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Abstract: The Salerian Addictive Potential (SAP) hypothesis indicates that addictive potential may be calculated as 

  
A = E / T

max
t
1/2

, where A is addictive potency, E euphoric potency, Tmax (hr) is the time to reach peak plasma 

concentration, and t  (hr) is the plasma elimination half-life. However, this approach is inconsistent with first-order linear 

pharmacokinetics. The units of the denominator of the equation are units of acceleration (hr
2
), not speed (the first 

derivative). Therefore, the present contribution presents a minimal-model hypothesis for quantifying a drug's addictive 
potential. This model is superior to the SAP model because it is the simplest model, with the minimum number of 

parameters and assumptions, and it decreases variance through less loss of information. 
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INTRODUCTION 

The ability to numerically quantify addictive potential 

has far reaching public health implications, but, 

addictive potential has defied precise numerical 

quantification. Although, attempts to understand the 

nature of illicit drug abuse and addiction can be traced 

back for centuries, one of the earliest accounts of 

addiction research in America is that of a young 

physician, who on or about June 9, 1883, while treating 

a case of opium addiction, began a search for an 

antidote by experimenting on himself with hypodermic 

morphia. His patient recovered but the incautious 

experimenter fell victim to his ill-starred zeal [1]. But, 

medical and scientific interest in opiate addiction first 

began in the two decades following the Civil War—

hypodermic injection of morphine was first used on a 

widespread basis during the war, and many soldiers 

ended up becoming addicted to it as a result. At 

roughly the same time, increased Chinese immigration 

led to a concern about opium smoking, especially as it 

moved into the white population. By the first decade of 

the 20th century there was a widespread concern 

about opium smoking, injected morphine, and heroin 

(introduced in 1898). However, the historical origins of 

modern addiction research lie in the Addiction 

Research Center (ARC), a laboratory that was once 

part of a federal prison-hospital in Lexington, Kentucky 

[2, 3], and in the “monkey colony” at the University of 

Michigan in Ann Arbor [4]. The ARC is important 

because it is the beginning of a pharmacological 

approach to addiction research. Acker [5] has 

chronicled the formative generation of addiction 

researchers up through World War II. Beginning in the 
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1980s NIH then started to push the neurobiological 

model which is largely dominant today [6-9].  

Thus, from a neurobiological perspective, the goal 

of addiction research is to determine the actions of 

abusable drugs on the brain which result in 

dependence, and to determine the neural substrates 

that make one individual inherently vulnerable to it and 

others relatively resistant [10, 11]. Initially, all drugs of 

misuse interact with receptors or neuronal reuptake 

proteins. For example, opiates activate opioid 

receptors, and cocaine inhibits the neuronal reuptake 

proteins for the monoamine neurotransmitters which 

include dopamine, norepinephrine, and serotonin. 

These initial effects lead to alterations in the levels of 

specific neurotransmitters, or to different activation 

states of specific neurotransmitter receptors in the 

brain. Opiate activation of opioid receptors, for 

example, leads to recruitment of inhibitory and related 

G proteins. This, in turn, leads to activation of K
+
 

channels and inhibition of Ca
2+

 channels. Both are 

inhibitory actions, because more K
+
 flows out of the cell 

and less Ca
2+

 flows into the cell. Thus, the electrical 

properties of the target neurons are rapidly affected by 

opiates. Recruitment of the inhibitory G protein also 

inhibits adenylyl cyclase [12], and associated 

reductions in intracellular Ca
2+

 levels decrease Ca
2+

-

dependent protein phosphorylation cascades, altering 

the activity of additional ion channels. These effects, 

along with changes in many other neural processes 

within target neurons, further contribute to the acute 

effects of opioids. The sum of these changes may be 

involved in triggering the long-term effects of drugs of 

misuse that eventually lead to abuse, dependence, 

tolerance, and withdrawal. 

The acute-dose effect comparison study in 

volunteers with histories of drug abuse is the current 
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“gold standard” for initial abuse liability testing [13]. 

