal Strain-Gradient Model. Journal of Basic & Applied Sciences, 17, 184–193. https://doi.org/10.29169/1927-5129.2021.17.18

Abstract

Nowadays, the mechanical characteristics of micro-/nano-structures in the various types of engineering disciplines are considered as remarkable criteria which may restrict the performance of small-scale structures in the reality for a certain application. This paper deals with a comprehensive review pertinent to using the nonlocal strain-gradient continuum mechanics model of size-dependent micro-/nano-beams/-plates. According to the non-classical features of materials, using size-dependent continuum mechanics theories is mandatory to investigate accurately the mechanical characteristics of the micro-/nano-structures. Recently, the number of researches related to the analysis of micro-/nano-structures with various geometry including beams as well as plates is considerable. In this regard, the mechanical behavior of these structures induced by different loadings such as vibration, wave propagation, and buckling behavior associated with the nonlocal strain-gradient continuum mechanics model is presented in this review work. Proposing the most valuable literature pertinent to the nonlocal strain-gradient continuum mechanics theory of micro-/nano-beams/plates is the main objective of this detailed survey.

https://doi.org/10.29169/1927-5129.2021.17.18
PDF

References

Hieu NM, Lam DV, Hien TT, Chinh ND, Quang ND, Hung NM, Phouc CV, Lee SM, Jeong JR, Kim C, Kim D. ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des 2020; 191: 108628. https://doi.org/10.1016/j.matdes.2020.108628

Zulhairun AK, Abdullah MS, Ismail AF, Goh PS. Chapter 1 - Graphene and CNT Technology. Current Trends and Future Developments on (Bio-) Membranes Membrane Desalination Systems: the Next Generation 2019; 3-26. https://doi.org/10.1016/B978-0-12-813551-8.00001-2

Ozaki JI. Chapter 2.4 - Catalytic Carbons – Cathode Catalytic Carbons. Handbook of Advanced Ceramics (Second Edition) Materials, Applications, Processing, and Properties 2013; 103-111. https://doi.org/10.1016/B978-0-12-385469-8.00005-8

Patra JK, Das G., Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16: 71. https://doi.org/10.1186/s12951-018-0392-8

Sheikhpour M., Arabi M., Kasaeian A., Rokn Rabei A., Taherian Z. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnol 2020; 13: 47-59. https://doi.org/10.2147/NSA.S260374

Soto F, Wang J, Ahmed R, Demirci U. Medical micro/nanorobots in precision medicine. Adv Sci 2020. https://doi.org/10.1002/advs.202002203

Chiu HY, Hung P, Postma Henk WC, Bockrath M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 2008; 8:4342-46. https://doi.org/10.1021/nl802181c

Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks JFP, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature 1997; 389: 582-84. https://doi.org/10.1038/39282

Smirnov VV, Manevitch LI, Strozzi M, Pellicano F. Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations. Physica D 2016; 325 (27): 113-25. https://doi.org/10.1016/j.physd.2016.03.015

Eringen A. A unified theory of thermo-mechanical materials. Int J Eng Sci 1966; 4(2): 179-02. https://doi.org/10.1016/0020-7225(66)90022-X

Eringen A, Edelen D. On nonlocal elasticity. Int J Eng Sci 1972; 10: 233-48. https://doi.org/10.1016/0020-7225(72)90039-0

Eringen A. Nonlocal polar elastic continua, Int J Eng Sci 1972; 10(1): 13-16. https://doi.org/10.1016/0020-7225(72)90070-5

Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 2007; 45: 288-07. https://doi.org/10.1016/j.ijengsci.2007.04.004

Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 2013; 63: 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001

Lim CW, Islam MZ, Zhang G. A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. Int J Mech Sci 2015; 94: 232-43. https://doi.org/10.1016/j.ijmecsci.2015.03.002

Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G. Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 2015; 20(4): 375-17. https://doi.org/10.1177/1081286513497616

Cazzani A, Stochino F, Turco E. On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation. Zeitschrift für angewandte Mathematik und Physik 2016; 67(24): 1-30. https://doi.org/10.1007/s00033-015-0592-0

Li L, Hu Y, Li X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Eng Sci 2016; 115: 135-44. https://doi.org/10.1016/j.ijmecsci.2016.06.011

