Abstract
Wastewater treatment is a continuous environmental problem, which troubles human activities. Numerous efforts have been made over the years to develop newly efficient technologies, including traditional filtration, coagulation-flocculation, and biological treatment systems. Among which, membrane technology is proven to be a significant one. Membranes technology is divided into four categories based on pore size. The four types of membrane technology including micro-filtration, ultra-filtration, nano-filtration, and reverse osmosis. This paper focus on the introduction, advantages, disadvantages and protection of these four membrane processes.
References
Tomé LC, Santos DMF, Velizarov S, Coelhoso IM, Mendes A, Crespo JG, de Pinho MN. Overview of membrane science and technology in Portugal. Membranes 2022; 12(2): 197. https://doi.org/10.3390/membranes12020197
ElMekawy A, Hegab HM, Pant D. The near-future integration of microbial desalination cells with reverse osmosis technology. Energy Environ Sci 2014; 12(7): 3921-3933. https://doi.org/ 10.1039/c4ee02208d
Ahmad A, Mohammad AW, Hashlamon A. The effect of wastewater pretreatment on nanofiltration membrane performance. J Water Reuse Desalination 2017; 7(1): 45-52. https://doi.org/10.2166/wrd.2016.083
Bacchin P. Colloid-interface interactions initiate osmotic flow dynamics. Colloids Surf. A: Physicochem. Eng Asp 2017; 533): 147-158. https://doi.org/10.1016/j.colsurfa.2017.08.034
Zsigmondy R. Uber feinporige Filter und neue Ultrafilter. Angew Chem 1926; 39(12): 398-401. https://doi.org/10.1002/ange.19260391203
Ali A, Tufa RA, Macedonio F, Curcio E, Drioli E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev 2018; 81: 1-21. https://doi.org/10.1016/j.rser.2017.07.047
Quist-Jensen CA, Macedonio F, Drioli E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015; 364: 17-32. https://doi.org/10.1016/j.desal.2015.03.001
Laîné JM, Vial D, Moulart P. Status after 10 years of operation — overview of UF technology today. Desalination 2000; 131(1-3): 17-25. https://doi.org/10.1016/S0011-9164(00)90002-X
Wei Y, Liu G, Luo J, Li L, Xu Z, Novel membrane separation technologies and membrane processes. Front Chem Sci Eng 2021; 15(4): 717-719. https://doi.org/10.1007/s11705-021-2053-y
Obotey Ezugbe E, Rathilal S. Membrane technologies in wastewater treatment: A review. Membranes 2020; 10(5): 89. https://doi.org/10.3390/membranes10050089
Pervov AG, Andrianov AP, Gorbunova TP, Bagdasaryan AS. Membrane technologies in the solution of environmental problems. Pet Chem 2015; 55(10): 879-886. https://doi.org/10.1134/s0965544115100199
Bernardo P, Iulianelli A, Macedonio F, Drioli E. Membrane technologies for space engineering. J Membr Sci 2021; 626: 119177. https://doi.org/10.1016/j.memsci.2021.119177
Judd SJ. Membrane technology costs and me. Water Res 2017; 122: 1-9. https://doi.org/10.1016/j.watres.2017.05.027
Peng H, Guo J, Li B, Huang H, Shi W, Liu Z. Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review. Environ Chem Lett 2022; 20(3): 1763-1776. https://doi.org/10.1007/s10311-022-01395-z
Dong S, Page MA, Massalha N, Hur A, Hur K, Bokenkamp K, Wagner ED, Plewa MJ. Toxicological comparison of water, wastewaters, and processed wastewaters. Environ Sci Technol 2019; 53(15): 9139-9147. https://doi.org/10.1021/acs.est.9b00827
Mažeikienė A, Grubliauskas R. Biotechnological wastewater treatment in small-scale wastewater treatment plants. J Clean Prod 2021; 279: 123750. https://doi.org/10.1016/j.jclepro.2020.123750
Toczyłowska-Mamińska R, Szymona K, Kloch M. Bioelectricity production from wood hydrothermal-treatment wastewater: Enhanced power generation in MFC-fed mixed wastewaters. Sci Total Environ 2018; 634: 586-594. https://doi.org/10.1016/j.scitotenv.2018.04.002
