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Abstract:  
 
The effect of chronic alcohol intoxication on the daily rhythm of micromorphometric 
parameters characterizing the morphological and functional state of the liver is 
studied on 80 male Wistar rats of 6 months age, divided into 2 equal groups. The 
first group served as control; rats of the second group (experiment) were kept 
under similar conditions but got as a drink a 15% ethanol solution ad libitum 
instead of water. After three weeks of the experiment, animals were euthanized 
consistently at four-time points during the day. The pathomorphological study of 
the liver was carried out, the daily dynamics of the nucleus and cell (by area and 
nuclear-cytoplasmic ratio (NCR)), ploidy of mononuclear hepatocytes, and the 
proportion of binuclear hepatocytes were measured. The reliability of circadian 
rhythm (CR) was determined by cosinor analysis. The study indicates complex 
changes in the organization of rhythmostasis in the experiment. The chrono-
destructive effect of experimental alcohol intoxication on the CR of the cell and 
NCR, as well as the chronomodulating effect to the CR of the nucleus are 
established. The effect of ethanol on the CR of ploidy and the number of binuclear 
hepatocytes, as well as on the nature of their variation at the studied time points is 
established. An increase in the ploidy of hepatocytes and an in the number of 
binuclear cells is revealed, which indicates the beginning of the deployment of 
adaptive-compensatory reactions in the organ. 
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INTRODUCTION 

One of the anthropogenic environmental factors that 
the human organism has to adapt to is alcohol - the 
most widely known psychoactive substance in the 
world, affecting almost all organs and physiological 
functions. 

The development and progression of alcoholic disease 
largely depends on the level of basal metabolism of 
ethanol in the liver, which is genetically determined and 
has an individual nature [1,2]. This is due to the fact 
that the liver plays a prime role in intersystem 
cooperation, it is the basic regulator of metabolism in 
mammals, and this is what determines its importance 
as the main organ supporting homeostasis, and its 
morphofunctional state largely conditions the 
compensatory capabilities of the organism [3,4]. At the 
same time, the liver is the most vulnerable to 
alcoholism, and the pathological processes that occur 
in it significantly change the metabolism of other 
organs and systems, since even with drunkenness, 
which is the second stage of alcoholic disease, there is 
formation of direct and reverse pathological 
connections between liver, heart, and brain. It is natural 
that in alcoholic disease a change in the level of a 
significant number of biological constants occurs, 
including those characterizing the morphofunctional 
state of the liver. Among other objects of influence of 
alcohol, the biological rhythms are found [5-7] 

The rhythmicity of functioning is one of the fundamental 
properties of all living systems of various levels of 
organization. Of all the biological rhythms, the most 
significant for mammals are circadian rhythms (CR) [8-
11]. The temporal organization of mammalian organism 
systems, being genetically determined, nevertheless, is 
modulated quite plastically under the influence of 
periodic environmental factors - synchronizers, or 
pacemakers [12,13], the leading role among which 
belongs to the light regime. The successive cycles of 
life processes differ in their parameters - amplitude, 
phase. In those cases when the adaptation processes 
proceed normally, the degree of influence of stressors 
on circadian rhythms is insignificant. Otherwise, the 
rhythmic processes of the organism lose their 
correctness, regularity, desynchronosis occurs, which 
can lead to the development of diseases and 
pathological conditions [14-22]. 

At present, when considering the effect of alcohol on 
the mammalian organism, two areas of interest are 
distinguished. The first one focuses on the chrono-

effecter action of alcohol, i.e. on how the effects of 
alcohol (i.e. its effectiveness) change depending on the 
time of day at which it is administered, that is, how 
alcohol interacts with the physiological components of 
the organism at a certain time of the day. The second 
area of interest is chronergic, using a wider approach, 
exploring mainly the effect of alcohol on biorhythms of 
other parameters of an organism [23]. 

Clinical and epidemiological observations have shown 
that alcohol abuse and alcoholism are associated with 
widespread disturbances in sleep and other circadian 
biological rhythms. [13]. 

The effect of alcohol on the circadian rhythms of an 
organism can be realized in several ways. 