Eltaher MA, Khater ME, Emam Samir A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Modell 2016; 40 (5-6): 4109-28. https://doi.org/10.1016/j.apm.2015.11.026

Bakhshi Khaniki H, Ghayesh MH. A review on the mechanics of carbon nanotube strengthened deformable structures. Eng Struct 2020; 220: 110711. https://doi.org/10.1016/j.engstruct.2020.110711

Ghorbanpour Arani A, Roudbari M.A. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 2013; 542: 232-41. https://doi.org/10.1016/j.tsf.2013.06.025

Doroudgar Jorshari T, Roudbari MA, Scerrato D, Kouzani A. Vibration suppression of a boron nitride nanotube under a moving nanoparticle using a classical optimal control procedure. Continuum Mech. Thermodyn 2019; 31 (6): 1825-42. https://doi.org/10.1007/s00161-019-00813-y

She GL, Liu HB, Karami B. Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Struct 2021; 160: 107407. https://doi.org/10.1016/j.tws.2020.107407

Roodgar Saffari P, Fakhraei M, Roudbari MA. Nonlinear vibration of fluid conveying cantilever nanotube resting on visco-Pasternak foundation using nonlocal strain gradient theory. IET Micro Nano Lett IET 2020; 15(3): 183-88. https://doi.org/10.1049/mnl.2019.0420

Ghorbanpour Arani A, Shajari AR, Amir S, Roudbari MA. Small scale effect on nonlinear vibration of embedded SWBNNTs based on Euler–Bernoulli theory using DQ method. ICNN, Kashan, Iran, 2012. https://doi.org/10.1016/j.physb.2012.03.065

Bagheri A, Roudbari MA, Mahmoodabadi MJ. Adaptive and sliding mode control for non-linear systems. Int J Adv Manuf Tech 2010; 3(4): 57-62.

Bagheri A, Roudbari MA, Mahmoodabadi MJ. Globally Convergent Adaptive and Sliding Mode Control for Trajectory Tracking with Parameter Uncertainty and Bounded Disturbance. International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2009, TRABZON, TURKEY.

Roudbari MA. Design of a Robust Adaptive Control (RAC) Of Robotic Manipulators for Trajectory Tracking With Structured and Unstructured Uncertainties. Journal of Communication and Computer 2011; 8: 361-65.

Ghorbanpour Arani A, Roudbari MA, Kiani K. Nonlinear vibration of visco-SWBNNT under moving nanoparticle coupled by Pasternak substrate. Ahrar Science and Technology (In Persian) 2014; 1 (2): 23-30.

Hajjaj AZ, Jaber N, Ilyas S, Alfosail FK, Younis MI. Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. Int J Non Linear Mech 2020; 119: 103328. https://doi.org/10.1016/j.ijnonlinmec.2019.103328

Roodgar Saffari P, Fakhraei M, Roudbari MA. Free vibration and transient response of heterogeneous piezoelectric sandwich annular plate using third-order shear deformation assumption. J Solid Mech 2020; 12 (2): 315-33.

Fakhraei M, Roodgar Saffari P, Roudbari MA. Size-dependent vibration problem of two vertically aligned single walled boron nitride nanotubes conveying fluid in thermal environment via nonlocal strain gradient shell model. J Solid Mech 2021; 13(2): 164-85.

Tubaldi E, Amabili M, Païdoussis MP. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation. J Sound Vib 2017; 396: 217-45. https://doi.org/10.1016/j.jsv.2017.01.044

Zhou YY, Lü CF, Chen WQ. Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos Struct 2012; 94 (9): 2736-45. https://doi.org/10.1016/j.compstruct.2012.04.006

Ghorbanpour Arani A, Roudbari MA, Amir S. Electro-thermo nonlocal wave propagation of the SWBNNTs conveying viscous fluid embedded in a visco elastic medium, ICNN, Kashan, Iran, 2012.