However, systematic methods for measuring subjective 

effects of drugs have been refined through the use of 

standardized questionnaires. Volunteers who are 

experienced drug users complete the questionnaires 

after they have taken a drug; their answers to the 

subjective-effects questions—how they feel, their likes 

and dislikes—readily distinguish between the various 

drugs and doses, as well as between drug presence or 

absence [14, 15]. The measure that has proven most 

useful in assessing human drug-abuse-liability is the 

assessment of the ability of a drug to reinforce and 

maintain self-administration behaviors much like the 

behaviors used to obtain food and water. Not 

surprisingly, however, it has also been shown that the 

preference for one drug over another or one drug dose 

over another agrees well with independent ratings of 

“drug liking.” The addiction potential of such commonly 

used drugs of misuse as cocaine [16], opiates [17], 

alcohol [18], sedative-hypnotics [19], nicotine [20], 

anxiolytics [21], cannabis [22], inhalants and 

anesthetics [23], and PCP and hallucinogens [24] have 

been the subject of extensive review, and a selective 

literature reference list has been provided [25]. The 

history of the use and misuse of inhalants and 

anesthetics has been chronicled by Gabriel [26]. 

Despite those comprehensive assessments of 

addictive potential, the postulate of a mathematical or 

pharmacokinetics-based model as a means to launch 

an assault on quantifying addictive potential has been 

previously made only by Salerian [27], even though 

pharmacokinetics are known to influence addictive 

potential [28]. 

Little doubt now exists that the development of 

addiction to drugs of misuse, in part, is due to 

predisposing individual-based genomic determinants 

as well as determinants associated with early 

psychological development [6, 10, 11]. But much of 

what is “known” is correlative rather than mechanistic, 

historical rather than predictive, and qualitative rather 

than quantitative. Development of a mathematical 

model of addictive potential could provide a quantitative 

understanding of addictive potential and allow 

predictions about addictive potential to be made. A 

mathematical model is a hypothesis defined by a set of 

parameters in a mathematical framework [29]. In a 

mathematical model, parameters or their functions may 

be used without regard to mechanistic aspects of the 

system under investigation. By contrast, in a physical 

model, parameters reflect physiological, 

pharmacological, or biochemical mechanisms. A 

model’s parameters are the quantifiable constants, 

equations or functions of the model. 

Recently, Salerian [27] developed a mathematical 

model for measuring the addictive potency of several 

drugs based on the Salerian Addictive Potential (SAP) 

score. The Salerian model improved methodology for 

drug addiction classification by structuring classification 

in a mathematical pharmacokinetics-based framework, 

accounting for the rate at which a drug can be 

absorbed and excreted from the body. Despite its 

benefits, use of the SAP model as an index of addictive 

potential is associated with several problems: (i) the 

SAP model takes into account both drug absorption 

and elimination as reflected in the Tmax parameter, 

which confounds the computed value of addictive 

potential; (ii) in the SAP model, E, the euphoric potency 

of the drug, is subjectively assigned; (iii) the SAP 

model provides no insight into the relative contributions 

that absorption and elimination make to the addictive 

potency of a drug since absorption and elimination are 

important determinants of the “high” produced by drugs 

of misuse
 
[15]; and (iv) the SAP model is inconsistent 

with first-order linear pharmacokinetics. 

In the study of the metabolism of drugs of misuse, 

confounded parameters vary together so that one 

cannot tease apart the relative contribution of each 

parameter to the observed effects. It is important to 

assess the relative contribution of each parameter 

because the direction of the effect of a confounder can 

lead to either an over or under estimate of the primary 

outcome measure. This misestimate may cause 

misclassification of the primary outcome measure. 

Using modeling [30], the present work was 

undertaken to address the effect of confounding on the 

SAP model and to quantify more precisely the addictive 

potential of drugs of misuse. The present contribution 

presents a minimal-model hypothesis for quantifying a 

drug’s addictive potential. This model is superior to the 

SAP model because it is the simplest model, with the 

minimum number of parameters and assumptions, and 

it decreases variance through less loss of information. 