The first way consists of indirect influence to the CR-
regulating genes. The expression of the main PAS 
domain containing circadian proteins (CLOCK, BMAL1, 
PER1, PER2, CRY1, and CRY2) is affected by the 
presence of alcohol, and the expression of each protein 
changes in the blood of people with alcoholic disease 
compared to the control [24-26]. The in vitro study 
showed that oxidative stress caused by alcohol 
metabolism leads to an increase in the expression of 
CLOCK and PER2 circadian proteins, which induces 
further dysfunction of the ensemble of circadian genes. 
It was shown that in the presence of alcohol, the 
circadian rhythm in suprachiasmatic nuclei measured 
using PER2 was not broken, but in the liver, alcohol 
caused a significant change in the phase of expression 
of circadian genes, accompanied by altered lipid 
metabolism with following the development of hepatic 
steatosis [27,28]. 

The second way of action of alcohol on CR is the way it 
affects extracellular pacemakers - suprachiasmatic 
nuclei of the hypothalamus, pineal gland. 
Morphofunctional changes occurring in these organs 
under the influence of alcohol naturally cause a 
violation of the circadian rhythms in organs and organ 
systems, depending on the function of central 
pacemakers [29]. 

In any case, alcohol has a pronounced chronic toxic 
effect, which causes desynchronosis [30-31]. 

The third way of influence of alcohol on CR includes 
both the effect on the central mechanisms of 
maintaining normal rhythm and the effect on the part of 
the genetic apparatus of the cells responsible for CR 
[33]. 
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It was shown that alteration in CR, including alcohol-
induced, is crucial for increasing the susceptibility of 
the large intestine and liver to alcohol damage and 
plays a direct role in the severity of their alcohol-
induced pathology. [34-38]. A number of 
epidemiological and clinical studies show that 
disturbances in circadian homeostasis make organs 
such as the liver and intestines more susceptible to 
alcohol toxicity [39]. In continuation of studies on the 
development of metabolic disorders in mice, numerous 
studies in human alcoholics have shown altered 
expression of circadian genes [40-46] 

At the same time, data on the effect of chronic alcohol 
intoxication on the daily rhythmicity of liver parameters 
are not numerous. 

We found it important to study the diurnal dynamics of 
some micromorphometric parameters of hepatocytes in 
Wistar rats at age of 6 months under conditions of a 
fixed light regime. We studied the dynamics of the 
cross-sectional area of the nucleus and cells as an 
indicator of their activity and functional state, the 
dynamics of the nuclear cytoplasmic ratio (NCR) with 
the use of cosinor analysis, the dynamics of the 
number of binuclear hepatocytes, as well as the 
variation curves of the area and logarithms of the 
volume of hepatocyte nuclei in each of the studied time 
points. 

MATERIALS AND METHODS 

Animals 

The study was conducted on 80 male Wistar rats at 
age of 6 months, weighing 300±20 g. Animals were 
taken from the Stolbovaya nursery (the "Stolbovaya" 
affiliate of the FSBIS "Scientific Center for Biomedical 
Technologies of the Federal Medical and Biological 
Agency). 

Design of Experiment 

Rats were divided into 2 equal groups. Animals of the 
first group served as control. The individuals were 
housed in plastic cages with free access to water under 
the conditions of a fixed light regime “light-dark” (10:14 
hours) for 3 weeks. The animals of the second group 
(experiment) were kept under the same conditions, but 
instead of water, a 15% ethanol ad libitum solution was 
offered daily as a drink. 

The criterion for the selection of rats in the 
experimental group, along with the absence of visible 

deviations in the state and behavior, was the initial 
preference for a 15% solution of ethyl alcohol to tap 
water. For this, a preliminary experiment was carried 
out for 3 days in individual cages with free access to 
both liquids. 

Euthanasia was carried out three weeks after the start 
of the experiment in a carbon dioxide chamber 
equipped with a device for the upper gas supply (100% 
CO2) at 9 AM, 15 PM, 21 PM and 3 AM. The chamber 
volume was filled with gas at a rate of 20% per minute 
to avoid dyspnea and pain in animals. After sacrifice, 
the liver was removed for morphological examination. 
All animal experiments were performed according to 
compliance with EC Directive 86/609/EEC and with the 
Russian law regulating experiments on animals. 

