Assessment of Anti-Oxidant Potency of Small Chain Glycopeptides Using DPPH Free Radical Scavenging Assay

Kandasamy Nagarajan^{1,*}, Sneha Singh¹, Taleuzzaman¹, Sadaf J. Gilani¹ and A. Mazumder²

¹Department of Pharmaceutical Chemistry, KIET School of Pharmacy, 13 Km. Stone, Ghaziabad Meerut Road, Ghaziabad-201206, India

²Noida Institute of Engg. & Technology, Greater Noida, India

Abstract: 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) *in-vitro* assay was employed to determine the antioxidant potency of test compounds I to VII [Arg-Thr-Starch (RTStr); Ser-Arg-Lac (SRLac); Asn-Arg-Mannose (NRMs); Arg-Asn-Lac (RNLac); Arg-Thr-Lac (RTLac); His-Asn-Mannose (HNMs); Asn-His-Lac (NHLac)] using ascorbic acid as the standard drug. The percentage scavenging activity of the test drugs were determined at different concentrations and the IC₅₀ value of the test compounds were subsequently compared with that of ascorbic acid. Among the compounds tested, compound II (SRLac) showed highest antioxidant activity with an IC₅₀ value of 14.2 μ g/ml whereas compounds I (RTS), VII (NHLac) and IV (RNLac) revealed the IC₅₀ value of 14.3 μ g/ml, 14.5 μ g/ml and 15.7 μ g/ml, respectively when compared with ascorbic acid (IC₅₀ = 15.8 μ g/ml). All the synthesized glycopeptides were further characterized by TLC, Melting point, IR, NMR and Mass spectral datas. Based on the above results, Ser-Arg-Lac could be considered as a lead compound for the development of new antioxidant drug for prevention of human diseases.

Keywords: 1.1-Diphenyl-2-picryl-hydrazyl, Antioxidant, Glycopeptides, Ascorbic acid, Potency.

INTRODUCTION

Free radicals easily react with macro-molecules of crucial biological significance (DNA, lipids, protein) and destroy their structure and function, which accelerates ageing and might lead to degenerative diseases, including cancer [1, 2].

Certain portion of reactive oxygen species (ROS) is generated during normal human metabolism and the production rate is precisely controlled by specialized system of antioxidant defense [3]. This well-balanced ROS synthesis is impaired by inflammatory events, where activated macrophages and neutrophils, upon contact with pro-inflammatory stimuli, release substantial amounts of aggressive oxygen and nitrogen-centered radicals [4].

Natural antioxidant defense system involves enzymes (superoxide dismutase, Catalase, glutathione peroxidase). other proteins (albumin, ferritin, ceruloplasmin) and numerous smaller molecules (e.g. glutathione, α -tocopherol, β -carotene, reduced bilirubin, uric acid) having various modes of action. Antioxidants counteract ROS and diminish their deleterious effects [5, 6]. This protective barrier can be enhanced by the use of antioxidant micronutrient (vitamins C, E, β -carotene) non-nutrient and

ISSN: 2223-3806 / E-ISSN: 1927-5951/12

ingredients of edible plants, like polyphenols. Polyphenol subgroup of chemicals, flavonoids, is the extensively examined group of antioxidants [7, 8]. A new class of water soluble glycopeptide (PGY) fractionated and purified from the aqueous extracts of *Ganoderma lucidum* were evaluated with two conventional antioxidant testing systems of DPPH and superoxide radical scavenging and found to have their respective antioxidant activities in a concentrationdependent manner [9].

As part of discovery of natural antioxidant agents, a study was designed to investigate the in-vitro antioxidant activity of seven glycopeptides and in order to establish the most potent antioxidant drug having therapeutic values.

