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Abstract:  
 
Abiotic stresses like temperature, water, salinity, ultraviolet (UV) radiations, heavy 
metals, etc., affect plants’ growth and yield. Despite these constraints, plants produce 
a variety of metabolites to maintain their survival. Primary metabolites, produced 
through crucial metabolic processes, are essential for plants survival. Additionally, 
secondary metabolites (SMs) are synthesized from primary metabolites and are 
mainly used as a defensive mechanism and a means of interacting with unfavorable 
environmental conditions. In addition to their defensive function in plants, SMs are 
significant in the pharmaceutical industry. Glycine betaine (GB) is a quaternary 
ammonium compound that belongs to a class of SMs, present in plants, animals, and 
microbes. It functions as a compatible solute and reflects potential bioactivity against 
various abiotic stresses like salinity, water, heat, heavy metals, UV radiations, etc. 
Due to high solubility and low viscosity, its accumulation is commonly observed in 
chloroplasts and plastids. The accumulation level generally depends on plant species, 
growth stage, exposure duration, and stress's nature. GB reduces oxidative stress 
and prevents the damaging of photosystems and other biomolecules under stressful 
conditions. It is important for maintaining the water potential and osmotic pressure of 
cells and hence functions as a potent osmolyte under salinity stress. Excessive 
production of ROS during temperature stress is responsible for damage to oxygen-
evolving complexes, electron transport chains, and photosystems. In order to protect 
plants from these damages, GB activates the genes responsible for synthesizing heat 
shock proteins, glycoproteins, and antioxidants via various signaling pathways. GB 
alleviates the effect of water stress by maintaining the function of rubisco and calcium 
ion ATPase activity via crosstalk with Abscisic acid (ABA) and ethylene. GB supports 
the proper functioning of the ascorbate-glutathione cycle, superoxide dismutase, 
catalase, peroxidase, and ascorbate peroxidase (antioxidative enzymes) to overcome 
various stresses. Phytohormones like salicylic acid (SA), jasmonic acid (JA), ABA, 
ethylene, and polyamines (PAS) coordinate well with GB via different signaling 
pathways to ensure plant protection under various abiotic stresses. The potential 
bioactivity of GB against various abiotic stresses in plants has been summarized in 
this review. 

DOI: https://doi.org/10.29169/1927-5951.2022.12.12 

 
*Corresponding Author 
Mob: +91-7860953153:  
E-mail: kkc@bhu.ac.in 
 
 
 

© 2022 Singh et al.; Licensee SET Publisher. 
This is an open access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, 
provided the work is properly cited.  



Journal of Pharmacy and Nutrition Sciences, 2022, Volume 12 

 

140 

INTRODUCTION 

A significant increase in the intensity, frequency, and 
duration of various abiotic stresses on this earth’s 
surface has been observed in the past few decades 
due to the industrial revolution and global climate 
change. Abiotic stresses play a significant role in 
driving and shaping any ecosystem by affecting vital 
ecological processes. Plants are affected primarily due 
to their sessile nature. The overall manifestation of 
abiotic stresses is osmotic imbalance and excessive 
accumulation of ROS. ROS enhances the degradation 
of lipid membranes, photosynthetic pigments, plant 
proteins, nucleic acids, and various cell organelles, 
along with their functions, leading to programmed cell 
death, as depicted in Figure 2 [1]. 

Soil salinization is one of the significant abiotic stresses 
responsible for the degradation of around a 1125million 
hectares of land globally [2]. India occupies 6.727 
million hectares of salt-affected land, which is 2.1% of 
its geographical region [3]. Approximately about 25% 
area of the Indo-Gangetic basin receives saline water 
[4], 44% area is covered under 12 states, and one 
union territory is salinity affected [5], out of which 
Gujarat, Uttar Pradesh, and Maharashtra are the major 
contributors [6]. A global economic loss of USD 27.3 
billion annually has been observed due to salinity [7]. 
Salinity is responsible for the deterioration of soil 
fertility and quality, along with osmotic and ionic 
imbalance. The generation of ROS under salinity stress 
ultimately causes a reduction in the growth and yield of 

plants [8]. Plants utilize antioxidative defense 
mechanisms to counter excessive ROS [9] and 
maintain osmotic balance via potent osmolytes 
accumulation such as GB to overcome the negative 
impact of salinity and other stresses, as shown in 
Figure 1 [10, 11, 12]. 

