Endophytic Bacteria; Diversity, Characterization and Role in Agriculture
PDF

Keywords

Entophytic bacteria
Colonization
Electron microscopy
Immobilization

How to Cite

Abo-Koura, H. A. (2023). Endophytic Bacteria; Diversity, Characterization and Role in Agriculture. Journal of Basic & Applied Sciences, 19, 116–130. https://doi.org/10.29169/1927-5129.2023.19.11

Abstract

Entophytic bacteria have an important role in the growth process and health of the plant host. Nevertheless, also some endophytic bacteria are existing in seeds and have not been studied yet. In addition, some Entophytic bacteria are important in plant tolerance to environmental stresses. They can colonize the internal tissues of the host and are able to use a variety of different relations including symbiotic, mutualism, communalistic, and trophobiotic. They have the ability for plant hormone production like auxin, indole acetic acid, and gibberellin; also some endophytic bacteria have the ability for siderophore creation, phosphate solubilization, nitrogen fixation, protease, and hydrogen cyanide formation.. Moreover, they produce compounds that could have possible usage in drug, agriculture or engineering. They have the ability to removesoil toxins thus, improving phytoremediation and soil fertility. Further, most of endophytic bacteria are diazotrophs and associated with the Proteobacteria, and a varied range has been detected agreeing to the nifH gene which codes for nitrogenase enzyme, structures recovered from plant materials, however a limited part of these genes looks to be stated. The endophytes discussed in this review are isolated from surface-disinfested plant tissue, and that do not damage the plant. Moreover, endophytes appear to be in-between saprophytic bacteria and plant pathogens, they are either saprophytes growing to be pathogens, or extremely grown plant pathogens with protective accommodation and nutrient provisions, but not killing their host. Generally, endophytic bacteria are partial under biotic and abiotic influences, with the plant itself being one of the main prompting influences.

https://doi.org/10.29169/1927-5129.2023.19.11
PDF

References

Kobayashi DY, Palumbo JD. Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (Eds) Microbial endophytes. Dekker, New York 2000; pp. 199-236.

Sturz AV, Christie BR, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences 2000; 19: 1- 30. https://doi.org/10.1080/07352680091139169

Elbeltagy A, Nishioka K, Sato T. Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H. Endophytic colonization and in plant a nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbial 2001; 67: 5285-5293. https://doi.org/10.1128/AEM.67.11.5285-5293.2001

Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL and Schulze- Lefert, P. Structure and functions of the bacterial micro biota of plants. Annual Review of Plant Biology 2013; 64: 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters 2008; 278: 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano, A, Döring M, Sessitsch A. The hidden world within Plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes Microbial. Mol Biol Rev 2015; 79: 293-320. https://doi.org/10.1128/MMBR.00050-14

Ryan RP, Germaine K, Franks A, Ryan DJ, David Dowling N. Bacterial endophytes: recent developments and applications. FEMS Microbial Lett 2008; 278: 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Bhattacharya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 2012; 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9

Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 2005; 7: 1673-1685. https://doi.org/10.1111/j.1462-2920.2005.00891.x

Sturz AV, Matheson BG. Populations of endophytic bacteriawhich influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 1996; 184: 265- 271. https://doi.org/10.1007/BF00010455

Duijff BJ, Gianinazzi-Pearsonand V, Lemanceau P. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by bio control Pseudomonas fluorescens strain WCS417r. New Photo 1997; 135: 325-334. https://doi.org/10.1046/j.1469-8137.1997.00646.x

Andreote FD, Rocha UND, Araújo WL, Azevedo JL, van Overbeek LS. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek 2010; 97: 389-399. https://doi.org/10.1007/s10482-010-9421-9

Land ell MGA, Campana MP, Figueiredo P, Vasconcelos ACM, Xavier MA, Bidoia MAP, Prado H, Silva MA, Dinar do- Miranda L L, Santos A S, Perecin D, Rossetto R, Silva DN, Martins AL M, Gallo PB, Kantack RAD, Cavichioli JC, Veiga AA F, Anjos IA, Azania CAM, Pinto LR and Souza SACD. Variedades de cana-de-açúcar para o Centro-Sul do Brasil: 16ª liberação do programa Cana IAC (1959-2007). Campinas. Instituto Agronômico2005a [Links].