MATERIALS & METHODS

Chemicals

All chemicals were analytical grade. The chemicals required for biochemical assay were obtained from Sigma Chemicals Co., USA,

DPPH Radical Scavenging Assay

The free radical scavenging activity of the test compounds was measured *in-vitro* by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay [10, 11]. About 0.3 mM solution of DPPH in 100% ethanol was prepared and 1ml of this solution was added to 3ml of test drug dissolved in ethanol at different concentrations (1-32)

^{*}Address corresponding to this author at the Department of Pharmaceutical Chemistry, KIET School of Pharmacy, 13 Km. Stone, Ghaziabad Meerut Road, Ghaziabad-201206, India; Tel: 09997628670; Fax: 01232-262057; E-mail: nagarajan_mph@yahoo.co.in

Test compound		% Inhibition						
	1µg/ml	2µg/ml	4µg/ml	8µg/ml	16μg/ml	32µg/ml		
Compound I (RTStr)	3.96	7.35	16.07	27.06	56.03	100	14.3	
Compound II (SRLac)	4.83	11.59	19.14	30.60	55.63	100	14.2	
Compound III (NRMs)	4.65	9.55	17.92	25.86	48.64	100	17.2	
Compound IV (RNLac)	3.61	7.80	16.34	25.87	48.78	100	15.7	
Compound V (RTLac)	3.24	6.70	12.34	21.64	46.71	100	17.1	
Compound VI (HNMs.)	3.81	7.68	14.70	24.22	45.54	100	17.5	
Compound VII (NHLac)	4.37	7.86	16.71	27.56	54.97	100	14.5	
Standard (Ascorbic Acid)	4.47	8.96	14.83	25.86	50.29	100	15.8	

*Values obtained from regression lines with 95% of confidence level. IC_{50} is defined as the concentration sufficient to obtain 50% of a maximum effect estimate in 100%. All values given are mean of triplicate experiments at S.D. (5%) for the above table.

 μ g/ml). The mixture was shaken and allowed to stand at room temperature for 30 minutes and the absorbance was measured at 517 nm using UV-visible double beam spectrophotometer (Shimadzu-1800). The % scavenging activity at different concentrations of test drugs were determined and the IC₅₀ values were compared with that of ascorbic acid.

Physico-Chemical Characterization

All the Synthesized glycopeptides were identified by their Melting point and TLC analysis as the preliminary level characterization and further confirmation of their structures was done with IR, ¹H-NMR, ¹³C-NMR and Mass spectral analysis.

Figure 1: Graphical representation of Linearity for the Standard Drug Concentration with their Corresponding Value.

RESULTS & DISCUSSION

Antioxidant Capacity

The results of DPPH free radical scavenging activity of the test glycopeptides are shown in Table **1**.

The graphs of IC50 Value prediction in UV-visible spectrophotometric determination of the most potent test drug and the standard with their linear regression and correlation coefficient are shown in Figures 1, 2 and 3.

All the test drugs I-VII demonstrated H-donor activity. The highest DPPH radical scavenging activity was detected in test drug- II (Ser-Arg-Lac; SRLac) with

100

90

an IC₅₀ value of 14.2 μ g/ml (Table 1), which showed that antioxidant activity was greater than that of standard ascorbic acid (IC₅₀ = 15.8 μ g/ml).

Similarly test drugs- I (Arg-Thr-Starch; RTStr), VII (Asn-His-Lac; NHLac) and IV (Arg-Asn-Lac; RNLac) have shown comparatively better antioxidant capacity with that of the standard drug, ascorbic acid (IC₅₀ = 15.8 μ g/ml) by their IC₅₀ values as 14.3 μ g/ml, 14.5 μ g/ml and 15.7 μ g/ml, respectively.

Physico-Chemical Characterization

The Physico-chemical characterization of the synthesized glycopeptides are explained in Table **2-9**.

32,100

ATS IC50 Graph

Figure 3: Graphical representation of Linearity for the Test Drug II (SRLac).

Table 2:	Preliminary	/ Identification of	the Synthesise	d Glycopeptidess b	by Melting Point 8	TLC Analysis

S. No.	COMPOUND NAME	M.Pt	Rf value (M.P.=CHCl₃:MeOH/9:1)
1.	(SER-ARG-LAC)	180°C	0.80
2.	(ARG-THR-LAC)	170°C	0.30
3.	(HIS-ASP-MAN)	180°C	0.40
4.	(MAN-ARG-ASP)	200°C	0.45
5.	(LAC-HIS-ASP)	160°C	0.25
6.	(ARG-THR-STA)	200°C	0.60
7.	(ARG-ASP-LAC)	190°C	0.20

By this data, we conclude that compounds 2, 3, 6 & 7 gave sharp point on TLC and having 0.30, 0.40, 0.60

& 0.20 as R_f values respectively with their above mentioned melting point values from the Table **2**.

Nagarajan et al.