Hosseini SM. Strain gradient and Green–Naghdi-based thermoelastic wave propagation with energy dissipation in a Love–Bishop nanorod resonator under thermal shock loading. Waves Random Complex Media 2021. https://doi.org/10.1080/17455030.2021.1967513

Ghorbanpour Arani A, Roudbari MA. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Physica B 2014; 452; 159-65. https://doi.org/10.1016/j.physb.2014.07.017

Ghorbanpour Arani A, Roudbari MA, Amir S. Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl Math Modell 2016; 40 (3): 2025-38. https://doi.org/10.1016/j.apm.2015.09.055

Hosseini SM, Sladek J, Sladek V. Nonlocal coupled photo-thermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: A Green-Naghdi-based analytical solution. Appl Math Modell 2020; 88: 631-51. https://doi.org/10.1016/j.apm.2020.06.069

Kiani K. Application of nonlocal higher-order beam theory to transverse wave analysis of magnetically affected forests of single-walled carbon nanotubes. Int J Mech Sci 2018; 138: 1-16. https://doi.org/10.1016/j.ijmecsci.2018.01.033

Hosseini SM, Zhang C. Nonlocal coupled thermoelastic wave propagation band structures of nano-scale phononic crystal beams based on GN theory with energy dissipation: An analytical solution. Wave Motion 2020; 92: 102429. https://doi.org/10.1016/j.wavemoti.2019.102429

Shahsavari H, Talebitooti R, Kornokar M. Analysis of wave propagation through functionally graded porous cylindrical structures considering the transfer matrix method. Thin-Walled Struct 2021; 162: 107212. https://doi.org/10.1016/j.tws.2020.107212

Karimipour I, Tadi Beni Y, Arvin H, Akbarzadeh AH. Dynamic wave propagation in micro-torus structures: Implementing a 3D physically realistic theory. Thin-Walled Struct 2021; 165: 107995. https://doi.org/10.1016/j.tws.2021.107995

Yuan Y, Zhao X, Zhao Y., Sahmani S, Safaei B. Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 2021; 159: 107249. https://doi.org/10.1016/j.tws.2020.107249

Zhang H, Challamel N, Wang CM, Zhang YP. Buckling of multiply connected bar-chain and its associated continualized nonlocal model. Int J Mech Sci 2019; 150: 168-75. https://doi.org/10.1016/j.ijmecsci.2018.10.015

Chen D, Yang J, Kitipornchai S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 2015; 133: 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052

Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 2017; 161: 111-18. https://doi.org/10.1016/j.compstruct.2016.11.048

Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 2017; 116: 656-65. https://doi.org/10.1016/j.matdes.2016.12.061

Liu D, Kitipornchai S, Chen WQ, Yang J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos Struct 2018; 189: 560-69. https://doi.org/10.1016/j.compstruct.2018.01.106

Chen D, Yang J, Kitipornchai S. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civ Mech Eng 2019; 19 (1): 157-70. https://doi.org/10.1016/j.acme.2018.09.004

Gao K, Huang Q, Kitipornchai S, Yang J. Nonlinear dynamic buckling of functionally graded porous beams. Mech Adv Mater Struct 2019; 1-12.

Dastjerdi S, Akgöz B, Civalek Ö. On the effect of viscoelasticity on behavior of gyroscopes. Int J Eng Sci 2020; 149: 103236. https://doi.org/10.1016/j.ijengsci.2020.103236

Amabili M, Breslavsky ID, Reddy JN. Nonlinear higher-order shell theory for incompressible biological hyperelastic materials. Comput Method Appl M 2019; 346: 841-861. https://doi.org/10.1016/j.cma.2018.09.023

Jung WY, Park WT, Han SC. Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic

medium using the modified couple stress theory. Int J Mech Sci 2014; 87: 150-62. https://doi.org/10.1016/j.ijmecsci.2014.05.025

Koutsoumaris CC, Eptaimeros KG. Eringen’s Nonlocal Integral Elasticity and Applications for Structural Models. Size-Dependent Continuum Mechanics Approaches 2021; 51-93. https://doi.org/10.1007/978-3-030-63050-8_2

Lazar M, Maugin GA, Aifantis EC. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 2006; 43(6): 1404-21. https://doi.org/10.1016/j.ijsolstr.2005.04.027

Russo R, Girot Mata FA, Forest S, Jacquin D. A review on strain gradient plasticity approaches in simulation of manufacturing processes. J Manuf Mater Process 2020; 4(87): 1-29. https://doi.org/10.3390/jmmp4030087