The land is the primary source of (more than 95%) food 
produced [13]; flood and drought are two significant 
aspects of water stress affecting productivity. 
According to the National Disaster Management 
Authority (Government of India), more than 40-million-
hectare land is prone to flood, and about 75-million 
hectare land is affected by seasonal floods yearly. The 
condition is similar to drought stress. Since the year 
2000, the frequency and severity of drought have been 
increased up to 29 %, affecting 55 million people yearly 
[13]. As per the prediction, about three-quarters of the 
world’s population may be affected due to drought by 
the end of 2050 [13]. Thus, water stress is imposing a 
serious threat to plant productivity and global food 
security. Water stress causes the overproduction of 
ROS like hydrogen peroxides, superoxide radicals, and 
hydroxyl radicals which causes lipids peroxidation to 
hamper plants’ growth and leads to programmed cell 
death [14]. Plants tend to synthesize several osmolytes 
like GB (Figure 1), proline, and sugars and stimulate 
antioxidant defense systems to maintain their 
sustainability under water stress [15]. 

On the other hand, an increase in average earth 
temperature has been observed due to global climate 

 
Figure 1: Role of glycine betaine under various abiotic stresses. CMO (choline monooxygenase); BADH (betaine-aldehyde 
dehydrogenase); ↑ (increase); ↓ (decrease). 
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change. The year 2021 was the sixth warmest year, as 
it was 0.84°C higher than the average of the 20th 
century [16]. As per the current rate of CO2 emissions 
and other greenhouse gases, it is predicted that the 
earth’s temperature will rise by 10.2°C by the end of 
this century [17]. Temperature stress can be classified 
as chilling stress (0-15°C) and freezing stress (≤0°C), 
depending upon the exposure of plants. This interferes 
with the normal metabolism of plants and causes 
oxidative stress, affecting plants' productivity and yield 
[18]. 

Besides this, the industrial revolution played a 
significant role in increasing heavy metals in the 
environment. In order to lessen the detrimental effects 
of heavy metals, GB accumulation in plants is 
enhanced, as shown in Figure 1. These heavy metals 
enhanced ROS's overproduction, which hampers plant 
growth and productivity [19]. GB proved beneficial in 
terms of increased chlorophyll content, FV/FM, and 
antioxidative enzymes in cadmium-stressed maize 
seedlings [20]. GB enhances the antioxidant capacity, 
and nutrient uptake and reduces the uptake of heavy 
metals, which improves the growth and productivity of 
plants [21]. In chromium-stressed chickpeas, GB was 
responsible for increased H+ ATPase activity, improved 
root growth, reduced oxidative stress, and improved 
plasma membrane integrity [22]. Exogenous GB 
enhances biomass, mineral nutrients, pigments, 
antioxidants, and osmolytes in the lead (Pb) stressed 
Brassica Chinensis L. [23]. Similarly, accumulation of 
low molecular weight osmolytes like GB was observed 
under increased UV-B radiation as shown in Figure 1 
[24]. Pretreatment of 50 mM GB via seed soaking (24 
hours) in fenugreek reflected increased total soluble 
sugar and the accumulation of potential SMs under UV 
exposure [25]. The beneficial impact of GB was also 
observed for rice against elevated UV-B radiation [26]. 
Florencia campestris and Flourensia oolepis reflected 
the higher accumulation of GB after UV-B exposure 
[27]. Low molecular weight, highly soluble, and  
nontoxic compatible organic solutes are synthesized by 
plants as a response to various abiotic stresses [28]. 
These compatible solutes are amino sugars (glycine, 
alanine, proline, glutamine), sugars (sucrose, 
trehalose, maltose, fructose), sugar alcohols (Mannitol, 
sorbitol, inositol, pinitol), quaternary ammonium 
compounds (β-alanine, betaine, proline) and tertiary 
sulfonium compound (dimethyl sulfoniopropionate). 