I.R Spectral characteri	R Spectral characterization:						
S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type				
1.	1750	C=0 st.	Carboxylic acids/amino acids				
2.	1620	N-H bend	Amines				
3.	1570-1550	N-H and N-C=0 (st.) sy.	Amides (amide IV)				
4.	1100	Cyclic ether st. asy.	Pyranose of sugar				
5.	1000-940	C-O-C st. sym.	Ether, acetal, ketal				
6.	800	Sym. st	Cyclic ether, acetal, ketal.				

Table 3: Physico-Chemical Characterization of the O-Glycopeptide [Arg-Thr-Starch]

S. No.	Value (ppm)	Nature of peak	Significance and resemblance
1.	8.082	Doublet	R-C=O-NH- alk amide proton
2.	6.878	Doublet	1 st 'OH' gp. Of glucose
3.	6.577	Doublet	NH proton of NH₂-NH=NH
4.	4.402	Small singlet	'OH' gp. Of CH₂ side chain of glucose
5.	3.721	Small singlet	Methine(CH) proton of OH
6.	3.410	Small singlet	CH ₂ -O-CH ₂ ether (α 1-4) link of glucose and alk-O-
7.	2.932	Sharp singlet	Methylene(CH ₂) proton of OH
8.	1.20	Singlet narrow	CH ₂ proton
9.	0.85	singlet	CH₃ proton

¹³ C NMR Spectral ch	C NMR Spectral characterization:						
S. No.	Value (ppm)	Nature of peak	Significance and resemblance				
1.	110.791	Singlet(w)	(O-C-O) of acetal/ketal in sugar				
2.	39.757	Singlet(s)	CH ₂ -C =O(groups of 2 or more equivalent carbons)				
3.	31.195	Singlet(m)	Alkyl amine carbon(C-N)				

MASS Spectral ch	ASS Spectral characterization:							
S. No.	Name of the ion	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:899)			
1.	H₂O+.	18	[M-18]+ (H ₂ O)	Non specific, abundant: alcohols, some acids, aldehydes, ketones, lactones, cyclic ether 'O'indicator	881			

Table 4: Physico-Chemical Characterization of the N-Glycopeptide [Arg-Asn-Lactose]

pectral characterization:						
S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type			
1.	1660-1625	N-H s bend	Amines,			
		C=O st.	Aldehyde, acids			
		C=O st. (amides I)	Amides			
2.	1660-1510	N-H s and N-C=0 (st.) sy. (Amide II)	Amides			
3.	1575-1510	N ⁺ -H s bend	Amines			
4.	1250-1100	C-O-C st. Cyclic ether st. asy.	Ethers			
5.	1100	C-O-(H)st.	Alcohols			
			Ethers			

(Table 4). Continued.

¹ H NMR Spectral characte	¹ H NMR Spectral characterization:						
S. No.	Value (ppm)	Nature of peak	Significance and resemblance				
1.	8.082	Doublet, broad	R-C=O-NH- alk amide proton				
2.	6.997	Doublet, broad	1 st 'OH' gp of glucose				
3.	6.584	Doublet, narrow	NH proton of NH ₂ -NH=NH				
4.	5.029	Small singlet	3 rd 'OH' gp of lactose (glucose)				
5.	4.401	singlet	'OH' gp of CH ₂ side chain of lactose				
6.	3.721	Sharp singlet	Methine(CH) proton of OH				
7.	3.235	Singlet narrow	CH_2 -O-CH ₂ ether (α 1-4) link of glucose				
8.	3.163	Sharp singlet	Methylene(CH ₂) proton of OH				
9.	2.494	Sharp singlet	NH ₃ ⁺ proton (alkyl/amine)				
10.	1.5	Small singlet	CH proton				
11.	1.2	singlet	CH ₂ proton				

S. No.	Value (ppm)	Nature of peak	Significance and resemblance
1.	207.067	Small singlet (w)	Aldehyde of sugar & ketonic carbon
2.	175.694	Singlet (m)	Amides
3.	171	Singlet (w)	Carboxylate anion
4.	162.802	Singlet (w)	-C=O of H-C=O-NH-
5.	118.112	Singlet (s)	(O-C-O) of acetals/ketals
6.	79.739	Singlet (w)	'OH' bearing carbon of sugar
7.	62.935	Singlet (m)	Etheral carbon of connecting sugars
8.	55.460	Singlet (m)	CH₂ of OH in sugars
9.	39.651	Septet (s)	CH2-C=O-(Groups of 2 or more equivalent carbons
10.	31.182	Singlet (m)	Alkyl amines(C-N)
11.	25.652	Singlet (m)	NH of CONH
12.	24.922	Singlet (w)	Cyclic ether

W= weak signal intensity, M= moderate signal intensity.