METHODS 

Theory 

The SAP model [27] is described by Eq. (1): 

A =
E

(T
max

t
1/2

)
.           (1) 
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In this model, A represents addictive potential in 

units of hr
-2

, E represents euphoric potency on a scale 

from 1 to 5 with 5 being the most potent, t  (hr) is the 

elimination half-life and Tmax (hr) is the time to peak 

absorption (rate of exposure) or time to peak 

concentration (extent of exposure) in plasma, blood or 

serum [31]. Tmax is thus a hybrid pharmacokinetic 

parameter dependent on the fractional rate of drug 

absorption, [ka hr
-1

], into the body, as well as the 

fractional rate of drug elimination, [ke hr
-1

], from the 

body: 

  

T
max

=
ln(k

a
/ k

e
)

(k
a

k
e
)

.          (2) 

The peak concentration, Cmax is also a function of ka 

and ke [32]: 

  

C
max

=
k

a
FD

V
d
(k

a
k

e
)

(e
k

e
T

max e
k

a
T

max ) ,        (3) 

where F (%) represents the bioavailability of the drug, 

D (mg) represents the oral dose administered, and Vd 

(L) represents its apparent volume of distribution. 

The half-life for the absorption process, defined as 

the time required for half the absorbed dose to be 

absorbed, is expressed as 

  

t
1/2a

=
ln(2)

k
a

,           (4) 

where ln(2)  0.693. The t a units are hours. Multiplying 

t a by 5 to mark five half-lives to steady state gives the 

elapsed time equal to 96.875% of the absorbed dose 

(FD) which, for clinical purposes, represents complete 

absorption. Similarly, the half-life for the elimination 

process, expressed as 

  

t
1/2

=
ln(2)

k
e

,           (5) 

multiplied by 5, represents complete elimination. Thus, 

as shown by Eqs. (4) and (5), ka and ke are 

“unconfounded” independent predictors of drug 

absorption and elimination, unlike the Tmax in Eq. (2). 

Model Development 

The SAP model given by Eq. (1) may be decoupled 

by decomposition of Tmax into its independent parts: 

  

A =
E

(k
a

/ k
e
) t

1/2
 

.          (6) 

In this version of the model, A depends on both ka 

and ke. Both ka and ke are independent processes 

driven by different kinetics which cannot be ignored 

[32] because they quantify drug absorption and 

elimination. The units of Eq. (6) are inconsistent with 

those of Eq. (1). Although the units of Eq. (1) are hr
-2

 

which is a unit of acceleration, the units of Eq. (6) are 

hr
-1

 which is a unit of speed. 

Because a dimensionless quantity in the 

denominator of Eq. (6) is needed, the t  term is 

dropped from the denominator in Eq. (6) giving, 

  

A
L
=

E

(k
a

/ k
e
)

,           (7) 

where AL represents the Linares addictive potential 

index. Although Tmax is a non-compartmental model 

parameter, its calculation is based on a linear dynamic 

compartmental model that follows linear first-order 

kinetics [33], i.e., dC/dt, not dC
2
/dt

2
, which is implied by 

the units of Eq. (1). Dropping the t  term from Eq. (6) is 

allowable because t  measures drug elimination, which 

is accounted for by ke. In addition to being both 

theoretically and dimensionally correct, Eq. (7) now 

proposes the simplest model hypothesis or the 

minimal-model for the Linares addictive potential index. 

Model Testing 

No “gold standard” exists for estimating the 

classification accuracy of addictive potential. Pepe [34] 

and Hagdu [35] suggest approaches to studying 

comparisons without a gold standard. One approach is 

to use values adjudicated by a committee of experts as 

the gold standard. Using this approach, Table 3 

tabulates the drugs in reference [36] that are also used 

in Tables 1 and 2. The nine drugs that were common to 

both studies were ranked from one to nine on the basis 

of their addictive score settled by the expert committee 

[36]. The drug’s A scores and AL indices were then 

used to match-rank the drugs relative to their scores 

based on fact, scientific knowledge, and expert opinion 

(FSKEO) as shown in Table 3. 