GB is a unique secondary metabolite (SM) [29, 30], a 
quaternary ammonium compound that is N, N, N-
trimethyl glycine with the chemical formula (C5H11NO2). 

It is a zwitterionic, dipolar, and electrically neutral 
compound at physiological pH [31]. Precursor of GB is 
choline and glycine [32), and it is synthesized via the 
choline monooxygenase pathway (CMO) (Figure 1) / 
choline dehydrogenase (CDH)/ choline oxidase (COD) 
pathway [33] in plants and bacteria. It is synthesized in 
the stroma region of chloroplasts and other plastids of 
mature and older tissues [34] and transported to 
younger tissues through phloem via secondary active 
transports (H+symporter). Cytosolic biosynthesis of GB 
is related to the non-stress condition [35], whereas 
chloroplastic biosynthesis is related to abiotic stress 
tolerance [36, 37]. In contradictory some reports are 
also suggesting no influence of GB under stressful 
conditions in Oryza sativa L. [38, 39], Arabidopsis [35], 
Nicotiana tabacum L. [35], and Solanum Lycopersicum 
L. [35]. GB contributes to plant defense against various 
abiotic stress [30, 40, 41], balances the cell 
osmotic/water potential [42], and helps to reduce lipid 
peroxidation along with protection to photosystems, 
proteins, nucleic acids via ROS detoxification [42]. It 
also serves as a function of carbon and nitrogen source 
[42] and ensures plants’ growth, yield, and survival 
under various abiotic stresses, as shown in Figure 1. 

Functions of Glycine Betaine as a Secondary 
Metabolite 

Secondary metabolites (SMs) are bioactive substances 
produced by plants and are vital for plant survival under 
biotic and abiotic stresses. They also serve as barriers 
against herbivore deterrents, pathogen invasions, and 
oxidative stress mitigators. Environmental factors such 
as light, temperature, water, and soil quality 
significantly impact the accumulation of SMs [43]. SMs 
also play an important role as multifunctional 
metabolites frequently used by plants to communicate 
with their environment and defend themselves against 
various abiotic challenges like UV radiation, 
temperature, drought, and salinity [44, 45]. 

Glycine betaine functions as SMs [29, 30], which 
protects against abiotic stresses by acting as a 
powerful osmolyte [46]. It also serves as a compatible 
solute and shields plants from various abiotic 
challenges, including drought, salinity, temperature, 
and heavy metals [47, 48]. The plants' tolerance to 
various abiotic stress is increased by exogenous 
glycine betaine supplementation and transgene-
mediated insertion of the glycine betaine biosynthesis 
gene in GB nonaccumulators to improve stress 
tolerance capacity [49, 50]. In GB-deficient species of 
higher plants, genetic engineering has made it possible 
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to introduce genes from its biosynthesis pathway, 
reflecting the significance of GB in stress protection 
[46, 51, 48].  

Plants have been transformed using genes that direct 
choline-to-GB processes; so far, they have been 
engineered to express (COD, CDH, or CMO). The first 
instance of synthetic GB production in plants was 
shown after Arabidopsis chloroplasts overexpressed 
the COD gene from Arthrobacter globiformis [52]. The 
enzyme was engineered with a chloroplast-targeting 
signal due to its bacterial origin, and as a result, GB 
accumulated in the chloroplasts at a concentration of 
50 and 100 mM [53]. However, the production of GB 
increased three to five times more when COD was 
made to stay in the cytosol as opposed to the 
chloroplasts. This discrepancy may be due to a more 
significant concentration of the substrate choline in the 
cytosol (where choline synthesis occurs) than in 
chloroplasts [54, 55]. 

Additionally, transgenic rice plants were developed to 
produce CDH and COD that accumulate GB at 
comparable rates [56]. Transgenic maize lines showed 
a significantly enhanced accumulation of GB [57]. The 
model plants Arabidopsis thaliana, Eucalyptus 
globulus, Japanese persimmon (Diospyros kaki), 
Brassica campestris L. spp., Solanum tuberosum, and 
Lycopersicon esculentum were also overexpressed 
with the Arthrobacter spp. codA gene to produce 
tolerance against salinity, drought, chilling, and low 
relative humidity [11]. GB provides tolerance against 
chilling stress mediated through a G-protein called 
RabAc4, which is involved in membrane trafficking [48]. 

