Fundamental Problems of Internal Gravity Waves Dynamics in Ocean
PDF

Keywords

 Stratified ocean, internal gravity waves, asymptotic methods.

How to Cite

Vitaly V. Bulatov, & Yury V. Vladimirov. (2013). Fundamental Problems of Internal Gravity Waves Dynamics in Ocean. Journal of Basic & Applied Sciences, 9, 69–81. https://doi.org/10.6000/1927-5129.2013.09.12

Abstract

In paper fundamental problems of internal gravity waves dynamics are considered. The solution of this problem is expressed in terms of the Green’s function and the asymptotic representations of the solutions are considered. The uniform asymptotic forms of the internal gravity waves in horizontally inhomogeneous and non-stationary stratified ocean are obtained. A modified spatio-temporal ray method is proposed, which belongs to the class of geometrical optics methods (WKBJ method). Analytical and numerical algorithms of internal gravity wave calculations for the real ocean parameters are presented.

https://doi.org/10.6000/1927-5129.2013.09.12
PDF

References

Nansen F. Farthest North: The epic adventure of a visionary explorer. Skyhorse Publishing 1897.

Ekman VW. On dead water. In: Nansen F, editor. The Norwegian north polar expedition 1893-1896. Scientific Results. Kristiania 1904; pp. 152-166.

Apel JR. Observations of internal wave surface signatures in ASTP photographs. In: Apollo-Soyuz Test Project. Summary Science Report. NASA SP. Washington: Scientific and Technical Information 1978; Vol. II: pp. 505-509.

Dickey JO, et al. Luna laser ranging: A continuing legacy of the Apollo Program. Science 1994; 265: 482-90. http://dx.doi.org/10.1126/science.265.5171.482

Morozov EG. Internal tides. Global field of internal tides and mixing caused by internal tides. In: Grue J, Trulsen K, Eds. Waves in geophysical fluids. Wein New York: Springer 2006; pp. 271-32. http://dx.doi.org/10.1007/978-3-211-69356-8_6

Grue J. Very large internal waves in the ocean – observations and nonlinear models. In: Grue J, Trulsen K, Eds. Waves in geophysical fluids. Wein New York: Springer 2006; pp. 205-207. http://dx.doi.org/10.1007/978-3-211-69356-8_5

Grue J, Sveen JK. A scaling law of internal run-up duration. Ocean Dynamics 2010; 60: 993-1006. http://dx.doi.org/10.1007/s10236-010-0284-4

Alendal G, Berntsen J, Engum E, Furnes GK, Kleiven G, Eide LI. Influence from ‘Ocean Weather’ on near seabed currents and events at Ormen Lange. Marine Petroleum Geology 2005; 22: 21-31. http://dx.doi.org/10.1016/j.marpetgeo.2004.10.011

Garret C. Internal tides and ocean mixing. Science 2003; 301: 1858-59.

Garrett C, Kunze E. Internal tide generation in the deep ocean. Rev Fluid Mech 2007; 39: 57-87. http://dx.doi.org/10.1146/annurev.fluid.39.050905.110227

Grue J. Internal wave fields analyzed by imaging velocimetry. In: Grue J, Liu PLF, Pedersen GK, Eds. PIV and Water Waves. World Scientific 2004; pp. 239-278. http://dx.doi.org/10.1142/9789812796615_0006

Song ZJ, Gou BY, Lua L, Shi ZM, Xiao Y, Qu Y. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Appl Ocean Res 2011; 33: 120-29. http://dx.doi.org/10.1016/j.apor.2011.01.003

Hsu MK, Liu AK, Liu C. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Res 2000; 20: 389-10. http://dx.doi.org/10.1016/S0278-4343(99)00078-3

Bulatov VV, Vladimirov YuV. Internal gravity waves: theory and applications. Moscow: Nauka Publishers 2007.

Bulatov VV, Vladimirov YuV. Wave dynamics of stratified mediums. Moscow: Nauka Publishers 2012.

Miropol'skii YuZ, Shishkina OV. Dynamics of internal gravity waves in the ocean. Boston: Kluwer Academic Publishers 2001.

Pedlosky J. Waves in the ocean and atmosphere: introduction to wave dynamics. Berlin- Heidelberg: Springer 2010.

Sutherland BR. Internal gravity waves. Cambridge: Cambridge University Press 2010.

Lighthhill MJ. An informal introduction to theoretical fluid mechanics. Oxford: Oxford University Press 1986.

Babich VM, Buldyrev VS. Asymptotic methods in short-wavelenght diffraction theory. Oxford: Alpha Science 2007.

Arnold VI. Catastrophe theory. Berlin, Heidelberg: Springer 1992.

Bulatov VV, Vladimirov YuV. The uniform asymptotic form of the internal gravity wave field generated by a source moving above a smoothly varying bottom. J Eng Math 2011; 69(Pt 2): 243-60. http://dx.doi.org/10.1007/s10665-010-9388-6

Voizin B. Limit states of internal wave beams. J Fluid Mech 2003; 496: 243-93. http://dx.doi.org/10.1017/S0022112003006414

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Vitaly V. Bulatov , Yury V. Vladimirov