Computational Methods 

To determine the accuracy of the models while 

controlling for model complexity, the Akaike Information 

Criterion (AIC) [37] was used as a measure of 

information content. The lower the value of the AIC, the 

more statistically accurate the model because  

less information is lost when the model is used to 

describe data. The AIC was calculated as 
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Table 1: Drugs Ranked by the Salerian Addictive Potential Score A. This Table Presents the SAP Score for Drugs 
Calculated Using Eq. (1). Table 1 Parallels Table 2 in Salerian [42] but Adds Clonazepam, Lorazepam and 
Heroin 

Rank Drug Intake Route E Tmax t  A 

1 Heroin intravenous 5 0.078 1.6 39.89 

2 Cocaine inhalation 5 0.16 1.0 31.25 

3 Alcohol oral 4 0.25 1.5 10.67 

4 Morphine intravenous 4 0.16 3.0 8.33 

5 Oxycontin chewed 4 0.11 4.5 8.08 

6 Nicotine inhalation 2 0.16 2.0 6.25 

7 Morphine oral 4 0.50 3.0 2.67 

8 Oxycodone IR oral 4 0.50 3.5 2.29 

9 Lorazepam oral 4 2.00 1.0 2.00 

10 Oxycodone CR oral 4 0.50 4.5 1.78 

11 Clonazepam oral 4 2.50 1.3 1.28 

12 Amphetamine Salts oral 4 0.50 10.0 0.80 

13 Methylphenidate HCl oral 4 1.50 4.0 0.67 

14 THC inhalation 4 0.16 72.0 0.35 

15 Alprazolam oral 4 1.50 11.2 0.24 

16 Lisdexamphetamine oral 4 3.50 12.0 0.10 

17 Diazepam oral 4 1.00 50.0 0.08 

18 Buprenorphine oral 4 2.00 26.0 0.08 

19 Methadone oral 5 1.50 55.0 0.06 

20 Methylphenidate ER oral 4 7.00 10.0 0.06 

21 Dronabinol oral 4 1.00 72.0 0.06 

 
Table 2: Drugs Ranked by Addictive Potential Using the Linares Addictive Potential Index AL. Table 2 Presents the 

Drugs Tabulated in Table 1 Ranked According to AL 

Rank Drug Intake Route E Tmax t1/2a t1/2 ka ke ka/ke AL 

1 Heroin intravenous 5 0.1 0.17 1.6 4.16 1.386 3.00 1.67 

2 Methylphenidate ER oral 4 7 3.500 10.0 0.20 0.069 2.86 1.40 

3 Methylphenidate HCl oral 4 1.5 0.750 4.0 0.92 0.173 5.33 0.75 

4 Lisdexamphetamine oral 4 3.5 1.750 12.0 0.40 0.058 6.86 0.58 

5 Cocaine inhalation 5 0.16 0.080 1.0 8.66 0.693 12.50 0.40 

6 Alcohol oral 4 0.25 0.125 1.5 5.54 0.462 12.00 0.33 

7 Morphine oral 4 0.5 0.250 3.0 2.77 0.231 12.00 0.33 

8 Lorazepam oral 4 2.0 1.000 1.0 0.69 0.058 12.0 0.33 

9 Oxycodone IR oral 4 0.5 0.250 3.5 2.77 0.198 14.00 0.29 

10 Oxycodone CR oral 4 0.5 0.250 4.5 2.77 0.154 18.00 0.22 

11 Alprazolam oral 4 1.5 0.750 11.2 0.92 0.062 14.93 0.27 

12 Buprenorphine oral 4 2.0 1.000 26.0 0.69 0.027 26.00 0.154 

13 Clonazepam oral 4 2.5 1.250 1.30 0.55 0.020 27.20 0.15 

14 Morphine intravenous 4 0.16 0.080 3.0 8.66 0.231 37.50 0.11 

15 Amphetamine Salts oral 4 0.5 0.250 10.0 2.77 0.069 40.00 0.10 

16 Nicotine inhalation 2 0.16 0.080 2.0 8.66 0.347 25.00 0.08 

17 Methadone oral 5 1.5 0.750 55.0 0.92 0.013 73.33 0.07 

18 Diazepam oral 4 1.0 0.750 50.0 0.92 0.014 66.67 0.06 

19 Oxycontin chewed 4 0.11 0.055 4.5 12.60 0.154 81.82 0.05 

20 Dronabinol oral 4 1 0.500 72.0 1.39 0.010 144.00 0.03 

21 THC inhalation 4 0.16 0.080 72.0 8.66 0.010 900.00 0.004 
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Table 3: “Gold Standard” Ranking of Selected Drugs Using Values for Addictive Potential by Adjudication by Expert 
Committee Based on Fact and Scientific Knowledge [Column FSKEO] in Nutt and Coworkers [36] and Match-
Ranked by A and AL* 