The stabilization of proteins and enzymes' natural 
structures, osmotic control, membrane integrity, 
reinforcement of photosynthesis, and detoxification of 
ROS generated during stresses are all components of 
GB-mediated abiotic stress tolerance mechanisms [58]. 
The GB functions in vivo as a chaperone protein; this 
shows that it can stabilize transcriptional and 
translational pathways to express genes in stressful 
conditions effectively. Studies conducted in vitro show 
that GB lacks antioxidant activity on its own [59, 60]. 
Rather than its direct action, GB indirectly activates the 
ROS defense system. Therefore, GB is a potential 
secondary metabolite to give plants a tolerance to 
abiotic stresses. 

Salinity Stress and Glycine Betaine 

Salinity stress negatively impacts the overall biological 
functions of plants (Figure 2); however, the severity 

depends on the concentration and duration of 
exposure, plant species, and growth stages [61]. 
Salinity stress enhanced ROS generation, damaging 
the cell membranes, proteins, and nucleic acids and 
ultimately hampered growth, biomass productivity, and 
yield [62, 63, 64, 65]. Soil microbial biomass and 
various enzymatic activities are also affected under 
salinity stress which deteriorates the soil quality, 
fertility, and overall crop production [66, 67]. Plants 
ensure their survival and growth against deleterious 
abiotic stresses [68]; e.g., Wheat ensures their survival 
under salinity stress on the cost of yield and biomass 
[69]. Plants alleviate the negative impact of salinity 
stress by evolving protective mechanisms like 
antioxidant defense systems [70]. It is a cascade of 
different enzymatic and non-enzymatic antioxidants 
which helps the plants to overcome salinity-induced 
oxidative damages [71]. The second defense 
mechanism is osmotic adjustment by synthesizing 
various organic solutes [10]. Proline, GB, amino acids, 
and sugars are the organic molecules that maintain the 
osmotic balance of cells and protect plant organelles by 
scavenging ROS [72]. Osmolytes also boost 
photosynthetic efficiency and enhance the antioxidant 
machinery for better growth and productivity under 
salinity stress [73]. 

The exogenous application of GB has beneficial effects 
on various plant species under salinity stress (Table 1). 
Applying GB (100 mM) to wheat plants enhanced the 
relative water content and Fv/Fm under salt stress [74]. 
GB-based bio-stimulants resulted in better 
photosynthesis and growth and reduced Na+/ Cl- uptake 
by roots under moderate to high salinity stress in 
tomato plants [75]. The benefits of GB (25 mM / 50 
mM) against salinity stress of 50 mM / 100 mM are 
evident in enhanced antioxidant defense, maintenance 
of photosynthetic pigments, relative water content, 
yield, and high K+/Na+ ratio [76]. Foliar application of 
GB (0 mM, 25 mM, 50 mM) on onion plants against the 
4.80 dS m-1 salt stress increased the shoot length, 
fresh weight, dry weight, bulb yield, and water use 
efficiency [77]. GB enhances the total soluble sugar, 
Ca2+, and K+ concentration and photosynthesis 
processes of cucumber plants [78]. Pretreatment of GB 
improved growth and increased antioxidant activity 
[79]. 25 mM GB improved dry matter content by 44% 
under 100 mM NaCl treatment [80], along with 
increased phenolics and antioxidants [80]; it also 
improved the physiological characteristics and 
antioxidant defense systems of basil plants under 
various salinity levels [81]. An enhancement in yield by 
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Figure 2: Schematic representation for the impact of various abiotic stresses (i.e., salinity, water, and temperature) and defense 
strategies adopted by the plants through exogenous application of glycine betaine. CMO (choline monooxygenase); BADH 
(betaine-aldehyde dehydrogenase); ↑ (increase); ↓ (decrease). 
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Table 1: Glycine Betaine Induced Tolerance in Plants under Abiotic Stresses 