MASS Spectral characterization:							
S. No.	lon name	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:629)		
1.	C_2H^+	25	[M-25] ^{+.} (C ₂ H)	Terminal acetylenyl	604		

Table 5:	Physico-Chemical Characterization	of the N-Glycopeptide	[Mannose-Arg-Asn]

Spectral character	Spectral characterization:					
S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type			
1.	1740	C=O st.	Amino acids			
2.	1740-1650	C=O st.	Carboxylic acids			
3.	1670-1650	C=O st. (Amide I)	Amides			
4.	1650-1550	N-H s bend C-O-C st. Cyclic ether st. asy.	Amines			
5.	1590	N-H s & N-C=O st. sy. (Amide II)	Amides			
6.	1590-1510	N⁺-H s bend	Amines			
7.	1450	CH ₂ -(C=C) s bend	Alkenes			
		CH ₂ s bend	Alkanes			
8.	1100	C-O (H) st.	Alcohols			
9.	760-500	CH ₂ bend	Alkanes			

٦

(Table 5). Continued.

ſ

¹ H NMR Spectral char	¹ H NMR Spectral characterization:						
S. No.	Value (ppm)	Nature of peak	Significance and resemblance				
1.	8.115	Singlet, broad	R-C=O-NH- alk amide proton				
2.	6.652	Doublet	NH proton of NH ₂ -NH=NH				
3.	4.400	Singlet	Amid methine proton				
4.	3.721	Sharp singlet	Methine(CH) proton of OH				
5.	3.311	singlet	Methylene(CH ₂) proton of OH				
6.	2.978	Sharp singlet	NH₂ proton				
7.	2.495	Sharp singlet	NH₃ ⁺ proton (alkyl/amine)				
8.	1.9	Singlet narrow	Methine(CH) proton attached with =N in sugar				
9.	1.229	Singlet narrow	Methylene(CH ₂) proton				

¹³ C NMR Spectral	³ C NMR Spectral characterization:							
S. No.	Value(ppm)	Nature of peak	Significance and resemblance					
1.	113.865	Singlet (m)	(O-C-O) of acetal/ketal in sugar					
2.	55.473	Singlet (w)	CH ₂ of OH in sugar					
3.	39.914	Singlet (s)	CH ₂ -C=O- (groups of 2 or more equivalent carbons)					
4.	31.182	Singlet (m)	Alkylamines (C-N)					

W= weak signal intensity, M= moderate signal intensity, S= strong signal intensity.

MASS Spectral characterization:						
S. No.	Name of the ion	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:451)	
1.	CH ₃ ⁺	15	[M-15] ^{+.} (CH₃)	Non specific, abundant: Methyl, N-ethylamine	436	

Table 6: Physico-Chemical Characterization of the N-Glycopeptide [His-Asn-Mannose]

S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type
1.	1675-1650	C=O st.	Amides (amide I)
		C=O st.	Acids
		C=O st.	Alkene & cyclo alkene
2.	1650-1525	ar. C-C st.	Hetero aromatic compound
3.	1650-1550	N-H s bend	Amines
4.	1610-1550	N-H s bend N-C=O st. sy.	Amides
5.	1525	N [⁺] -H s bend	Amines
6.	1000	C-O(H) st.	Alcohols
7.	1000-800	H-(C=C) s oop. Bend	Alkene, cycloalkene
8.	750-500	CH₂s bend	Alkanes

Г

(Table 6). Continued.