Machado RS, Ribeiro RV, Marchiori PE R, Machado DFSP, Machado EC, Landell MGA. Respostas biométricas e fisiológicas ao déficit hídrico em cana-de-açúcar em diferentes fases fenológicas. Pesquisa Agropecuária Brasileira 2009; 44: 1575-1582. https://doi.org/10.1590/S0100-204X2009001200003

Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci 12008; 636-639. https://doi.org/10.1038/ngeo325

Posada F, Vega FE. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma potential in agrobiology system. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin 2005; pp. 1-44. https://doi.org/10.3852/mycologia.97.6.1195

Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D. Endophytic bacteria andtheir potential applications. Crit Rev Plant Sci 2002; 21: 583-606. https://doi.org/10.1080/0735-260291044377

Sergeeva E, Hirkal DL, Nelson LM. Production of indole-3- acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoeaagglomerans rhizosphere isolates. Plant Soil 2007; 297: 1-13. https://doi.org/10.1007/s11104-007-9314-5

Denise K, Pat Z, Lambrecht N, Harris B, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Alahari, Arunakumari RG, Vidaver BAK. Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants. Applied and Environmental Microbiology 2002; pp. 2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002

Johnston-Monje D, Raizada MN. Plant and Endophyte Relationships: Nutrient Management In: Murray Moo-Young (ed.), Comprehensive. Biotechnology, Second Edition 2011; 4: pp. 713-727. Elsevier https://doi.org/10.1016/B978-0-08-088504-9.00264-6

Bell CR, Dickie GA, Harvey WLG, Chan JWYF. Endophytic bacteria in grapevine. Can J Microbiol 1995; 41: 46-53. https://doi.org/10.1139/m95-006

Hallmann J, Kloepper JW, Odriguez-Kabana RR. Application of scholander pressure bomb to studies on studies on endophytic bacteria of plant. Can J Microbiol 1997a; 43: 411- 416. https://doi.org/10.1139/m97-058

De Wit, PJGM, Spikman G. Evidence for the occurrence of race and cultivar- specific elicitors of necrosis in intercellular fluids compatible interactions of Cladosporium fulvum and tomato. Plant Pathol 1982; 21: 1-11. https://doi.org/10.1016/0048-4059(82)90002-9

Truyens S, Weyens N, Cuypers A, Vangronsveld J. Changes in the population of seed bacteria of Trans generationally Cd- exposed Arabidopsis thaliana. Plant Biology 2012; 1435- 8603. https://doi.org/10.1111/j.1438-8677.2012.00711.x

Di Palma AA, Lamattina L, Creus CM. Nitrioxide as a Signal Molecule in Intracellular and Extracellular Bacteria-plant Interactions. Ecological Aspects of Nitrogen Metabolism in Plants 2011; 397-420. https://doi.org/10.1002/9780470959404.ch17

Andres Arruebarrena Di Palma, Lorenzo Lamattina and Cecilia M. CreusN itri Oxide as a Signal Molecule in Intracellular and Extracellular Bacteria-plant Interactions. Ecological Aspects of Nitrogen Metabolism in Plants 2011; 397-420.

Cankar K, Kreiger H, Ravnikar M, Rupnik M. Bacterial endophytes from seeds of Norway spruce (Piceaabies L. Karst). FEMS Microbiol Lett 2005; 244: 341-345. https://doi.org/10.1016/j.femsle.2005.02.008

Mastretta C, Taghavi S, van D, der Lelie, et al. Endophytic bacteria from seeds of Nicotiana tabacumcan reduce cadmium phytotoxicity. International Journal of Phytoremediation 2009; 11(3): 251-267. https://doi.org/10.1080/15226510802432678

Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortiga E, Rodes R. A nitrogen fixing endophytes of sugarance stem. Plant Physiology 1994; 105: 325-334. https://doi.org/10.1104/pp.105.4.1139