Plant Abiotic Stress Concentration of 
Glycine betaine 

utilised 

Beneficial impact of glycine betaine in 
plants 

References 

Bean  Salinity stress 0 mM, 
50 mM, 100 mM NaCl 

25 mM, 50 mM, 50 ml 
per plant 

High K+/Na+ ratio, low Na+ uptake, increased 
relative water content, photosynthetic 

pigment, pod yield and antioxidative defence 
mechanism 

 [51] 

Onion Salinity stress  
4.80dS-1 

0 mM, 25 mM, 50 mM Increased in shoot length, shoot fresh and 
dry weight, leaf area, bulb yield, water use 
efficiency, leaf chlorophyll, relative water 
content, membrane stability, antioxidative 

enzymes, osmolytes and decrease in reactive 
oxygen species. 

 [52] 

Wheat Salinity stress 9.40 to 
7.90 dS m−1 

100 mM High relative water content, high Fv/Fm, 
increased number of spikes, and grain yield 

 [49] 

Cucumber 0 mM, 50 mM, 100 
mM NaCl 

0 mM, 50 mM, 100 
mM 

Increased total soluble sugar, proline, GB, 
Ca++ and K+ concentration, photosynthetic 

efficiency and yield. 

 [53] 

Strawberry Salinity stress 34 mM 
NaCl 

5g L -1 Enhanced yield by 30%  [57] 

Basil plant Salinity stress 50 mM, 
75 mM, 100 mM NaCl 

50 mM, 100 mM, 200 
mM 

Improved physiological parameters and 
antioxidative defence system. 

 [56] 

Soybean 150 mM NaCl 0, 5, 25, 50 mM Improved growth and antioxidant capacity  [54] 

Lettuce 0, 100 mM NaCl 0, 5, 10, 25 mM Increased dry matter content, total phenolics 
and antioxidants 

 [55] 

Tomato  Cold stress 14°C  10 mmol/L of GB Enhanced germination rate, germination 
index, viability of seeds, antioxidative 

enzymes.  

 [73] 

Tomato Cold stress 4°C 5 mM GB  Increased electron flow between 
photosystems, maintained redox potential, 
protected photosystem from photoinhibition 

 [74] 

Banana Cold stress 7°C 100 mM GB  Increased contents of antioxidant chlorophyll, 
soluble sugar, total phenolics, ascorbic acid 

and glutathione. 

 [75] 

peach  Cold stress 0°C  10  mmol  L−1 Increased phenolics, flavonoids, sucrose, and 
antioxidative- enzymes. 

 [76] 

Blood oranges Cold stress 3°C for 90 
days 

15 mM, 30 mM at 30 
kPa 

Increased antioxidative activity and 
decreased malondialdehyde content and 

electrolyte leakage. 

 [77]  

Plum Cold stress 1°C 2.5 mM, 5 mM Reduced chilling injury, increased nutritional 
quality, storage potential and shelf life.  

 [78]  

Nanguo pears Cold stress 0 ± 0.5°C 
for 120 days 

0.1 mol L−1 GB  Decreased browning index, lipid peroxidation, 
Increased antioxidants and proline. 

 [79]  

Sugarcane Cold stress 15°C,  
2 days 

10 mM, GB, 8h Increased proline and GB, soluble sugars, K+ 
and Ca++ 

 [80] 

Cotton Cold stress, 5°C, 3 
days 

400 µL/ml, 14 h Increased relative water content and 
decreased cell membrane damage 

 [81] 

Peach Cold stress 0 ± 0.5°C 10 mM Increased total soluble solid, organic acid, 
total free amino acids, compatible solutes, 

flavour and quality 

 [82] 

Wheat  Heat stress 40°C  _ Increased antioxidative activity, improved 
water status, and photosynthetic rate 

 [84] 

Sugarcane Heat stress, 42°C 20 mM, 8 h Increased soluble sugar, and protected 
developing tissue. 

 [80] 
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(Table 1). Continued. 

Plant Abiotic Stress Concentration of 
Glycine betaine 

utilised 

Beneficial impact of glycine betaine in 
plants 

References 

Marigold Heat stress, 39°C 0.5 and 1 mM, 15 
days 

Increased transpiration rate and decreased 
lipid peroxidation. 