Methods of Histological Studies 

The liver was fixed in 10% neutral buffered formalin 
with further passage through alcohols of increasing 
concentration (50 °, 60 °, 70 °, 80 °, and 96 °) and xylol, 
followed by pouring into Histomix histological medium 
(BioVitrum, Russia). When conducting studies of 
organs embedded in paraffin, serial sections with a 
thickness of 5-6 µm were prepared. Histological 
sections were made on the rotor microtome MPS-2 
(USSR). Hematoxylin-eosin staining was carried out 
according to the standard technique. Stained sections 
were put in a BioMount mounting medium (BioVitrum, 
Russia). 

Microscopy of histological preparations was performed 
using a Nikon Eclipse 80I digital microscope with the 
use of a Nikon DI-FI digital camera (Japan). For 
microscopy, eyepieces ×10, ×15, lenses ×4, ×10, ×20, 
×40, ×100 were used. From each studied preparation, 
10 digital images of randomly selected visual fields 
were taken at a magnification of ×400, ×1000, with the 
use of which karyo- and cytometry were subsequently 
carried out, the daily dynamics of the nucleus and cells 
was determined, estimated by their area and nuclear-
cytoplasmic ratio. In morphometric studies, the ImageJ 
program (USA) with the appropriate plug-ins was used 
to determine the cross-sectional area of hepatocytes 
and the cross-sectional area of their nuclei [47,48]. The 
measurements were carried out in micrometers after 
preliminary geometric calibration on an object-
micrometer scale digitized with the same magnification. 
The nuclear-cytoplasmic ratio in the cells was 
calculated according to the formula: NCR = Sn/Sс, 
where: Sn - cell nucleus area; Sс  - area of cytoplasm. 
Then the data array was divided into equal class 
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intervals in accordance with the rules set out in the 
guide [49]. 

Steatosis (percentage of hepatocytes containing lipid 
droplets) was scored using the non-alcoholic fatty liver 
disease (NAFLD) activity scoring (NAS) protocol 

[50,51]. While the NAS protocol is not intended for AD, 
we applied this system to assign a histopathology 
score to cases in this experimental animal study. 
Steatosis was scored as: 0, <5%; 1, 5%-33%; 2, >34%-
65%; and 3, >66% of hepatocytes containing lipid 
droplets. 

For ploidometry, paraffin sections were stained with 
methylene-green - pyronin G, which is then followed by 
processing of sections with RNA-ase. The hepatocyte 
ploidy was calculated in units of ploidy relative to the 
optical density of the staining results of diploid nuclei of 
small lymphocytes [52,53] 

Micromorphometry of only mononuclear interphase 
hepatocytes without signs of pathological changes was 
carried out. 

To determine the proportion of binuclear hepatocytes, 
we examined 10 fields of view from each 
micropreparation with a magnification of the eyepiece 
×40. The total number of hepatocytes in the field of 
view and the number of binuclear cells were 
determined, and then the percentage of binuclear cells 
was expressed as a percentage of the total number of 
hepatocytes. 

Methods of Statistical Processing 

The obtained data were analyzed using the GraphPad 
Prism 6.0 program by calculating average values, 
standard deviation, and arithmetic mean error. The 
numerical rows characterizing the diurnal fluctuations 
of the studied physiological rhythms of animals were 
subjected to mathematical processing, on the basis of 
which group chronograms were drawn. We studied the 
form of chronograms and calculated daily average 
values. Statistical differences in studied parameters 
were determined using the t-student test. A p-value 
<0.05 was considered statistically significant. 

For the statistical estimation of the amplitude and 
acrophase of CRs, cosinor analysis was performed, 
which is an internationally recognized method for the 
unified study of biological rhythms using the 
CosinorEllipse2006-1.1 program. The presence of a 
reliable circadian rhythm was determined, as well as its 
acrophase and amplitude. Acrophase is a measure of 

the peak time of the total rhythmic variability over a 24-
hour period. The amplitude corresponds to half the total 
rhythmic variability in the cycle. Acrophase is 
expressed in hours; amplitude values are expressed in 
the same units as the studied variables [54,55]. 

RESULTS 

During histological examination, we found that the 
structure of the liver of rats in the control group 
corresponds to the norm (Figures 1,2). In the liver of 
rats of the experimental group (Figures 3,4), the beam 
structure of the liver was preserved, 12.1±0.57% of 
hepatocytes became round, with eccentrically located 
nuclei and vacuoles, indicating the development of 
steatosis, observed in the cytoplasm. Simultaneously, 
in the liver of rats of the control group, the proportion of 
cells in the state of fatty degeneration was 2.40±0.22%. 
Thus, the steatosis grade was 0 in the control and 1 in 
the experiment. 