Mundt JO, Hinkle NF. Bacteria within ovules and seeds. Appl Environ Microbiol 1976; 32: 694-698. https://doi.org/10.1128/aem.32.5.694-698.1976

Gagnt S, Richard C, Rousseau, Antoun H. Xylem-residing bacteria in alfalfa roots. Can J Microbiol 1987; 33: 996-1000. https://doi.org/10.1139/m87-175

MisaghiI J, Donndelinger CR. Endophy tic bacteria in symptom-free cotton plants. Phytopathology 1990; 80: 808- 81. https://doi.org/10.1094/Phyto-80-808

McInroy JA, Kloepper JW. Studies on indigenous endophytic bacteria of sweet corn and cotton. In Molecular ecology of rhizosphere microorganisms. Edited by O'Gara F, Dowling DN, Boesten B. VCH Verlagsgesellschaft, Weinheim, Germany 1994; pp. 19-28. https://doi.org/10.1002/9783527615810.ch2

McInroy JA, Kloepper JW. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 1995a; 173: 337-342. https://doi.org/10.1007/BF00011472

Mahaffee WF, Kloepper JW. Microbial changes in the bacterial communities of soil, rhizosphere, and endorhiza. Microb Ecol 1997; in press.

Gardner JM, Feldman AW, Zablotowicz RM. Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 1982; 43: 1335- 1342. https://doi.org/10.1128/aem.43.6.1335-1342.1982

Jacobs MJ, Bugbee WM, Gabrielson DA. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63: 1262-1265. Microbiol 1985; 43: 1335-1342. https://doi.org/10.1139/b85-174

Hollis JP. Bacteria in healthy potato tissue. Phytopathology 1951; 41: 350-367.

Fisher PJ, Petrini O, Scott HML. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 1992; 122: 299-305. https://doi.org/10.1111/j.1469-8137.1992.tb04234.x

Samish Z, Etinger-Tulczynska R and Bick M. Micro flora within healthy tomatoes. Appl Microbiol 1961; 9: 20-25. https://doi.org/10.1128/am.9.1.20-25.1961

Samish Z, Etinger-Tulczynska R and Bick M. The microflora within the tissue of fruits and vegetables 1963; 28: 259-266.

Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 2010; 42: 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024

Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E. Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 2005; 71: 1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005

Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E. Clément C. Endophytic colonization of Vitis vinifera L. by Burkholderiaphytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 2008; 63: 84- 93. https://doi.org/10.1111/j.1574-6941.2007.00410.x

Anand R, Grayston S, Chanway CP. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 2013; 66: 369-374. https://doi.org/10.1007/s00248-013-0196-1

Lamb TG, Tonkyn DW, Kluepfel DA. Movement of of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 1996; 42: 1112-1120. https://doi.org/10.1139/m96-143

Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012; 10: 828-840. https://doi.org/10.1038/nrmicro2910

Olivares F, James E, Baldani J, Döbereiner J. Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 1997; 135: 723-737. https://doi.org/10.1046/j.1469-8137.1997.00684.x

Monika S. Ajay K, Ritu S and Kapil Deo Pandey. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 2017; 7: 315.

Rosenblueth M and Martinez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 2006; 19: 827-837. https://doi.org/10.1094/MPMI-19-0827

Truyens S, Weyens N, Cuypers A and Vangronsveld J Bacterial seed endophytes: genera, vertical transmission and interaction with plants. (2015). Environ. Microbiol. Rep. 7, 40–50.

Compant S, Mitter B, Colli JG, Sessitsch A. Endophytes of Grapevine Flowers, Berries, and Seeds: Identification of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microbial Ecology 2011; 62(1): 188-97. https://doi.org/10.1007/s00248-011-9883-y

Toumatia O, Compant S, Yekkour A, Goudjal Y, Sabaou N, Mathieu F. Bio control and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. South African Journal of Botany 2016; 105: 234-239. https://doi.org/10.1016/j.sajb.2016.03.020

Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact 2015; 28: 10-21. https://doi.org/10.1094/MPMI-07-14-0225-R