¹ H NMR Spectral characterization:					
S. No.	Value (ppm)	Nature of peak	Significance and resemblance		
1.	8.100	Singlet, broad	R-C=O-NH- alk amide proton		
2.	7.226	Doublet	Proton between N & NH in ring imidazole		
3.	6.877	Doublet	NH₃⁺ proton		
4.	6.604	Doublet	Imidazole ring proton adjacent to N		
5.	5.0	Small singlet	Amide methane proton adjacent to CH ₂ side chain of imidazole		
6.	4.401	Sharp singlet	Methylene proton adjacent to imidazole ring		
7.	3.9	Small singlet	Methylene proton adjacent to NH of imidazole ring		
8.	3.720	Sharp Singlet	methine proton of 'OH'		
9.	2.948	Sharp Singlet	Methylene proton of 'OH'		
10.	1.9	Small singlet	Methane (CH) proton attached with =N in sugar		
11.	1.2	Small singlet, narrow	CH ₂ proton		

¹³ C NMR Spectral characterization:						
S. No.	Value (ppm)	Nature of peak	Significance and resemblance			
1.	128.37	Singlet (m)	Carbon(a,b) in heteroaromatic imidazole ring system			
2.	113.88	Singlet (m)	(O-C-O) of acetal/ketal in sugar			
3.	55.46	Singlet (w)	CH₂ of OH in sugar			
4.	39.65	Singlet (s)	CH ₂ -C=O- (groups of 2 or more equivalent carbons)			
5.	25.31	Singlet (m)	Amine carbon			

W= weak signal intensity, M= moderate signal intensity, S= strong signal intensity.

MASS Spectral characterization:						
S. No.	Name of the ion	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:432)	
1.	$C_4H_8O^{+.}$	72	[M-72] ⁺ alkanes	'O' indicator	360	

Table 7: Physico-Chemical Characterization of the N-Glycopeptide [lactose-His-Asn]

ectral characterization:					
S. No.	Waveno. (cm ⁻¹)	Characteristic functional gp. feasible	Compound type		
1.	1750	C=O st. & C=O st.	Carboxylic acids & Carboxylic este		
2.	1650	C=O st.	Amide(amide I)		
		C=O st.	Alkenes & cycloalkenes		
3.	1620	N-H s bend	Amines		
4.	1590	N-H s bend N-C=O st. sy.	Amides (amide II)		
5.	1510	N⁺-H s bend	Amines		
6.	1450	Ar. C-C st.	Heteroaromatic compounds		
		CH_2 –(C=C) s bend	Alkenes & cycloalkenes		
		CH ₂ s bend	alkanes		
7.	1250	C-O-C st. asy.	Ethers		
8.	1110	C-O(H) st.	Alcohols		
9.	960-700	Ar. C-H s oop. Bend	Heteroaromatic compounds		
		H-(C=C) s oop. Bend	Alkenes & cycloalkenes		
10.	680	$CH_2 s$ bend	Alkanes		

(Table 7). Continued.

¹ H NMR Spectral char	H NMR Spectral characterization:						
S. No.	Value (ppm)	Nature of peak	Significance and resemblance				
1.	8.116	Singlet, broad	R-C=O-NH- alk amide proton				
2.	7.204	Doublet	Imidazole ring proton				
3.	7.018	Doublet, small	1 st 'OH' gp of glucose				
4.	6.604	Doublet	NH ₃ ⁺ proton				
5.	6.652	Doublet	Imidazole ring proton				
6.	5.020	Small singlet	3 rd 'OH' gp of lactose-glucose				
7.	4.399	Sharp singlet	'OH' gp. of CH ₂ side chain of lactose & Amide CH proton (a)				
8.	3.894	Small Singlet	methylene proton of (b)				
9.	3.721	Sharp Singlet	Methine proton of 'OH'				
10.	3.315	Broad singlet	CH ₂ –O- CH ₂ ether linkage proton of lactose				
11.	2.978	Sharp singlet	methylene proton of (OH)				
12.	1.7	Small Singlet	CH proton				
13.	1.227	singlet, narrow	CH ₂ proton				

¹³ C NMR Spectral cha	³ C NMR Spectral characterization:					
S. No.	Value (ppm)	Nature of peak	Significance and resemblance			
1.	207	Singlet (w)	Aldehyde of sugar & ketonic carbon			
2.	128.366	Singlet (m)	Carbon (a,b) in heteroaromatic imidazole ring system			
3.	113.867	Singlet (m)	(O-C-O) of acetal/ketal in sugar			
4.	62.933	Singlet (w)	Ethereal carbon of connecting sugars			
5.	55.461	Singlet (w)	CH₂ of OH in sugar			
6.	39.924	Singlet (s)	CH ₂ -C=O- (groups of 2 or more equivalent carbons)			
7.	31.176	Singlet (m)	Amine carbon			
8.	23.536	Singlet (w)	Cyclic ether			

W= weak signal intensity, M= moderate signal intensity, S= strong signal intensity.