Wang XQ, Lee JD. Micromorphic theory: a gateway to nano worl. Int J Smart Nano Mater 2010; 1(2): 115-35. https://doi.org/10.1080/19475411.2010.484207

Vernerey F, Liu WK, Moran B. Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 2007; 55: 2603-51. https://doi.org/10.1016/j.jmps.2007.04.008

Chen Y, Lee J, Xiong L. A generalized continuum theory and its relation to micromorphic theory. J Eng Mech 2009; 149-55. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(149)

Barati MR. A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur J Mech A Solids 2018; 67: 15-30. https://doi.org/10.1016/j.euromechsol.2017.09.001

Ebrahimi F, Barati MR, Dabbagh A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 2016; 107: 169-82. https://doi.org/10.1016/j.ijengsci.2016.07.008

Khaniki HB, Ghayesh MH, Amabili M. A review on the statics and dynamics of electrically actuated nano and micro structures. Int J Non Linear Mech 2021; 129: 103658. https://doi.org/10.1016/j.ijnonlinmec.2020.103658

Roudbari MA, Doroudgar Jorshari T, Lu C, Ansari R, Kouzani A, Amabili M. A review of size-dependent continuum mechanics models for micro-and nano-structures. Thin-Walled Struct 2022; 170: 108562. https://doi.org/10.1016/j.tws.2021.108562

Awrejcewicz J, Krysko AV, Zhigalov MV, Krysko VA. Size-dependent theories of beams, plates and shells, Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields. Springer Cham 2021; 25-78. https://doi.org/10.1007/978-3-030-55993-9_2

Thai HT, Vo TP, Nguyen TK, Kim SE. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct 2017; 177(1): 196-19. https://doi.org/10.1016/j.compstruct.2017.06.040

Hosseini M, Hadi A, Malekshahi A, shishesaz M. A review of size-dependent elasticity for nanostructures. J Appl Comput 2018; 49: 197-11.

Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys 1996; 104: 2089-92. https://doi.org/10.1063/1.470966

Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 2015; 78: 298-13. https://doi.org/10.1016/j.jmps.2015.02.001

Ghorbanpour Arani A, Roudbari MA, Amir S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B 2012; 407 (17): 3646-53. https://doi.org/10.1016/j.physb.2012.05.043

Ghorbanpour Arani A, Roudbari MA, Kiani K. Vibration of double-walled carbon nanotubes coupled by temperature-dependent medium under a moving nanoparticle with multi physical fields. Mech Adv Mater Struct 2016; 23 (3): 281-91. https://doi.org/10.1080/15376494.2014.952853

Ghorbanpour Arani A, Jalilvand A, Ghaffari M, Talebi Mazraehshahi M, Kolahchi R, Roudbari MA, Amir S. Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Sci Iran 2014; 21 (3): 1183-96.

Ghorbanpour Arani A, Karamali Ravandi A, Roudbari MA, Azizkhani MB, Hafizi A. Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. J Solid Mech 2015; 7 (3): 239-54.

Ghorbanpour Arani A, Hafizi Bidgoli A, Karamali Ravandi A. Roudbari MA, Amir S, Azizkhani MB. Induced nonlocal electric wave propagation of boron nitride nanotubes. J Mech Sci Technol 2013; 27 (10): 3063-71. https://doi.org/10.1007/s12206-013-0705-7

Roudbari MA, Doroudgar Jorshari T, Ghorbanpour Arani A, Lü C, Rabczuk T. Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle. Eur J Mech A Solids 2020; 82: 103978. https://doi.org/10.1016/j.euromechsol.2020.103978

Lu L, Guo X, Zhao J. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int J Eng Sci 2017; 119: 265-77. https://doi.org/10.1016/j.ijengsci.2017.06.024

Arefi M, Kiani M, Rabczuk T. Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos Part B-Eng 2019; 168: 320-33. https://doi.org/10.1016/j.compositesb.2019.02.057

Zaera R, Serrano Ó, Fernández-Sáez J. Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity. Meccanica 2020; 55: 469-79. https://doi.org/10.1007/s11012-019-01122-z