Piromyou P, Songwattana P, Greetatorn T, Okubo T, Kakizaki KC and Prakamhang J, et al. The Type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-photosynthetic Bradyrhizobium. Microbes Environ 2015b; 30: 291-300. https://doi.org/10.1264/jsme2.ME15080

Meneses CHSG, Rouws LFM, Simoes-Araujo JL, Vidal MS, Baldani JI. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 2011; 24: 1448-1458. https://doi.org/10.1094/MPMI-05-11-0127

Strobel G, Ford WJ, Harper JK, Arif AM, Grant DM, Peter Fand Chau RM. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora possessing antifungal and antioxidant activities. Photochemistry 2002; 60: 179-183. https://doi.org/10.1016/S0031-9422(02)00062-6

Suryanarayanan TS, Murali TS. Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in southern India. J Basic Microbiol 2006; 46: 10. https://doi.org/10.1002/jobm.200510126

Alquéres S, Meneses C, Rows L, Roth Baller M, BaldaniI Schmid M, Hartmann A. The bacterial superoxide dismutase and glutathione reeducates are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact 2013; 26: 937-945. https://doi.org/10.1094/MPMI-12-12-0286-R

Ringelberg D, Foley K, Reynolds CM. Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Can J Microbiol 2012; 58: 67-80. https://doi.org/10.1139/w11-122

Battistoni F, Bartels D, Kaiser O, Reamon-Buettner MS, Hurek T, Reinhold Hurek B. Physical map of the Azoarcus sp. strain BH72 genome based on a bacterial artificial chromosome library as a platform for genome sequencing and functional analysis. FEMS Microbiol Lett 2005; 249: 233- 240.

Hardoim PR, van Overbeek LS, van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 2008; 16: 463-471. https://doi.org/10.1016/j.tim.2008.07.008

Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 2013; 7: 11-16. https://doi.org/10.4103/0973-7847.112833

Kandel SL, Herschberger N, Kim SH, Doty SL. Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 2015; 55: 1765-1772. https://doi.org/10.2135/cropsci2014.08.0570

Castanheira NL, Dourado AC, Pais I, Semedo J, Scotti- Campos P, Borges N, Carvalho G, Barreto Crespo MT, Fareleira P. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiol Res 2017; 198: 47-55. https://doi.org/10.1016/j.micres.2017.01.009

Iniguez AL, Dong Y, Triplett EW. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 2004; 17: 1078-1085. https://doi.org/10.1094/MPMI.2004.17.10.1078

Dave BP, Dube HC. Chemical characterization of fungal siderophores. Indian Journal of Experimental Biology 2000; 38: 56-62.

Abo-Kora HA. Endophytic colonization of maize (Zea mays v.) root plants by PGPRs under salinity stress. Nature and Science 2016; 14(7): 34-51.

Zimmermann R, Iturriaga R, Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol 1978; 36: 926-935. https://doi.org/10.1128/aem.36.6.926-935.1978

Balsanelli E, Serrato RV, de Baura V, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 2010; 12: 2233- 2244. https://doi.org/10.1111/j.1462-2920.2010.02187.x

Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN. Bacterial endophyte-enhanced phyto-remediation of the organ chlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 2006; 57: 302-310. https://doi.org/10.1111/j.1574-6941.2006.00121.x

Katherine Mattos, vania m Pádua, alexandre romeiro, leticia f Hallack, bianca C. Neves1, tecia MU Ulisses, claudia F Barros, adriane R Todeschini ,josé o Previato and lucia mendonça-previato Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. Anais da Academia Brasileira de Ciências. 2008; 80(3): 477-493.

Pious T, Krishna M. Redd. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana . AoB PLANTS 2013; 5: plt011. https://doi.org/10.1093/aobpla/plt011

Bushra K, Ramesh C. Isolation and identification of endophytic bacteria producing bright red pigment from the dye yielding plant beta vulgaris L. Vol 7, Issue 5, cacao). Mycologia 2015; 97: 1195-1200.