 
Figure 1: Liver of rat of control group, H&E, ×100. 

 

 
Figure 2: Liver of rat of control group, H&E, ×400. 



Journal of Pharmacy and Nutrition Sciences, 2021, Volume 11 

 

5 

 
Figure 3: Liver of rat of experimental group, H&E, ×100.  

As a result of the study, we found the absence of 
significant differences in daily average values of the 
studied micromorphometric parameters (Table 1). 

When considering the daily dynamics of the nucleus in 
the control, it was found that the maximum cross-
sectional area of the hepatocyte nuclei was reached in 
time point of 15 hours, and then a significant decrease 
in the value of this parameter to a minimum, which fell 
in 21 hours, was noted (Figure 5). In the experimental 
group, with a maximum remaining at 15 hours, the 

minimum values were found at 9 hours, but in general, 
the chronogram was smooth. The results of cosinor 
analysis show the presence of the reliable circadian 
rhythm of the cross-sectional area of the hepatocyte 
nucleus in the control and its change in the liver of rats 
of the experimental group (Table 2). 

At the consideration of diurnal dynamics of cells, it can 
be established that there is a presence of reliable 
circadian rhythm in the control group, but it was 

 
Figure 4: Liver of rat of experimental group, H&E, ×400.  

Table 1: The Average Daily Values of the Studied Micromorphometric Parameters 

 Area of nucleus of hepatocyte, 
µm2 

Area of hepatocyte, µm2 NCR 

Control 41.79±8.13 185.80±31.95 0.230±0.056 

Experiment 42.65±4.80 190.10±34.03 0.234±0.008 

 

 
Figure 5: Diurnal dynamics of area of nuclei of hepatocytes. 

Hereinafter: *(P≤0,05); **(P≤0,005); ***(P≤0,0005) – statistical significance of differences in comparison with the control group. 
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destroyed in the experiment. Wherein, the maximum 
value of the parameter in the liver of control rats was 
revealed at 9 hours followed by a decrease during the 
day to the minimum, which was noted at 3 hours 
(Figure 6). In the liver of rats of the experimental group, 
hepatocytes reached their maximum sizes at 21 hours, 
with a further decrease to the minimum at 9 hours. 

Similarly, as with other studied parameters, NCR at the 
control group had a reliable CR (Table 2), but it 
collapsed in the liver of rats of the experimental group. 
Herewith, the maximum value of NCR was noted at 15 
hours, then going down to the minimum at 21 hours 
(Figure 7). On the chronogram illustrating the dynamics 
of the NCR of the rats of the experimental group, there 
was a slight peak at 15 hours. 

When analyzing the graph of the average daily 
distribution of hepatocyte nuclei by area (Figure 8), one 

peak of nuclei (15.3% of all nuclei), whose area lies in 
the range of 35–40 µm2, was clearly distinguished in 
the control. In the experimental group, the karyogram 
had a two-headed top. The first peak of the nuclei 
(17.68%) lies in the range of 40-45 µm2, the second 
peak with a distribution range from 45 to 50 µm2 
includes 17.88% of the nuclei. 

However, when considering the histograms of the 
distribution of nuclei over the area at the studied time 
points, the picture differs significantly from the average 
daily histogram in its group and from the curve of 
another group. 

So, at 9 hours the maximum number of nuclei in the 
control (20%) had sizes in the range of 50-55 µm2, but 
in the experimental group, the maximum number of 
nuclei (19.7%) lied in the previous range - 45-50 µm2. 

 
Figure 6: Diurnal dynamics of area of hepatocyte. 

 
Figure 7: Diurnal dynamics of NCR. 
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At 15 hours the curve of the distribution of nuclei by 
area in the control became more gentle, and the 
maximum of nuclei with an area in the range of 60-65 
µm2 was observed in 14% of cases. In the 
experimental group, the distribution curve of 
hepatocyte nuclei was also slightly shifted to the right, 
a clear peak was distinguished on it, which amounted 
to 17.40% of the nuclei lying in the range 55-60 µm2. 