MASS Spectral characterization:						
S. No.	Name of the ion	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:602)	
1.	C ₃ H ₇ O ₂ ^{+.}	75	[M-75]*·	Methyl acetyl 2 X 'O' indicator	527	

Table 8: Physico-Chemical Characterization of the O-Glycopeptide [Arg-Thr-Lac]

S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type	
1.	1670	C=O st.	Aldehyde	
2.	1650	C=O st.	Amide(amide I) & lactame	
3.	1625	N-H s bend N-H s bend N-C=O st. sy.	Amines Amides (amide II)	
4.	1400	CH₃ s sy.	alkanes	
5.	1160	C-O (H) st. C-O-C st. asy.	Alcohols Ethers	
6.	750	CH ₂ s	alkanes	

(Table 8). Continued.

S. No.	Value (ppm)	Nature of peak	Significance and resemblance
1.	8.124	Singlet, narrow	R-C=O-NH- alk amide proton
2.	6.876	Doublet	1 st 'OH' gp of glucose
3.	6.713	Singlet, narrow	NH proton of NH ₂ -NH=NH
4.	4.405	Singlet, narrow	'OH' gp. of CH ₂ side chain of glucose & galactose
5.	3.723	Small singlet	Methine proton of 'OH'
6.	3.307	Sharp singlet	CH ₂ -O- CH ₂ ether linkage proton of disaccharide
7.	2.495	Sharp singlet	NH_3^+ proton
8.	1.229	Singlet	CH ₂ proton
9.	0.8	Small Singlet	CH₃ proton
10.	-0.072	Singlet, narrow	Proton of integral reference standard TMS

¹³ C NMR Spectral characterization:					
S. No. Value (ppm) Nature of peak Significance and resemblance					
1.	207.087	Singlet (w)	Aldehyde of sugar & ketonic carbon		
2.	113.862	Singlet (w)	(O-C-O) of acetal/ketal in sugar		
3.	39.922	Singlet (s)	CH ₂ -C=O- (groups of 2 or more equivalent carbons)		
4.	31.198	Singlet (m)	Alkyl amines(C-N)		

W= weak signal intensity, M= moderate signal intensity, S= strong signal intensity.

MASS Spectral characterization:					
S. No.	Name of the ion	mass	Product ion and composition of the neutral particle lost	Substructure or compound type	Peak m/z ratio (mol.wt:628)
1.	K⁺	39	[M-39] ^{+.} Molecular ion with K ⁺ adduct	Sometimes strong even if K ⁺ is only an impurity	667

Table 9: Physico-Chemical Characterization of the O-Glycopeptide [Ser-Arg-lactose]

I.R Spectral characteriza	Spectral characterization:						
S. No.	Wave number (cm ⁻¹)	Characteristic functional gp. feasible	Compound type				
1.	1740	C=O st.	Aldehydes				
		C=O st.	Esters				
		C=O st.	ketones				
2.	1670	C=O st. (amide I)	Carboxylic amide & lactam				
3.	1625	N-H s bend	Amines				
4.	1600	N-H s bend N-C=O st. sy. (amide II)	Amides & lactams				
5.	1470	N [⁺] -H s bend	Amines				
		CH₂s bend	alkanes				
6.	1260	C-O-C st. asy.	Ethers				
7.	1000	C-O (H) st.	Alcohols				

(Table 9). Continued.

¹ H NMR Spectral of	NMR Spectral characterization:					
S. No.	Value (ppm)	Nature of peak	Significance and resemblance			
1.	7.821	Doublet	R-C=O-NH- alk amide proton			
2.	6.925	Singlet, broad	1 st 'OH' gp of glucose			
3.	4.8	Small singlet, broad	3 rd 'OH' gp of lactose-glucose			
4.	4.4	Small singlet	'OH' gp. of CH_2 side chain of lactose			
5.	4.006	triplet	Amide methine proton of 'OH'			
6.	3.406	Singlet narrow	CH_2 –O- CH_2 ether linkage proton of lactose			
7.	3.160	Sharp singlet	Methylene proton of 'OH'			
8.	2.494	Sharp singlet	NH_3^+ proton (alkyl amines)			
9.	1.6	Small Singlet, broad	CH proton			
10.	1.103	triplet	CH₂ proton			
11.	0	Small, singlet	Proton of integral reference standard TMS			

¹³ C NMR Spectral characterization:					
S. No.	Significance and resemblance				
1.	114.029	Singlet (w)	(O-C-O) of acetal/ketal in sugar		
2.	39.913	Septet (s)	CH ₂ -C=O- (groups of 2 or more equivalent carbons)		
3.	31.190	Singlet (m)	Alkylamines(C-N)		

W= weak signal intensity, M= moderate signal intensity, S= strong signal intensity.

