Comparison of Hepatic Parameters Following Administration of Antihypertensive, Hypolipidemic and Hypoglycemic Drugs
PDF

Keywords

 Hypoglycemia, hyperlipidemia, antihyperlipidemic, hypoglycemic, liver function tests.

How to Cite

Afshan Siddiq, Rafeeq Alam Khan, & Afaq Ahmed Siddiqui. (2013). Comparison of Hepatic Parameters Following Administration of Antihypertensive, Hypolipidemic and Hypoglycemic Drugs. Journal of Basic & Applied Sciences, 9, 82–86. https://doi.org/10.6000/1927-5129.2013.09.13

Abstract

The risk of additive effects of drugs has remained a continuous concern while prescribing more than one drug to a patient, and it becomes more of a problem when the patient suffers from various diseases simultaneously. In this reasearch the drug taking pattern of elderly patients was kept in mind and the antihyperlipidemic, oral hopoglycemic and antihypertensive commonly prescribed in combinations or as individual agents were given to the rabbits for period of two months and their effects on liver function tests were noted. As compared to control rabbits, Acarbose and Glibenclamide decreased Direct bilirubin (DBR), where as Lisinopril and Amlodipine increased it (P<0.05). Atorvastatin and Amlodipine increased Total bilirubin (TBR) (P<0.05). Acarbose and Metformin increased, where as Atorvastatin decreased Glutamic-Pyruvic Transaminase (GPT) (P<0.05). Metformin and Lisinopril decreased (P<0.05) where as Losartan increased ALP(alkaline phosphatase) (P<0.005). Losartan and Atorvastatin increased Gamma Glutamyl Transferase γ-GT (P<0.005).

https://doi.org/10.6000/1927-5129.2013.09.13
PDF

References

Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann NY Acad Sci 2010; 1187: 101-21. http://dx.doi.org/10.1111/j.1749-6632.2009.05141.x

Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 2003; 52(1): 13-8. http://dx.doi.org/10.1007/s00280-003-0620-1

McDonald GB, Frieze D. A problem-oriented approach to liver disease in oncology patients. Gut 2008; 57: 987-1003. http://dx.doi.org/10.1136/gut.2007.131136

Bolesta S, Roslund BP. Elevated hepatic transaminases associated with telithromycin therapy: A case report and literature review. Am J Health Syst Pharm 2008; 65: 37-41. http://dx.doi.org/10.2146/ajhp070164

Thomas MB, Abbruzzese JL. Opportunities for Targeted Therapies in Hepatocellular, Carcinoma. JCO 2005; 23: 8093-108. http://dx.doi.org/10.1200/JCO.2004.00.1537

Juurlink DN, Andrade RJ, Lucena MI, et al. Drug-Induced Hepatotoxicity. NEJM 2003; 349: 1974-76. http://dx.doi.org/10.1056/NEJM200311133492021

Usui T, Mise M, Hashizume T, Yabuki M, Komuro S. Evaluation of the Potential for Drug-Induced Liver Injury Based on in vitro Covalent Binding to Human Liver Proteins. Drug Metab Dispos 2009; 37: 2383-92. http://dx.doi.org/10.1124/dmd.109.028860

DeSanty KP, Amabile CM. Antidepressant-Induced Liver Injury. Ann Pharmacother 2007; 41: 1201-11. http://dx.doi.org/10.1345/aph.1K114

Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. Cellular Imaging Predictions of Clinical Drug-Induced Liver Injury. Toxicol Sci 2008; 105: 97-105. http://dx.doi.org/10.1093/toxsci/kfn109

Petri N, Bergman E, Forsell P, et al. First-Pass Effects Of Verapamil On The Intestinal Absorption And Liver Disposition Of Fexofenadine In The Porcine Model. Drug Metab Dispos 2006; 34: 1182-89. http://dx.doi.org/10.1124/dmd.105.008409

Clark CJ, Creighton S, Portmann B, Taylor C, Wendon JA, Cramp ME. Acute liver failure associated with antiretroviral treatment for HIV: a report of six cases. J Hepatol 2002; 36: 295-301. http://dx.doi.org/10.1016/S0168-8278(01)00291-4

Carrillo-Jimenez R, Nurnberger M. Celecoxib-induced acute pancreatitis and hepatitis: a case report. Arch Intern Med 2000; 160: 553-54. http://dx.doi.org/10.1001/archinte.160.4.553