By 21 hours, the curve of the distribution of the area of 
nuclei in the control shifted significantly to the left, the 
largest part of nuclei (23.5%) had an area of 35-40 
µm2. By 3 hours the same peak remained, but it makes 
up 20.6% of the nuclei. 

In the experiment at 21 hours, 2 equivalent peaks were 
detected, which make up 20.20% of the nuclei, lying 
respectively in the ranges of 40-45 µm2 and 45-50 µm2. 
At 3 hours in this group, the curve had a more flattened 
shape with a plateau of nuclei in the area range from 
30-35 µm2 to 45-50 µm2, the maximum number of 
nuclei fell in the range of 35-40 µm2 - 17.90%. 

When considering the results of ploidometry, we found 
that the average daily ploidy of the studied hepatocytes 

in the control was 4.47±2.12n, in the experiment the 
ploidy was 5.02±2.18n; 3 groups of cells were revealed 
among the studied hepatocytes - diploid, tetraploid, and 
octaploid, the percentage of which varies during the 
day (Figures 9,10). 

 
Figure 9: Liver of rat of control group, methylene-green - 
pyronin G, ×400. 

Accordingly, we established the diurnal dynamics of rat 
hepatocyte ploidy in the studied conditions (Table 3). In 

Table 2: Amplitude-Phase Characteristics of Studied Micromorphometric Parameters of Hepatocytes (Based on the 
Results of Cosinor Analysis) 

Parameter Mesor Acrophase of rhythm Amplitude of rhythm 

Area of nuclei of hepatocyte, control 41.79 µm2 1221 10.03 µm2 

Area of nuclei of hepatocyte, 
experiment 

42.63 µm2 1754 3.73 µm2 

Area of hepatocyte, control 185.84 µm2 1013 24.84 µm2 

Area of hepatocyte, experiment No reliable CR 

NCR, control 0.230 1356 0.030 

NCR, experiment No reliable CR 

 

 
Figure 8: Variation curve of the average daily distribution of hepatocyte nuclei by area. 
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particular, it was found that the proportion of diploid 
hepatocytes in the liver of animals of the control group 
in the morning and afternoon hours is minimal, but it 
increases significantly in the evening and night hours, 
and this, apparently, is due to a decrease in the 
proportion of octaploid nuclei. 

 
Figure 10: Liver of rat of experimental group, methylene-
green - pyronin G, ×400. 

In the liver of rats of the experimental group, diurnal 
oscillations of the nuclei of all ploidy groups were 
observed, but, unlike the control, the proportion of 
diploid nuclei was greater in the morning and 
afternoon. The fraction of tetraploid cells experienced 
the least diurnal fluctuations, and the minimum 
percentage of octaploid cells was noted at 9AM. As in 
the control, tetraploid nuclei are the least variable. 
Moreover, in the experimental group there was a 
decrease in the number of diploid nuclei, but an 
increase in the proportion of octaploid nuclei. 

The study of the nature of the average daily fluctuation 
of ploidy of the studied hepatocytes showed that the 
maximum ploidy in the control was observed at 15PM, 
and the minimum - at 21PM. In the liver of rats of the 
experimental group, the chronogram was significantly 
smooth, the maximum ploidy was noted at 15PM, the 
minimum - at 9AM. 

We found that the proportion of binuclear hepatocytes 
in the liver of rats of the experimental group was 
9.08±3.59%, which is higher than the percentage of 
such cells in the control - 7.44±2.66%. 

At the same time, in the control group, the maximum 
number of binuclear hepatocytes was noted at 21PM, 
and the minimum - at 9AM, but in the liver of rats of the 
experimental group the maximum proportion of 
hepatocytes with two nuclei was found at 9 AM, and it 
was minimal at 3 AM (Figure 11). 

DISCUSSION 

As a result of the study, we found that chronic alcohol 
intoxication does not cause reliable changes in the 
average daily values of the nucleus, cell and NCR. At 
the same time, the change in the diurnal dynamics of 
these parameters was found, which manifests itself in 
smoothing of the chronograms of the nucleus and NCR 
with the disappearance of the expressed extreme 
points, and in the inversion of the cell chronogram in 
the experiment relative to the control chronogram. 
Chronic alcohol intoxication within three weeks causes 
the development of steatosis in the liver. 