Schloter M, Assmus B, Hartmann A. The use of immunological methods to detect and identify bacteria in the environment. Biotechnol A 1995; 13 (1): 75-90. https://doi.org/10.1016/0734-9750(94)00023-6

McFadden GI. In situ hybridization techniques: molecular cytology goes ultrastructural. In Electron microscopy of plant cells. Edited by J.L. Hall and C. Hawes. Academic Press, London 1991; pp. 219-255. https://doi.org/10.1016/B978-0-12-318880-9.50011-9

Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacterial 1994; 176: 1913-1923. https://doi.org/10.1128/jb.176.7.1913-1923.1994

Kluepfel DA. The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 1993; 31: 441-472. https://doi.org/10.1146/annurev.py.31.090193.002301

You CB, Lin M, Fang XJ, Song W. Attachment of Alcaligenes to rice roots. Soil Biol Biochem 1995; 27: 463-466.

Gourion B, Berrabah F, Ratet P, Stacey G. Rhizobium- legume symbioses: the crucial role of plant immunity. Trends Plant Sci 2015; in press. https://doi.org/10.1016/j.tplants.2014.11.008

Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. The American Phytopathological Society 2012; 25(1). https://doi.org/10.1094/MPMI-08-11-0204

Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, et al. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpineconifer. New Phytol 2016; 210: 657-668. https://doi.org/10.1111/nph.13850

Barraquio WL, Revilla L, Ladha JK. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 1997; 194: 15-24. https://doi.org/10.1023/A:1004246904803

Prakamhang J, Boonkerd N, Teaumroong N. Rice endophytic diazotrophic bacteria. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin 2010; pp. 317-322. https://doi.org/10.1007/978-3-642-13612-2_14

Baldani JI, Baldani VLD, Seldin L, Dobereiner J. Characterization of Herbaspirillumseropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 1986; 36: 86-93. https://doi.org/10.1099/00207713-36-1-86

Baldani VLD, Oliveira E, Balota E, Baldani JI, Kirchhof G, Dobereiner J Burkholderia brasilensis sp. nov., uma nova especie de bacteria diazotroficaendofitica. An Acad Bras Cienc 1997b; 69: 116.

Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De-Ley J. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloafusca (L.) Kunth), and description of two species, Azoarcus indigenes sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 1993; 43: 574-584. https://doi.org/10.1099/00207713-43-3-574

Taule´ C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 2012; 356: 35-49. https://doi.org/10.1007/s11104-011-1023-4

Sevilla M, Burris RH, Gunapala N, Kennedy C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif- mutant strains. Mol Plant Microbe Interact 2001; 14: 358-366. https://doi.org/10.1094/MPMI.2001.14.3.358

Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 2008; 55: 130-140. https://doi.org/10.1007/s00248-007-9258-6

Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C. Endophytic nitrogen fixation in dune grasses (Ammophilaare aria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 2004; 49: 469-479. https://doi.org/10.1016/j.femsec.2004.04.010

Olivares FL, Baldani VLD, Reis VM, Baldani JI, Dobereiner J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in root, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 1996; 21: 197-200. https://doi.org/10.1007/BF00335935

Njoloma J, Tanaka K, Shimizu T, Nishiguchi T, Zakria M, Akashi R, Oota M, Akao S. Infection and colonization of aseptically micro propagated sugarcane seedlings by nitrogen- fixing endophytic bacterium, Herbaspirillum sp. B501gfp1. Biol Fertil Soils 2006; 43: 137-143. https://doi.org/10.1007/s00374-006-0078-5

Oliveira ALM, Urquiaga S, Döbereine J, Baldani JI. The effect of inoculating endophytic N2 fixing bacteria on micro propagated sugarcane plants. Plant Soil 2002; 242(2): 205- 215. https://doi.org/10.1023/A:1016249704336

Verma SC, Ladha JK, Tripathi AK. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 2001; 91: 127-141. https://doi.org/10.1016/S0168-1656(01)00333-9

Wakelin S, Warren R, Harvey P, Ryder M. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Bio Fert Soils 2004; 40: 36-43. https://doi.org/10.1007/s00374-004-0750-6

Costa JM, Loper JE. Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant-Microbe Interact 1994; 7: 440-448. https://doi.org/10.1094/MPMI-7-0440