MASS Spectral characterization:						
S. No. Name of the ion mass Product ion and composition of the Substructure or the ion neutral particle lost Compound type (mol.wt						
1.	$C_5 H_6^{+.}$	66	[M-66] ⁺ (C ₅ H ₆)	cyclopentenes	548	

Figure 4: I.R spectra of Ser-Arg-Lac.

Figure 5: ¹H-NMR spectra of Ser-Arg-Lac.

Figure 6: Mass Spectra of Ser-Arg-Lac.

All the spectral characterization of the synthesized glycopeptides was expressed in Table **2-9** above and with their significance and the compound type after fragmentation. The I.R, ¹H-NMR, and Mass spectral scan of the most potent test compound Ser-Arg-Lac (SRLac) are shown in Figures **4** to **6**.

Antioxidants are the compounds that protect cells against the damaging effects of reactive oxygen species, such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals and peroxynitrite. An imbalance between antioxidants and reactive oxygen species results in oxidative stress, leading to cellular damage. Oxidative stress has been linked to cancer, ageing, atherosclerosis, ischemic injury and inflammation and neuro degenerative diseases. The above studies suggest that test drugs II, I and VII (SRLac, RTStr and NHLac) possess remarkable antioxidant property that may maintain good health by immune boosting the system and reducing inflammation and allergic reactions.

It can be concluded that test drug II (Ser-Arg-Lac; SRLac) could be considered as a possible candidate for further studies for nutraceutical preparations with potent antioxidant activities for the prevention of human diseases.

ACKNOWLEDGEMENT

The authors are very much thankful to Dr. S. Narendra Kumar, Director, KIET Group of Institutions, Ghaziabad, India. Also, we remain thankful to Mrs. M. Uma Maheswari, Professor, Department of Pharmacology, Sri Ramakrishna Institute of

Received on 27-08-2012

Accepted on 20-09-2012

Published on 05-11-2012

REFERENCES

- [1] Ishizaki T, Kishi T, Sasaki F, *et al.* Effect of probucol, an oral hypocholesterolemic agent, on acute tobacco smoke inhalation in rats. Clin Sci 1996; 90: 517-23.
- [2] Kehrar JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 1993; 23: 21-48. <u>http://dx.doi.org/10.3109/10408449309104073</u>
- [3] Ignatowicz E, Rybczynska M. Some biochemical and pharmacological aspects of free radical-mediated tissue damage. Pol J Pharmacol 1994; 46: 103-14.
- [4] Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and effects of nutrition. Mutat Res 1999; 443: 37-52. <u>http://dx.doi.org/10.1016/S1383-5742(99)00009-5</u>
- [5] Halliwell B, Gutteridge JMC. The antioxidants of human extra cellular fluids. Arch Biochem Biophys 1990; 280: 1-3. http://dx.doi.org/10.1016/0003-9861(90)90510-6
- Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74: 139-62.
- [7] Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem 2001; 1: 569-90. <u>http://dx.doi.org/10.2174/1568026013394750</u>
- [8] Rice-Evans C. Flavonoid antioxidants. Curr Med Chem 2001; 8: 797-807.
- [9] Wu Y, Wang D. A new class of natural glycopeptides with sugar moiety-dependent antioxidant activities derived from *Ganoderma lucidum* fruiting bodies. J. Proteome Res 2009; 8(2): 436-42. http://dx.doi.org/10.1021/pr800554w
- [10] Mensor LL, Menezes FS, Leitao GG, et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 2001; 15: 127-30. <u>http://dx.doi.org/10.1002/ptr.687</u>
- [11] Nagarajan K, Mazumder A, Ghosh LK. In-vitro antioxidant activity of alcoholic extracts of Wrightia tomentosa. Pharmacologyonline 2008; 1: 196-203.

DOI: http://dx.doi.org/10.6000/1927-5951.2012.02.02.10