Pendashteh AR, Fakhru’l-Razi A, Madaeni SS, Abdullah LC, Abidin ZZ, Biak DRA. Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater. Chem Eng J 2011; 168(1): 140-150. https://doi.org/10.1016/j.cej.2010.12.053
Sanmartino JA, Khayet M, García-Payo MC. Reuse of discarded membrane distillation membranes in microfiltration technology. J Membr Sci 2017; 539: 273-283. https://doi.org/10.1016/j.memsci.2017.06.003
Bukhari SZA, Ha J-H, Lee J, Song I-H. Oxidation-bonded SiC membrane for microfiltration. J Eur Ceram Soc 2018; 38(4): 1711-1719. https://doi.org/10.1016/j.jeurceramsoc.2017.10.019
Hakami MW, Alkhudhiri A, Al-Batty S, Zacharof M-P, Maddy J, Hilal N. Ceramic microfiltration membranes in wastewater treatment: Filtration behavior, fouling and prevention. Membranes 2020; 10(9): 248. https://doi.org/10.3390/membranes10090248
Schuster B, Sleytr UB. S-layer ultrafiltration membranes. Membranes 2021; 11(4) 275. https://doi.org/10.3390/membranes11040275
Malakhov AO, Anokhina TS, Petrova DA, Vinokurov VA, Volkov AV. Nanocellulose as a component of ultrafiltration membranes. Pet Chem 2018; 58(11): 923-933. https://doi.org/10.1134/s0965544118110051
Sedelkin VM, Surkova AN, Pachina OV, Potehina LN, Mashkova DA. Simulation of membrane ultrafiltration of secondary raw milk. Pet Chem 2016; 56(4): 367-378. https://doi.org/10.1134/s0965544116040095
Gronwald O, Frost I, Ulbricht M, Kouchaki Shalmani A, Panglisch S, Grünig L, Handge UA, Abetz V, Heijnen M, Weber M. Hydrophilic poly(phenylene sulfone) membranes for ultrafiltration. Sep Purif Technol 2020; 250: 117107. https://doi.org/10.1016/j.seppur.2020.117107
Van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 2003; 122(3): 435-445 https://doi.org/10.1016/S0269-7491(02)00308-1
Takht Ravanchi M, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review. Desalination 2009; 235(1-3): 199-244. https://doi.org/10.1016/j.desal.2007.10.042
Jhaveri JH, Murthy ZVP. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016; 379: 137-154. https://doi.org/10.1016/j.desal.2015.11.009
Zhang C, Wang J, Olah A, Baer E. Composite nanofibrous microfiltration water filter. J Appl Polym Sci 2017; 134(48): 45557. https://doi.org/10.1002/app.45557
Elele E, Shen Y, Tang J, Lei Q, Khusid B, Tkacik G, Carbrello C. Mechanical properties of polymeric microfiltration membranes. J Membr Sci 2019; 591: 117351. https://doi.org/10.1016/j.memsci.2019.117351
Sun J, Chen Z, Shen J, Wang B, Zhao S, Wang W, Zhu X, Wang Z, Kang J. Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. Chemosphere 2021; 273: 129628. https://doi.org/10.1016/j.chemosphere.2021.129628
Gul A, Hruza J, Yalcinkaya F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021; 13(6): 846. https://doi.org/10.3390/polym13060846
Tanudjaja HJ, Anantharaman A, Ng AQQ, Ma Y, Tanis-Kanbur MB, Zydney AL, Chew JW. A review of membrane fouling by proteins in ultrafiltration and microfiltration. J Water Process Eng 2022; 50: 103294. https://doi.org/10.1016/j.jwpe.2022.103294
Yalcinkaya F, Boyraz E, Maryska J, Kucerova K. A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials 2020; 13(2): 493. https://doi.org/10.3390/ma13020493
Lee J, Ha J-H, Song I-H, Shin DW. Enhanced fouling resistance of organosilane-grafted ceramic microfiltration membranes for water treatment. J Ceram Soc Jpn 2017; 125(12): 899-905. https://doi.org/10.2109/jcersj2.17104
Sheikhi M, Arzani M, Mahdavi HR, Mohammadi T. Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: Assessment of coagulant addition. Ceram Int 2019; 45(14): 17826-17836. https://doi.org/10.1016/j.ceramint.2019.05.354
Jepsen KL, Bram MV, Pedersen S, Yang Z. Membrane fouling for produced water treatment: A review study from a process control perspective. Water 2018; 10(7): 847. https://doi.org/10.3390/w10070847