Karami M, Janghorban M. On the mechanics of functionally graded nanoshells. Int J Eng Sci 2020; 153: 103309. https://doi.org/10.1016/j.ijengsci.2020.103309

Roudbari MA, Ansari R. Single-walled boron nitride nanotube as nano-sensor. Continuum Mech Thermodyn 2020; 32: 729-748. https://doi.org/10.1007/s00161-018-0719-6

Allam MNM, Radwan AF. Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium. Adv Mech Eng 2019; 11(4): 1-15. https://doi.org/10.1177/1687814019837067

Xu XJ, Wang XC, Zheng ML, Ma Z. Bending and buckling of nonlocal strain gradient elastic beams. Compos Struct 2017; 160: 366-77. https://doi.org/10.1016/j.compstruct.2016.10.038

Barretta R, Candadija M, Marotti De Sciarra F. Modified nonlocal strain gradient elasticity for nano-rods and application to carbon nanotubes. Appl Sci 2019; 9 (514): 1-21. https://doi.org/10.3390/app9030514

Gao Y, Xiao WS, Zhu H. Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory. Steel Compos Struct 2019; 31: 469-88.

Bedia WA, Houari MSA, Bessaim A, Bousahla AA, Tounsi A, Saeed T, Alhodaly MS. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams. Nano Res 2019; 57: 175-91. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175

Farajpour A, Haeri Yazdi MR, Rastgoo A, Mohammadi M. A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech 2016; 227: 1849-67. https://doi.org/10.1007/s00707-016-1605-6

Li X, Li L, Hu Y, Ding Z, Deng W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 2017; 165: 250-65. https://doi.org/10.1016/j.compstruct.2017.01.032

Zhong B, Shen H, Liu J, Wang Y, Zhang Y. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Appl Math Mech 2019; 40: 515-48. https://doi.org/10.1007/s10483-019-2482-9

Li L, Hu Y. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 2017; 120: 159-70. https://doi.org/10.1016/j.ijmecsci.2016.11.025

Mao JJ, Zhang W. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos Struct 2019; 216: 392-05. https://doi.org/10.1016/j.compstruct.2019.02.095

Sahmani S, Safaei B. Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct 2019; 140: 342-56. https://doi.org/10.1016/j.tws.2019.03.045

Ghayesh MH, Farokhi H, Farajpour A. Global dynamics of fluid conveying nanotubes. Int J Eng Sci 2019; 135: 37-57. https://doi.org/10.1016/j.ijengsci.2018.11.003

Roudbari MA, Doroudgar Jorshari T. Vibrational control scrutiny of physically affected SWCNT acted upon by a moving nanoparticle in the framework of nonlocal–strain gradient theory. J Braz Soc Mech Sci Eng 2018; 40: 499. https://doi.org/10.1007/s40430-018-1421-0

Wu Q, Chen H, Gao W. Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng Comput 2020; 36: 1739-50. https://doi.org/10.1007/s00366-019-00794-1

Mahmoudpour E. Nonlinear resonant behavior of thick multilayered nanoplates via nonlocal strain gradient elasticity theory. Acta Mech 2020; 231: 2651-67. https://doi.org/10.1007/s00707-020-02636-4

Vahidi-Moghaddam AM, Rajaei A., Azadi Yazdi E, Eghtesad M, Necsulescu DS. Nonlinear forced vibrations of nonlocal strain gradient microbeams. Mech Based Des Struct Mach 2020. https://doi.org/10.1080/15397734.2020.1860773

Tang Y, Liu Y, Zhao D. Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory. Physica E 2016; 84: 202-208. https://doi.org/10.1016/j.physe.2016.06.007

Norouzzadeh A, Ansari R, Rouhi H. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves Random Complex Medium 2019; 1-19. https://doi.org/10.1080/17455030.2018.1543979

Huang Y, Wei P, Xu Y, Li Y. Modelling flexural wave propagation by the nonlocal strain gradient elasticity with fractional derivatives. Math Mech Solids 2021. https://doi.org/10.1177/1081286521991206

Huang Y, Wei P. Modelling the flexural waves in a nanoplate based on the fractional order nonlocal strain gradient elasticity and thermoelasticity. Compos Struct 2021; 266: 113793. https://doi.org/10.1016/j.compstruct.2021.113793

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.