Lee S, Flores-Incarnation M, Contreras-Zentella M, Garcia- Flores L, Escamilla JE, Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 2004; 186: 5384-5391. https://doi.org/10.1128/JB.186.16.5384-5391.2004

Pirttila A, Joensuu P, Pospiech H, Jalonen J, Hohtola A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 2004; 121: 305- 312. https://doi.org/10.1111/j.0031-9317.2004.00330.x

Compant S, Duffy B, Nowak JCLC, Barka EA. Use of plant growth-promoting bacteria for bio control of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005a; 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

Compant S, Reiter B, Sessitsch A, Nowak J, Cl´ement C, Barka EA. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 2005b; 71: 1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005

Oliveira ALM, Urquiaga S and Baldani JI. Processes mechanisms envolvidos an influence de microorganisms sobreo crescimento vegetal. Embrapa Agrobiologia, Documentos 2003; 161.

Moreira PAS, Crusellas L, Sá I, Gomes P, Matias C. Evaluation of a manual-based programme for the promotion of social and emotional skills in elementary school children: Results from a 4-year study in Portugal. Health Promotion International 2010; 25(3): 309-317. https://doi.org/10.1093/heapro/daq029

Polesi LF, Sarmento S, Anjos C. Composition and characterization of N pea and chickpea starches. Brazilian Journal of Food Technology 2011; 14(1): 74-81. https://doi.org/10.4260/BJFT2011140100010

Santoyo G, Moreno-Hagelsieb G, Orozco- Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2016; 183: 92-99. https://doi.org/10.1016/j.micres.2015.11.008

Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth- promoting rhizobacteria (PGPR): Their potential as antagonists and bicontrol agents. Genet Mol Biol 2012; 35(4): 1044-1051. https://doi.org/10.1590/S1415-47572012000600020

Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B. Quorum sensing and indole-3- acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 2013; 26: 546-553. https://doi.org/10.1094/MPMI-10-12-0241-R

Bhore SJ, Ravichantar N, Loh CY. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bio Information 2010; 5: 191. https://doi.org/10.6026/97320630005191

Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, Yun BW, Lee IJ. Seed-Borne Endophytic Bacillus amyloliquefaciens RWL-1 Produces Gibberellins and Regulates Endogenous Phytohormones of Oryza sativa. Plant Physiology and Biochemistry 2016; 106: 236-243. https://doi.org/10.1016/j.plaphy.2016.05.006

Khan IA, Aziz A, Munawar SM, Manzoor Z, Sarwar HS, Afzal A, Raza MA. Study on antipyretic activity of Rumex vesicarius leaves extract in albino rabbits. Veterinary world 2014; 3(1): 41-45. https://doi.org/10.14202/vetworld.2014.44-48

Carvalho TLG, Balsemão-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS. Nitrogen signaling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany 2014; 65: 5631-5642. https://doi.org/10.1093/jxb/eru319

Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR, Costa JM, Loper JE. Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol Plant Microbe Interact 1994; 7: 440-448. https://doi.org/10.1094/MPMI-7-0440

Mariano RLR, Silveira EB, Assist SMP, Gomes AMA, Nescient ARP, Donato VMTS. Importância de bactérias promotoras de crescimento e de biocontrole de doenças de plant as para Uma agricultura sustentável Ana is da Academia Pernambucana de Ciência Agronômica. Recife 2004; 1: 89-111.

Yi HS, Yang JW, Ryu CM. ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 2013; 4: 122. https://doi.org/10.3389/fpls.2013.00122

Lavaca PT, Azevedo JL. Endophytic bacteria: a biotechnological potential in agrobiology system. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin 2013; pp. 1- 44. https://doi.org/10.1007/978-3-642-37241-4_1

Pinto FA, Souza ED, Paulino HB, Curi N, et al. Psorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Cienc Agrotec 2008; 37: 521-530. https://doi.org/10.1590/S1413-70542013000600005

Edwards CL, Maguire RO, Alley MM, Thomason WE, et al. Plant-available phosphorus after application of synthetic chelating agents. Commun Soil Sci Plant Anal 2016; 47: 433-446. https://doi.org/10.1080/00103624.2015.1122796

Oliveira CA, Alves VM, Marriel IE, Gomes EA, et al. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado biome. Soil Biol Biochem 2009; 41: 1782-1787. https://doi.org/10.1016/j.soilbio.2008.01.012

Gomes EA, Silva UC, Marriel IE, Oliveira CA, et al. Rock phosphate solubilizing microorganisms isolated from maize rhizosphere soil. Rev Bras Milho Sorgo 2014; 13: 69-81.