Li L, Visvanathan C. Membrane technology for surface water treatment: advancement from microfiltration to membrane bioreactor. Rev Environ Sci Biotechnol 2017; 16(4): 737-760. https://doi.org/10.1007/s11157-017-9442-1
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020; 248: 116919. https://doi.org/10.1016/j.seppur.2020.116919
Meng Q, Nan J, Wang Z, Ji X, Wu F, Liu B, Xiao Q. Study on the efficiency of ultrafiltration technology in dealing with sudden cadmium pollution in surface water and ultrafiltration membrane fouling. Environ Sci Pollut Res 2019; 26(16): 16641-16651. https://doi.org/10.1007/s11356-019-04691-4
Li S, Milia M, Schäfer AI, Richards BS. Renewable energy powered membrane technology: Energy consumption analysis of ultrafiltration backwash configurations. Sep Purif Technol 2022; 287: 120388. https://doi.org/10.1016/j.seppur.2021.120388
Wang W, Shi YP, Zhang P, Zhang ZC, Xu X. Fabrication of an antifouling GO-TiO2/PES ultrafiltration membrane. J Appl Polym Sci 2021; 138(39): 51165. https://doi.org/10.1002/app.51165
Jin W, Wang L, Zhang H, Liang J, Cao S, Zhang Q, Wang J, Ye Z. Crosslinkable polyaryletherketone ultrafiltration membranes with solvent-resistant improvement. Mater Today Commun 2019; 21: 100696. https://doi.org/10.1016/j.mtcomm.2019.100696
Nayak V, Geetha Balakrishna R, Padaki M, Soontarapa K. Zwitterionic ultrafiltration membranes for As (V) rejection. Chem Eng J 2017; 308: 347-358. https://doi.org/10.1016/j.cej.2016.09.096
Dlask O, Václavíková N. Electrodialysis with ultrafiltration membranes for peptide separation. Chem Pap 2018; 72(2): 261-271. https://doi.org/10.1007/s11696-017-0293-6
Etemadi H, Kazemi R, Ghasemian N, Shokri E. Effect of transmembrane pressure on antifouling properties of PVC/Clinoptilolite ultrafiltration nanocomposite membranes. Chem Eng Technol 2022; 45(6): 1192-1200. https://doi.org/10.1002/ceat.202200097
Joshi US, Bhalani DV, Chaudhary A, Jewrajka SK. Multipurpose tight ultrafiltration membrane through controlled layer-by-layer assembly for low pressure molecular separation. J Membr Sci 2022; 641: 119908. https://doi.org/10.1016/j.memsci.2021.119908
Zhang Y, Zhou S, Li Z, Zhang H, Zhang M, Wang J, Chen L, Zhang H. Effect of pore-forming/hydrophilic additive anchorage on the mesoporous structure and sieving performance of a blended ultrafiltration (UF) membrane. J Membr Sci 2022; 641: 119904. https://doi.org/10.1016/j.memsci.2021.119904
Zebić Avdičević M, Košutić K, Dobrović S. Performance evaluation of different membrane types in the textile mercerization wastewater treatment. Water Environ J 2019; 33(2): 203-213. https://doi.org/10.1111/wej.12391
Miśkiewicz A, Zakrzewska-Kołtuniewicz G, Pasieczna-Patkowska S. Photoacoustic spectroscopy as a potential method for studying fouling of flat-sheet ultrafiltration membranes. J Membr Sci 2019; 583: 59-69. https://doi.org/10.1016/j.memsci.2019.04.048
Dobosz KM, Kuo-Leblanc CA, Bowden JW, Schiffman JD. Robust, small diameter hydrophilic nanofibers improve the flux of ultrafiltration membranes. Ind Eng Chem Res 2021; 60(25): 9179-9188. https://doi.org/10.1021/acs.iecr.1c01332
Ferrer O, Casas S, Galvañ C, Lucena F, Bosch A, Galofré B, Mesa J, Jofre J, Bernat X. Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis. Water Res 2015; 83: 121-131. https://doi.org/10.1016/j.watres.2015.06.039
Yang M, Lotfikatouli S, Chen Y, Li T, Ma H, Mao X, Hsiao BS. Nanostructured all-cellulose membranes for efficient ultrafiltration of wastewater. J Membr Sci 2022; 650: 120422. https://doi.org/10.1016/j.memsci.2022.120422
Ding H, Li N, Lu X, Guo J, Yi Y, Qiao X. A method of ultrafiltration membrane to treatment garlic processing wastewater. J Food Process Eng 2018; 41(8): e12933. https://doi.org/10.1111/jfpe.12933
