Time-Splitting Chebyshev-Spectral Method for the Schrödinger Equation in the Semiclassical Regime with Zero Far-Field Boundary Conditions
PDF

Keywords

 Schrödinger equation, time-splitting Chebyshev-spectral method, zero far-field boundary conditions, semiclassical limit.

How to Cite

Hongsheng Wang, Yushan Ni, & Junwan Li. (2013). Time-Splitting Chebyshev-Spectral Method for the Schrödinger Equation in the Semiclassical Regime with Zero Far-Field Boundary Conditions. Journal of Basic & Applied Sciences, 9, 60–68. https://doi.org/10.6000/1927-5129.2013.09.11

Abstract

Semiclassical limit of Schrödinger equation with zero far-field boundary conditions is investigated by the time-splitting Chebyshev-spectral method. The numerical results of the position density and current density are presented. The time-splitting Chebyshev-spectral method is based on Strang splitting method in time coupled with Chebyshev-spectral approximation in space. Compared with the time-splitting Fourier-spectral method, the time-splitting Chebyshev-spectral method is unnecessary to treat the wave function as periodic and holds the smoothness of the wave function. For different initial conditions and potential (e.g. constant potential and harmonic potential), extensive numerical test examples in one-dimension are studied. The numerical results are in good agreement with the weak limit solutions. It shows that the time-splitting Chebyshev-spectral method is effective in capturing ?-oscillatory solutions of the Schrödinger equation with zero far-field boundary conditions. In addition, the time-splitting Chebyshev-spectral method surpasses the traditional finite difference method in the meshing strategy due to the exponentially high-order accuracy of Chebyshev-spectral method.

https://doi.org/10.6000/1927-5129.2013.09.11
PDF

References

Markowich PA, Pietra P, Pohl C. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer Math 1999; 81: 595-30. http://dx.doi.org/10.1007/s002110050406

Bao W, Jin S, Markowich PA. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J Comput Phys 2002; 175: 487-24. http://dx.doi.org/10.1006/jcph.2001.6956

Alonso MA, Forbes GW. New approach to semiclassical analysis in mechanics. J Math Phys 1999; 40: 1699-18. http://dx.doi.org/10.1063/1.532829

Fannjiang A, Jin S, Papanicolaou G. High frequency behavior of the focusing nonlinear Schrödinger equation with random inhomogeneities. SIAM J Appl Math 2003; 63: 1328-58. http://dx.doi.org/10.1137/S003613999935559X

Bronski JC, McLaughlin DW. Semiclassical behavior in the NLS equation: Optical shocks-focusing instabilities. In: Ercolani N M, Gabitov I R, Levermore C D, Serre D, editiors. Singular limits of dispersive waves; 1991: NATO Adv. Sci. Inst. Ser. B Phys., 320. Plenum 1994: pp. 21-38.

Forest MG, McLaughlin KT–R. Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers. J Nonlinear Sci 1998; 8: 43-62. http://dx.doi.org/10.1007/s003329900043

Kodama Y, Wabnitz S. Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Optics Lett 1995; 20: 2291-93. http://dx.doi.org/10.1364/OL.20.002291

Gérard P. Microlocal defect measures. Comm PDE 1991; 16: 1761-94. http://dx.doi.org/10.1080/03605309108820822

Tartar L. H-measures, a New Approach for Studying Homogenization, Oscillations and Concentration Effects in Partial Differential Equations. Proc Roy Soc Edinburgh Sect A 1990; 115: 193-30. http://dx.doi.org/10.1017/S0308210500020606

Gasser I, Markowich PA. Quantum hydrodynamics, Wigner transform and the classical limit. Asymptotic Anal 1997; 14: 97-116.