Gold Standard FSKEO Rank FSKEO A Rank Residual A AL Rank Residual AL 

Heroin 1 3.00 1 0 39.89 1 0 1.67 

Cocaine 2 2.39 2 0 31.25 2 0 0.08 

Tobacco 3 2.21 4 -1 6.25 8 -5 0.04 

Methadone 4 2.08 9 -5 0.06 7 -3 0.07 

Alcohol 5 1.93 3 3 10.67 3 2 0.33 

Benzodiazepines 6 1.83 7 -1 0.24 4 2 0.27 

Amphetamine 7 1.67 8 -1 0.10 6 -1 0.58 

Cannabis 8 1.51 6 2 0.35 9 -1 0.004 

Methylphenidate HCl
 

9 1.25 5 4 0.67 5 4 0.19 

Sum-of-Squared
†
 

Residuals 
   57   60  

AIC
‡
    52   49  

*A=Salerian Addictive Potential score. 
AL=Linares addictive potential index. 
†
Calculated as the row-wise difference between the FSKEO Rank and the A and AL Ranks squared, respectively. 

‡
Akaike information criterion calculated as AIC = N  ln(SSR) + 2  P, where N is the number of drugs studied, SSR is the sum of squared residuals and P is the 

number of parameters in the model.  

  
AIC = N ln(SS

R
) + 2 P

 
[38], where N is the number of 

drugs studied, SSR is the sum of squared residuals 

calculated from the difference between the model 

rankings of addictive potential using A and AL relative 

to the FSKEO (see Results, Table 3), and P is the 

number of parameters in the model. While the SAP 

model has four parameters, the Linares minimal-model 

(LMM) has only three parameters, which is superior 

given the principle of parsimony [39]. 

RESULTS 

As shown in Table 1, A identified heroin, cocaine, 

and alcohol as the highest addictive potential. By 

contrast, AL ranked heroin, methylphenidate ER, and 

methylphenidate HCl as the drugs with the highest 

addictive potential, followed by cocaine and alcohol. 

Although the SSR was lower for the SAP model 

compared to the LMM (57 vs. 60, respectively), the AIC 

was lower for the LMM compared to the SAP model (49 

vs. 52, respectively). While the lower SSR with the SAP 

model would indicate that it is a better model if SSR 

were being used as the criterion for model selection, it 

is the AIC that provides the better model selection 

criterion because it considers both accuracy and 

parsimony. 

Thus, the LMM more accurately describes the 

observations and postulates the simplest model 

hypothesis for quantifying addictive potential. 

DISCUSSION 

What is offered here is not an ironclad rule for 

computing a drug’s addictive potential, but rather a 

parsimonious hypothesis for its computation that must 

be judiciously applied. 

The study of mathematical modeling has three 

objectives: prediction, description, and prescription 

[33]. Predictive mathematical modeling consists in 

identifying both the parameters that are relevant to the 

prediction of kinetic properties of phenomena (drugs, 

disease, etc.), and identifying methods for their 

determination. Descriptive mathematical modeling 

consists of measuring the relevant parameters of the 

phenomena. Prescriptive mathematical modeling 

consists of using known concepts and previously 

determined parameters for achieving an appropriate 

clinical goal. The LMM, as well as the Salerian model, 

are meant to provide quantitative measures of addictive 

potential and are meant to be used under a variety of 

conditions, e.g., they may be used to predict the 

addictive potential of new chemical entities, and also, 

to compare the addictive potential of drugs. Most 

importantly, they provide a means to objectively begin 

to address the problem of heterogeneity of addictive 

potential among and within individuals. But we have 

shown that only the LMM is unconfounded. 