Zhang Y, Chung T-S. Graphene oxide membranes for nanofiltration. Curr Opin Chem Eng 2017; 16: 9-15. https://doi.org/10.1016/j.coche.2017.03.002
Rasool MA, Vankelecom IFJ. Preparation of full-bio-based nanofiltration membranes. J Membr Sci 2021; 618: 118674. https://doi.org/10.1016/j.memsci.2020.118674
Tul Muntha S, Kausar A, Siddiq M. Advances in polymeric nanofiltration membrane: A review. Polym Plast Technol Eng 2017; 56(8): 841-856. https://doi.org/10.1080/03602559.2016.1233562
Nithya D, Beril Melbiah JS, Mohan D. Benzimidazole-based dendritic nanofiltration membranes. Iran Polym J 2018; 27(4): 225-237. https://doi.org/10.1007/s13726-018-0603-z
Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J. Nanofiltration for water and wastewater treatment - a mini review. Drink Water Eng Sci 2013; 6(1): 47-53. https://doi.org/10.5194/dwes-6-47-2013
Bowen WR, Welfoot JS. Modelling the performance of membrane nanofiltration—critical assessment and model development. Chem Eng Sci 2002; 57(7): 1121-1137. https://doi.org/10.1016/S0009-2509(01)00413-4
Huang Y, Sun J, Wu D, Feng X. Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep Purif Technol 2018; 207: 142-150. https://doi.org/10.1016/j.seppur.2018.06.032
Shi GM, Feng Y, Li B, Tham HM, Lai J-Y, Chung T-S. Recent progress of organic solvent nanofiltration membranes. Prog Polym Sci 2021; 123: 101470. https://doi.org/10.1016/j.progpolymsci.2021.101470
Peydayesh M. Nanofiltration membranes: Recent advances and environmental applications. Membranes 2022; 12(5): 518. https://doi.org/10.3390/membranes12050518
Yang G-H, Bao D-D, Zhang D-Q, Wang C, Qu L-L, Li H-T. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Res Lett 2018; 13(1): 146. https://doi.org/10.1186/s11671-018-2555-9
Weng X-D, Ji Y-L, Ma R, Zhao F-Y, An Q-F, Gao C-J. Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. J Membr Sci 2016; 510: 122-130. https://doi.org/10.1016/j.memsci.2016.02.070
An S-A, Lee J, Sim J, Park C-G, Lee J-S, Rho H, Park K-D, Kim H-S, Woo YC. Evaluation of the advanced oxidation process integrated with microfiltration for reverse osmosis to treat semiconductor wastewater. Process Saf Environ Prot 2022; 162: 1057-1066. https://doi.org/10.1016/j.psep.2022.05.010
Grote F, Fröhlich H, Strube J. Integration of reverse-osmosis unit operations in biotechnology process design. Chem Eng Technol 2012; 35(1): 191-197. https://doi.org/10.1002/ceat.201100182
Altaee A, Millar GJ, Zaragoza G. Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination. Energy 2016; 103: 110-118. https://doi.org/10.1016/j.energy.2016.02.116
Yasukawa M, Mehdizadeh S, Sakurada T, Abo T, Kuno M, Higa M. Power generation performance of a bench-scale reverse electrodialysis stack using wastewater discharged from sewage treatment and seawater reverse osmosis. Desalination 2020; 491: 114449. https://doi.org/10.1016/j.desal.2020.114449
Gil JD, Ruiz-Aguirre A, Roca L, Zaragoza G, Berenguel M. Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 2018; 445: 15-28. https://doi.org/10.1016/j.desal.2018.07.022
Tsuge H, Mori K. Reclamation of municipal sewage by reverse osmosis. Desalination 1977; 23(1-3): 123-132. https://doi.org/10.1016/S0011-9164(00)82515-1
Kurihara M. Seawater reverse osmosis desalination. Membranes 2021; 11(4): 243. https://doi.org/10.3390/membranes11040243
Kavitha J, Rajalakshmi M, Phani AR, Padaki M. Pretreatment processes for seawater reverse osmosis desalination systems—A review. J Water Process Eng 2019; 32: 100926. https://doi.org/10.1016/j.jwpe.2019.100926
Lee KP, Arnot TC, Mattia D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membr Sci 2011; 370(1): 1-22. https://doi.org/10.1016/j.memsci.2010.12.036
Mei Y, Li H, Xia H. On the cleaning procedure of reverse osmosis membrane fouled by steel wastewater. Korean J Chem Eng 2016; 33(9): 2668-2673. https://doi.org/10.1007/s11814-016-0120-8