 [85] 

Green bean Drought stress 55, 70, 
85 and 100% of 

irrigation 

 5, 10, 15, 20 mM  Improved growth parameters and yield  [106] 

Flax Drought stress 
irrigation was withheld 

water for 5 days  

50 mM and 100 mM _ Increased endogenous GB, and proline.  [107] 

Green Chiretta Drought stress, water 
deficit 68% of field 

capacity 

 25, 50, and 100 mM Increase total soluble sugar, osmotic 
potential, free proline, leaf temperature and 

crop water stress index. 

 [108] 

Spinach Drought stress, 50% 
irrigated 

50, 100, 150 µM Increased catalase activity, proline, protein 
carotenoids, and chlorophyll. 

 [105] 

Tomato Waterlogging stress, 
10 days of 

waterlogging by 
blocking the drainage 

50 mM for 25 days Reduced MDA content, membrane injury, Na 
accumulation, Increased K+and 

Ca++accumulation 

 [109] 

GB (glycine betaine); mM (millimolar); µM (micromolar); dS-1 (desi siemens per metre); MDA (malondialdehyde). 

strawberries under 34 mM NaCl due to GB application 
[82]. Overall results concluded that GB enhances 
plants growth and survival by preventing metabolic 
dysfunctions, reducing Na+, and simultaneously 
inducing K+ uptake, maintaining a greater K+/Na+ ratio. 
It also acts as a potent osmolyte that can be used as a 
superior tool for reducing salt stress' negative impacts 
on plants. Plant physiological characteristics and 
antioxidant defense mechanisms were enhanced by 
exogenously administered GB. 

Temperature Stress and Glycine Betaine 

Temperature stress is one of the major limiting factors 
that hamper the growth and yield of plants (Figure 2). 
The exogenous application of GB enhanced various 
plant species' temperature stress tolerance capacity 
(Table 1). Increased soluble proteins, sugar molecules, 
and other osmolytes have been recorded in plants 
under low temperatures [16]. Antioxidative enzyme 
activities, electrolyte leakage, lipid peroxidation, and 
ROS also increased in many plant species under low-
temperature stress [83, 84]. Loss in biomass, 
chlorophyll content, and genome templet stability was 
observed for pepper cultivars under low temperatures; 
whereas proline content, catalase activity, and DNA 
methylation were increased [85]. Pepper plants 
exposed to low temperatures (8°C) reflected an 
increase in ROS and reactive nitrogen species (RNS) 
for the first day. At the same time, cold acclimation has 
been observed during the second and third days of 
exposure via increased concentrations of enzymatic 

and non-enzymatic antioxidants [86]. Low-temperature 
stress is responsible for maize's reduced growth and 
productivity [87], accompanied by reduced leaf size, 
stem growth, root growth, and imbalanced nutrients 
uptake [88]. Plant growth hormones such as auxin, 
gibberellin, cytokinin, ethylene, SA, brassinosteroid, 
PAS, and nitric oxides modulate the response to chilling 
stress in maize [88]. Under low temperature, reduction 
in the mean leaf area index, mean net assimilation rate, 
harvest index, biomass, and grain yield were observed 
in wheat [89]. 

ROS like hydrogen peroxide and superoxide anions are 
increased due to high-temperature stress in plants. 
Accumulation of ROS causes lipids peroxidation, 
protein denaturation, and chloroplast damage [90]. 
Photosystem I (PSI) show more stability than 
Photosystem II (PSII) under high-temperature stress 
[91]. In tobacco and wheat, the high temperature was 
responsible for the reduced function of PSI [91, 92]. In 
response to temperature stress, the cascade of 
antioxidative defense system protect plants against 
oxidative stress [93]. 

On the other hand, defense is also maintained through 
compatible solutes like GB, sugars, and proline [94]. 
Reduction in overall growth and fruit setting has been 
observed under temperature stress in tomato plants 
[95]. Retardation in root growth and photosynthetic rate 
under heat stress ultimately leads to crop death [96]. 
High temperature is responsible for alteration in the 
functioning of PSII along with the electron transport 
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chains [97], and the overall result is a reduction in plant 
growth and yield. 