Naher UA, Othman R, Shamsuddin ZHJ, Saud HM, Ismail MR. Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agaric Biol 2009; 11: 586-590.

Sharma A, Johri BN. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 2003; 158: 243-248. https://doi.org/10.1078/0944-5013-00197

Vendan RT, Yu YJ, Lee SH, Rhee YH. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. Microbiol 2010; 48(5): 559-565. https://doi.org/10.1007/s12275-010-0082-1

Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 2012; 102: 463-472. https://doi.org/10.1007/s10482-012-9778-z

Hughes MN, Poole RK. Metal speciation and microbial growth the hard and soft facts. J Gen Microbiol 1991; 137: 725-34. https://doi.org/10.1099/00221287-137-4-725

Saravanan VS, Madhaiyan M, Thangaraju M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 2007; 66: 1794-98. https://doi.org/10.1016/j.chemosphere.2006.07.067

Krithika S, Balachandar D. Expression of Zinc Transporter Genes in Rice as Influenced by Zn solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 2016; 7: 446. https://doi.org/10.3389/fpls.2016.00446

Hafeez F, Abaid UM, Hassan M. Plant growth promoting rhizobacteria as zinc mobilizers: a promising approach for cereals bio fortification, in Bacteria in Agrobiology: Crop Productivity (eds) Maheshwari DK, Saraf M and Aeron A. Springer 2013; 217-35. https://doi.org/10.1007/978-3-642-37241-4_9

Sharma P, Kumawat KC, Sabhjeet K, Navprabhjot K. Assessment of Zinc solubilization by Endophytic Bacteria in Legume Rhizosphere, Indian Journal of Applied Research 2014; 4(6): 439-441. https://doi.org/10.15373/2249555X/June2014/137

Fernandes GW, Oki Y, Belmiro MS, et al. Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod-Plant Interact 2018; 12: 329-337.

Perez-Alfocea F, Albacete A, Ghanem ME, Dodd IC. Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signaling in tomato. Fun Plant Biol 2010; 37: 592-603. https://doi.org/10.1071/FP10012

Del Rio L. ROS and RNS in plant physiology: an overview. J Exp Bot 2015; 66: 2827-2837. https://doi.org/10.1093/jxb/erv099

Vaishnav A, Choudhary DK. Regulation of droughtresponsive gene expression in Glycine max l. Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul 2018b. https://doi.org/10.1007/s00344-018-9846-3

Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 2000; 16: 1-18.

Czarny JC, Grichko V, Glick BR. Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 2006; 24(4): 410-419. https://doi.org/10.1016/j.biotechadv.2006.01.003

Karthikeyan B, Joe MM, Islam R, Sa T. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus rose us through reduced ethylene levels and induction of ant oxidative defense systems. Symbiosis 2012; 56(2): 77-86. https://doi.org/10.1007/s13199-012-0162-6

Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. Journal of Theoretical Biology 2014; 343: 193-198. https://doi.org/10.1016/j.jtbi.2013.10.007

Ma Y, Rajkumar M, Freitas H. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 2009; 90(2): 831-837. https://doi.org/10.1016/j.jenvman.2008.01.014

Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. Characterization of ACC deaminase producing endophytic bacteria isolated from copper tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 2011a; 83(1): 57-62. https://doi.org/10.1016/j.chemosphere.2011.01.041

Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF. Characterization of lead resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials 2011b; 186(2-3): 1720-1725. https://doi.org/10.1016/j.jhazmat.2010.12.069

Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008; 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Dombrowski JE. Salt stress activation of wound - related genes in tomato plants. Plant Physiol 2003; 132: 2098-2107. https://doi.org/10.1104/pp.102.019927

Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002; 53: 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Mauch-Mani B, Mauch F. The role of abscise acid in plant- pathogen interactions. Curr Opin Cell Biol 2005; 8: 409-414. https://doi.org/10.1016/j.pbi.2005.05.015

Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B. The genomes of closely related Pantoeaananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 2015; 6: 1-16. https://doi.org/10.3389/fmicb.2015.00440

Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation 2014; 73: 121-131. https://doi.org/10.1007/s10725-013-9874-8

Jha Y, Subramanian RB, Patel S. Combination of endophytic andrhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plant 2011; 33: 797-802. https://doi.org/10.1007/s11738-010-0604-9

Cohen AC, Travaglia CN, Bottini R, Piccoli PN. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 2009; 87(5): 455-462. https://doi.org/10.1139/B09-023

Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signaling and Behavior 2007; 2(3): 135-138. https://doi.org/10.4161/psb.2.3.4156

Kamilova F, de Bruyne R. Plant Growth promoting microorganisms: The road from an academically promising result to a commercial product. In: Molecular microbial ecology of the rhizosphere, de Bruijn FJ, Ed.ch 64.Wiley- Blackwell, Hoboken: NJ, USA 2013; 43: 337-59. https://doi.org/10.1002/9781118297674.ch64

Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Elsevier FEMS Microbiology Reviews 1998; 3(2): 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2

Fages J. In industrial view of Azospirillum inoculants: Formulation and application technology. Symbiosis 1992; 13: 15-26.

Blanco JM, Ben JJ. Lugtenberg. Biotechnological Applications of Bacterial Endophytes. Current Biotechnology 2014; 3: 60-75. https://doi.org/10.2174/22115501113026660038

Romaine CP, Schlagnhaufer B. characteristics of hydrated, alginate-based delivery system for cultivation of the button mushroom. Appl Environ Microbial 1992; 58: 3060-3066. https://doi.org/10.1128/aem.58.9.3060-3066.1992

Walker HL, Connick Jr WJ. Sodium alginate for produavtion and formulation of mycoherbicides. Weed Sci 1983; 31: 333-338.

Bashan Y, Carrillo A. Bacterial inoculants for sustainable agriculture. In New horizons in agriculture: agroeology and sustainable development; Prez-Moreno J, Ferrera-Cenato R, (eds), Proceedings of the 2nd international symposium on agroecology, sustainable agriculture and education. A Luis Potosi, Mexico. Published by olegio de Postgraduadosenciencias Agricolas, Montecillo, Mexico 1996; pp. 125-155.

Kitamikado M, Yamaguchi K, Tseng CH, Okabe B. Methods designed to detect alginate-degrading bacteria. Appl Environ Microbiol 1990; 56: 2939-2940. https://doi.org/10.1128/aem.56.9.2939-2940.1990

Evelina I, Teunou E, Poncelet D. Alginate based macro capsules as inoculants carriers for production of nitrogen.Proceedings of the Balkan scientific conference of biology in Plovdiv from 19TH TILL21ST 2005; pp. 90-108.

Saad MM, Abo-Koura HA, Bishara MM, Gomaa IM. Microencapsulation: Toward the Reduction of the Salinity Stress Effect on Wheat Plants Using NPK Rhizobacteria. Biotechnology Journal International 2019; 23(4): 1-18. https://doi.org/10.9734/bji/2019/v23i430091

Saad MM, Abo-Koura HA, Abd El-Latif KM, Aly MM. Application of alginate bead encapsulated n-fixing bacteria is improving wheat yield under drought stress. Planet Archives 2020; 22(1): 1735-1747.

Gomaa IM, Saad MM, Mahmoud HA, Abo-Koura HA. Biodegradation of Acetamiprid by both free and immobilized Lysinobacillus macrolides strain MSR-H10 in soil. International Journal of Scientific Research and Sustainable Development 2020; 3(3). https://doi.org/10.21608/ijsrsd.2020.131131

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.