Gérard P, Markowich PA, Mauser NJ, Poupaud F. Homogeneization limits and Wigner transforms. Comm Pure Appl Math 1997; 50: 323-79. http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C

Markowich PA, Mauser NJ, Poupaud F. A Wigner function approach to semiclassical limits: electrons in a periodic potential. J Math Phys 1994; 35: 1066-94. http://dx.doi.org/10.1063/1.530629

Miller PD, Kamvissis S. On the semiclassical limit of the focusing nonlinear Schrödinger equation. Phys Lett A 1998; 247: 75-86. http://dx.doi.org/10.1016/S0375-9601(98)00565-9

Zhang R, Zhang K. Application of time-splitting and wavelet based space-time adaptive method to solving Schrödinger equations. J Jilin Univ 2004; 42: 176-78.

Markowich PA, Pietra P, Pohl C, Stimming HP. A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J Numer Anal 2002; 40: 1281-10. http://dx.doi.org/10.1137/S0036142900381734

Trefethen Lloyd N. Spectral Methods in MATLAB: Philadelphia 2000. http://dx.doi.org/10.1137/1.9780898719598

Feit MD, Fleck JA, Steiger A. Solution of the Schrödinger equation by a spectral method. J Comput Phys 1982; 47: 412-33. http://dx.doi.org/10.1016/0021-9991(82)90091-2

Pathria D, Morris JL. Pseudospectral solution of nonlinear Schrödinger equations. J Comput Phys 1990; 87: 108-25. http://dx.doi.org/10.1016/0021-9991(90)90228-S

Bao W, Jin S, Markowich PA. Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J Sci Comput 2003; 25: 27-64. http://dx.doi.org/10.1137/S1064827501393253

Bao W, Jaksch D. An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J Numer Anal 2003; 41: 1406-26. http://dx.doi.org/10.1137/S0036142902413391

Bao W, Jaksch D, Markowich PA. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J Comput Phys 2003; 187: 318-42. http://dx.doi.org/10.1016/S0021-9991(03)00102-5

Bao W. Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions. Methods Appl Anal 2004; 11: 367-87.

Zhang R, Zhang K, Zhou YS. Numerical study of time-splitting, space-time adaptive wavelet scheme for Schrödinger equations. J Comput Appl Math 2006; 195: 263-73. http://dx.doi.org/10.1016/j.cam.2005.03.086

Landau LD, Lifschitz EM. Lehrbuch der Theoretischen Physik ?- Quantenmechanik: Akademic-Verlag 1985.

Gottlieb D, Orszag SA. Numerical Analysis of Spectral methods: Philadelphia 1977.

Canuto C, Hussaini MY, Quarteroni A, Zhang TA. Spectral Methods in Fluid Dynamics: Springer-Verlag 1988.

Fornberg B, Driscoll TA. A fast spectral algorithm for nonlinear wave equations with linear dispersion. J Comput Phys 1999; 155: 456-67. http://dx.doi.org/10.1006/jcph.1999.6351

Strang G. On the construction and composition of difference schemes. SIAM J Numer Anal 1968; 5: 506-17. http://dx.doi.org/10.1137/0705041

Gradinaru V. Strang splitting for the time-dependent Schrödinger equation on sparse grids. SIAM J Numer Anal 2007; 46: 103-23. http://dx.doi.org/10.1137/050629823

Gradinaru V, Tübingen. Fourier transform on sparse grids: code design and application to the time dependent Schrödinger equation. Computing 2007; 80: 1-22. http://dx.doi.org/10.1007/s00607-007-0225-3

Jahnke T, Lubich C. Error bounds for exponential operator splitting. BIT 2000; 40: 735-44. http://dx.doi.org/10.1023/A:1022396519656

Sportisse B. An analysis of operator splitting techniques in the stiff case. J Comput Phys 2000; 161: 140-68. http://dx.doi.org/10.1006/jcph.2000.6495

Yoshida H. Construction of higher order symplectic integrators. Phys Lett A 1990; 150: 262-68. http://dx.doi.org/10.1016/0375-9601(90)90092-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Hongsheng Wang, Yushan Ni , Junwan Li