Since modeling is rarely used in the absence of 

prior information, a special measure of addictive 
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potential was derived by tailoring the SAP model [27]. 

The LMM dissociates the independent ka and ke 

components from Tmax and drops the t  term from the 

denominator of the SAP model, giving rise to the 

simpler LMM represented by Eq. (7). Because no gold-

standard exists to compare the models, Eqs. (1) and 

(7), values for addictive potential adjudicated by a 

committee of experts [36] were used to compare the 

models as shown in Table 3. 

Using the AIC as an objective model selection 

criterion [40], compared to the SAP model, the LMM, 

Eq. (7), emerged as the simplest model with the 

smallest number of parameters that captures the 

important pharmacokinetic determinants of addictive 

potential, ka and ke, reflected in AL. Because it only 

depends on independent parameters, AL, is a clean, 

unconfounded index of addictive potential. 

As shown by Eqs (2) and (3), both Tmax and Cmax are 

confounded parameters because both depend on ka 

and ke. Basson and coworkers [41] found that Cmax, but 

not Tmax was confounded. However, Basson and 

coworkers did not dissociate Tmax into its independent 

components, as was done in the present contribution in 

order to create a simpler model. 

Salerian [42] suggests that the euphoric potency of 

a drug may be related to its extent of exposure (Cmax) 

to the neuronal milieu of the prefrontal cortex through 

mediation of dopaminergic system function. Positron 

emission tomographic (PET) imaging of the human 

brain in drug misuse individuals [43], reveals that 

although drugs of misuse are associated with rapid 

increases in central extracellular dopamine levels, 

these individuals experience a marked decrease in 

central dopamine release and D2 dopamine receptor 

number. These effects have been found to persist 

months after detoxification [43]. The reduction in 

dopamine release may represent the central inhibition 

of dopamine outflow in the setting of higher 

intrasynaptic dopamine concentration. In addition to 

local feedback mechanisms, the decreased dopamine 

outflow may be mediated by central actions such as 

pathways involving 2-adrenergic receptors [44]. 

Because central dopamine outflow is reduced, a 

concomitant compensatory decrease in central 

dopamine clearance would be needed to maintain 

dopamine levels elevated in the synaptic axoplasm. 

This decrease in central dopamine clearance may 

explain the observed decrease in dopamine D2 

receptor number, which may in turn determine a drug’s 

euphoric potency. Volkow and associates [45, 46] have 

observed a reduced clearance of methylphenidate HCl 

from the brain. This is an important finding because it 

suggests addictive potential may be related more to 

how slowly a drug is cleared from the synaptic 

axoplasm, where as the “euphoric high,” may be 

related more to how fast the drug reaches peak 

concentration (Cmax) in the synaptic axoplasm. LMM’s 

prediction that a drug’s Cmax may be a reasonable 

biomarker of euphorigenic potency is consistent with 

Salerian’s reasoning and illustrates how LMM can be 

used in a predictive capacity. However, the neuronal 

dopaminergic mechanisms involved in the euphoric 

response to drugs of misuse is a complex process [47] 

requiring further study. 

CONCLUSION 

The LMM is superior to the SAP model because: (i) 

LMM is the simplest model with the minimum number 

of parameters and assumptions; (ii) LMM is associated 

with lower AIC; and (iii) unlike the SAP model, LMM is 

dimensionally and theoretically correct. 

The LMM represents a working hypothesis. 

Validation through alternate independent approaches 

including the design of experiments to test the model is 

needed. For example, carrying out a human abuse 

liability study to determine the degree to which the drug 

under investigation is chosen based on its liking or 

engendering of euphoria. Furthermore, by the use of 

qualitatively different experimental techniques, new 

types of data may be derived which are beyond the 

predictive domain of the model. Under these 

circumstances, a new more extensive model would 

have to be proposed that could provide more precise 

information and a more complete description of 

addictive potential. But, regarding assessing addictive 

potential, LMM appears to be useful for practical 

applications because it provides reasonably accurate 

indices of addictive potential compared to adjudicated 

values from a panel of experts. The LMM thus provides 

an improved approach for the quantitative study of 

addiction potential in humans. 
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