According to the cosinor analysis, we found the 
destruction of the CR of the cell and NCR at revealed 

Table 3: Dynamics of Ploidy of Hepatocytes during the Day 

Ploidy of nuclei of hepatocytes Time point 

2n,% 4n,% 8n,% 

9 hours, control 10.4±0.24 51.6±2.67 38.0±1.62 

9 hours, experiment 21.4±1.20** 59.5±3.21* 19.1±0.95*** 

15 hours, control 11.1±0.68 40.2±2.0 48.4±1.90 

15 hours, experiment 12.6±0.79 39.1±1.89 48.3±1.95 

21 hours, control 35.3±2.11 61.6±2.95 1.8±0.2 

21 hours, experiment 9.1±0.50*** 54.5±2.54* 36.4±2.55*** 

3 hours, control 39.1±0.2.68 55.0±2.41 4.7±0.33 

3 hours, experiment 13.5±0.72*** 60.8±3.25 25.7±1.26*** 

Average value during the day, control 23.98±1.54 52.1±2.21 23.23±1.20 

Average value during the day, experiment 14.15±0.62*** 53.47±2.56 32.38±1.88*** 

Hereinafter: *(P≤0,05); **(P≤0,005); ***(P≤0,0005) – statistical significance of differences in comparison with the control group. 
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maintaining of the rhythm of the nucleus. But the 
rhythm of this parameter in the experiment is 
characterized by a shift of the acrophase to early 
evening hours from the late morning hours in the 
control, as well as a significant decrease in the rhythm 
amplitude with a practically unchanged mesor. 

At the same time, alcohol intoxication caused a shift in 
the variation curve of the size of the nucleus to the 
right, which indicates an increase in the proportion of 
nuclei with a large size. The nature of nuclear 
fluctuation at each of the studied time points also 
changes. Also, under the influence of ethanol, an 
increase in the degree of ploidy of the studied 
hepatocyte population occurred due to a decrease in 
the proportion of diploid cells and an increase in the 
proportion of octaploid cells, but the average daily 
ploidy fluctuations were less pronounced than in the 
control. 

In addition, under the influence of alcohol intoxication, 
there was an increase in the number of binuclear 
hepatocytes relative to control parameters, and the 
daily dynamics of their content also differed from the 
control. 

Thus, we have established the chrono-destructive 
effect of experimental alcohol intoxication in relation to 
the CR of the rhythm of the cell and NCR, as well as 
the chronomodulating effect in relation to the CR of the 
nucleus. 

The death of liver cells, including that which occurs 
under the influence of alcohol, stimulates the 
regeneration of the liver, and its main mechanisms are 

proliferation, polyploidy and hypertrophy of 
hepatocytes; polyploidy, and, to a lesser extent, 
proliferation, lead to an increase in the number of 
genes in cells [56-60]. 

The increase in nuclear ploidy of the studied 
hepatocyte population, as well as an increase in the 
number of binuclear cells, indicate the beginning of 
hypertrophic changes in the liver, since it is initially 
manifested by polyploidization of their nuclei, and the 
formation of binuclear cells as a result of acitokinetic 
mitosis is a key step in the process of cell 
polyploidization [61-64]. The fact that we have not 
established hypertrophy of the hepatocytes themselves 
indicates that at this stage the exposure to ethanol 
does not cause hypertrophic changes at the tissue and 
cellular level, but they are carried out at the level of the 
cell nucleus. 

In addition, an increase in ploidy is the initial stage of 
regenerative processes in the liver was shown. 
According to researches [65-71] with various models of 
liver damage, it is polyploid hepatocytes that have 
extensive in situ regenerative ability and regularly 
undergo mitosis during regenerative reactions. C. 
Kreutz et al., 2017 [72] put forward the hypothesis that 
ploidy of nuclei is a new factor in the diversity of 
hepatocytes, and hepatocytes with polyploid nuclei 
may have other biological functions than diploid ones. 
This diversity does not depend on the well-known 
heterogeneity associated with the position of cells 
along the central axis, which covers the distance 
between the portal and central veins of the lobule [73-
75]. 

 
Figure 11: Daily dynamics of the number of binuclear hepatocytes in rat liver. 
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Thus, the increase in the nuclear and cellular ploidy of 
hepatocytes in the liver of rats under conditions of 
chronic alcohol intoxication indicates the beginning of 
the deployment of adaptive-compensatory reactions in 
the organ. 
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