Zhang Z, Wu Y, Luo L, Li G, Li Y, Hu H. Application of disk tube reverse osmosis in wastewater treatment: A review. Sci Total Environ 2021; 792: 148291. https://doi.org/10.1016/j.scitotenv.2021.148291
Kaya Y, Dayanir S. Application of nanofiltration and reverse osmosis for treatment and reuse of laundry wastewater. J Environ Health Sci Engineer 2020; 18(2): 699-709. https://doi.org/10.1007/s40201-020-00496-7
Skuse C, Gallego-Schmid A, Azapagic A, Gorgojo P. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination 2021; 500: 114844. https://doi.org/10.1016/j.desal.2020.114844
Voutchkov N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010; 261(3): 354-364. https://doi.org/10.1016/j.desal.2010.07.002
Ma J, Liu W. Effectiveness of ferrate (VI) preoxidation in enhancing the coagulation of surface waters. Water Res 2002; 36(20): 4959-4962. https://doi.org/10.1016/S0043-1354(02)00224-5
Al-Ahmad M, Abdul Aleem FA, Mutiri A, Ubaisy A. Biofuoling in RO membrane systems Part 1: Fundamentals and control. Desalination 2000; 132(1-3): 173-179. https://doi.org/10.1016/S0011-9164(00)00146-6
Ahmad AL, Mariadas A. Baffled microfiltration membrane and its fouling control for feed water of desalination. Desalination 2004; 168: 223-230. https://doi.org/10.1016/j.desal.2004.07.002
Taniguchi M, Kilduff JE, Belfort G. Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. J Membr Sci 2003; 222(1-2): 59-70. https://doi.org/10.1016/S0376-7388(03)00192-3
Bian R, Yamamoto K, Watanabe Y. The effect of shear rate on controlling the concentration polarization and membrane fouling. Desalination 2000; 131(1-3): 225-236. https://doi.org/10.1016/S0011-9164(00)90021-3
Li H, Wu S, Du C, Zhong Y, Yang C. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. Int J Environ Res Public Health 2020; 17(4): 1360. https://doi.org/10.3390/ijerph17041360
Katsoufidou K, Yiantsios SG, Karabelas AJ. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination 2008; 220(1-3): 214-227. https://doi.org/10.1016/j.desal.2007.02.038
Schäfer AI, Fane AG, Waite TD. Fouling effects on rejection in the membrane filtration of natural waters. Desalination 2000; 131(1-3): 215-224. https://doi.org/10.1016/S0011-9164(00)90020-1
Schäfer AI, Fane AG, Waite TD. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Res 2001; 35(6): 1509-1517. https://doi.org/10.1016/S0043-1354(00)00418-8
Schäfer AI, Richards BS. Testing of a hybrid membrane system for groundwater desalination in an Australian national park. Desalination 2005; 183(1-3): 55-62. https://doi.org/10.1016/j.desal.2005.05.007
Schäfer AI, Schwicker U, Fischer MM, Fane AG, Waite TD. Microfiltration of colloids and natural organic matter. J Membr Sci 2000; 171(2): 151-172. https://doi.org/10.1016/S0376-7388(99)00286-0
Ogunbiyi OO, Miles NJ, Hilal N. Comparison of different pitch lengths on static promoters for flux enhancement in tubular ceramic membrane. Sep Sci Technol 2007; 42(9): 1945-1963. https://doi.org/10.1080/01496390701401576
Bortoluzzi AC, Faitão JA, Di Luccio M, Dallago RM, Steffens J, Zabot GL, Tres MV. Dairy wastewater treatment using integrated membrane systems. J Environ Chem Eng 2017; 5(5): 4819-4827. https://doi.org/10.1016/j.jece.2017.09.018
Lee S-J, Dilaver M, Park P-K, Kim J-H. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J Membr Sci 2013; 432: 97-105. https://doi.org/10.1016/j.memsci.2013.01.013
Park S, Kang J-S, Lee JJ, Vo T-K-Q, Kim H-S. Application of physical and chemical enhanced backwashing to reduce membrane fouling in the water treatment process using ceramic membranes. Membranes 2018; 8(4): 110. https://doi.org/10.3390/membranes8040110
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.