Gonzalez de la Puenta MA, Calderon E, Espinosa R, Rincon M, Varela JM. Fatal hepatotoxicity associated with enalapril. Ann Pharmacother 2001; 35: 1492-92. http://dx.doi.org/10.1345/aph.1A055

Capella D, Bruguera M, Fugueras A, Laporte J. Fluoxetine-induced hepatitis: why is postmarketing surveillance needed? Eur J Clin Pharmacol 1999; 55: 545-46. http://dx.doi.org/10.1007/s002280050671

Graham DJ, Staffa JA, Shatin D, et al. ncidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004; 292(21): 2585-90. http://dx.doi.org/10.1001/jama.292.21.2585

Conjeevaram HS, Kleiner DE, Everhart JE, et al. Virahep-C Study Group. Race, insulin resistance and hepatic steatosis in chronic hepatitis C. Hepatology 2007; 45(1): 80-7. http://dx.doi.org/10.1002/hep.21455

Heyns AD, van den Berg DJ, Kleynhans PH, du Toit PW. Unsuitability of evacuated tubes for monitoring heparin therapy by activated partial thromboplastin time. J Clin. Pathol 1981; 34(1): 63-8. http://dx.doi.org/10.1136/jcp.34.1.63

Jendrassik L, Grof P. Vereinfachte photometrische Methodern fur Bestimmung des Blutbilirubins. Biochemische Zeitschrift 1938; 81: 297-301.

Bergmeyer HU, Bowers GN, Horder M, Moss DW. Provisional recommendation on IFCC methods for the measurement of catalytic concentrations of enzymes. Part 2. IFCC method for aspartat aminotransferase. Clin Chim Acta 1976; 70(2): 19-42. http://dx.doi.org/10.1016/0009-8981(76)90437-X

Szasz G, Persijin JP. A kinetic colorimetric method for determination of G-glutamyl transpeptidase in serum. Zeitschrift fur klinische chemie und klinische biochemie 1974; 12: 228-32.

Persijin JP, Van der silk W. A new method for determination of GGT. J Clin Chem Clin Biochem 1976; 4: 421.

Tietz NW, et al. J Clin Chem Clin Biochem 1983; 21: 731-48.

Cosgrove BD, Alexopoulos LG, Saez-Rodriguez J, Griffith LG, Lauffenburger DA. A multipathway phosphoproteomic signaling network model of idiosyncratic drug- and inflammatory cytokine-induced toxicity in human hepatocytes. Conf Proc IEEE Eng Med Biol Soc 2009; 5: 452-5.

Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci 2002; 65(2): 166-76. http://dx.doi.org/10.1093/toxsci/65.2.166

Sasaki T, Fujikane Y, Ogino Y, Osada K, Sugano M. Hepatic function and lipid metabolism are modulated by short-term feeding of cholesterol oxidation products in rats. J Oleo Sci 2010; 59(9): 503-7. http://dx.doi.org/10.5650/jos.59.503

Ina Bergheim LG, Anne Davis M, Lambert JC, et al. Metformin Prevents Alcohol-Induced Liver Injury in the Mouse: Critical Role of Plasminogen Activator Inhibitor-1. Gastroenterology 2006; 130(7): 2099-12. http://dx.doi.org/10.1053/j.gastro.2006.03.020

Ansede JH, Smith WR, Perry CH, St Claire RL 3rd, Brouwer KR. An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes. Drug Metab Dispos 2010; 38(2): 276-80. http://dx.doi.org/10.1124/dmd.109.028407

Adeneye AA, Benebo AS. Oral metformin-ascorbic acid co-administration ameliorates alcohol-induced hepatotoxicity in rats. Nig Q J Hosp Med 2007; 17(4): 155-9.

Nammour FE, Fayad NF, Peikin SR. Metformin-induced cholestatic hepatitis. Endocr Pract 2003; 9(4): 307-9.

Segura J, Garc?´a-Donaire JA, Ruilope LM. Calcium Channel Blockers and Renal Protection:Insights from the Latest Clinical Trials. J Am Soc Nephrol 2005; 16: S64-S66. http://dx.doi.org/10.1681/ASN.2004110969

Zinsser P, Meyer-Wyss B, Rich P. Hepatotoxicity induced by celecoxib and amlodipine. Swiss Med Wkly 2004; 134: 201.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Journal of Basic & Applied Sciences