Priming seeds with GB increased germination rate, 
germination index, and seed viability in tomatoes under 
low-temperature stress (14°C) and also controlled the 
buildup of ROS by enhancing the ROS scavenging 
system [98]. GB reduces ROS generation and 
photoinhibition in tomato plants under chilling stress by 
maintaining cyclic and noncyclic electron flow between 
the photosystems [99]. Exogenous application of GB 
was responsible for enhanced antioxidant activity, 
chlorophyll content, total soluble sugar, total phenolics, 
ascorbic acid, and glutathione under cold storage 
conditions with improved shelf-life of bananas [100]. 
On the other hand, 10 mM GB was sufficient to 
maintain the storage capacity of peaches under 3°C for 
90 days via increased antioxidative activity and 
reduced lipid peroxidation and electrolyte leakage 
[101]. The application of GB at 3°C for 90 days resulted 
in the extended postharvest life of oranges [102]. The 
utilization of GB-coated chitosan nanoparticles 
enhanced the endogenous proline and glycine content, 
which correlates well with the tolerance to chilling 
stress under cold storage in plums [103]. 

Similarly, in pears, exogenously applied GB was helpful 
for the reduction of the flowering index at 0°C for 120 
days [104]. In sugarcane, 10 mM of GB was 
responsible for enhanced osmolytes, total sugars, K+, 
and Ca2+ under 15°C for two days [105]. Reduced cell 
membrane damage and increased relative water 
content have been reported in cotton due to 400 µL/ml 
GB application for 14 hours under 5°C for three days 
[106]. Exogenous GB enhanced peach fruits' flavor, 
quality, and tolerance capacity via increased 
accumulation of the total soluble solids, organic acids, 
free amino acids, and compatible solutes [107]. 

GB protects the photosystems, proteins, nucleic acids, 
and lipids from degradation and enhances growth via 
improved tolerance against heat stress [108]. 
Protection of photosystems from photoinhibition was 
achieved through GB application under heat-stressed 
wheat plants [109]. Reduction in the number and area 
of mesophyll cells hampered the formation of new buds 
and leaves under heat-stressed sugarcane. In contrast, 
GB application increased total soluble sugar, k+, and 
Ca2+ content and reduced ROS providing better 
tolerance against heat stress [105]. Increased 
transpiration and decreased lipid peroxidation were 
observed for marigold (39°C) after applying exogenous 
GB for 15 days [110]. GB protected PS II from damage 

via enhanced synthesis of D1 protein [111]. Thus, GB 
has proven beneficial for plants under temperature 
stress, supporting optimal development and survival 
(Figure 2). Experimental findings related to this aspect 
suggest that GB increases the capacity to withstand 
temperature stress by increasing the accumulation of 
total soluble solids, organic acids, free amino acids, 
and suitable solutes. It improves growth via increased 
tolerance to heat stress and prevents the degradation 
of photosystems, proteins, nucleic acids, and lipids. 
Therefore, GB acts as potential SMs and is beneficial 
for plants under temperature stress, promoting optimal 
growth and survival. 

Water Stress and Glycine Betaine 

Water stress is a combined effect of waterlogging and 
drought stress, interferes with normal metabolism via 
the overproduction of ROS and ultimately lead to cell 
death (Figure 2). Waterlogging interferes with plants' 
growth and developmental processes by inhibiting 
aerobic respiration and energy metabolism [112]. It 
creates hypoxic conditions near the root zone, hampers 
root oxygen availability, and leads to plant death [113]. 
Waterlogging and anaerobic conditions are responsible 
for increased ROS which lead to programmed cell 
death in plants [114]. Reduced stomatal activity, 
chlorophyll production, photosynthetic rate, vegetative 
and reproductive growth, and eventually yield were all 
effects of water stress [115]. Plants develop survival 
strategies by shifting metabolic processes toward low-
energy fermentation processes [116]. The interaction of 
various biomolecules, soluble sugar compounds, and 
phytohormones produced by plants results in improved 
antioxidative defense mechanisms [117]. Plants 
produced aerenchyma and a number of adventitious 
roots to help them survive under water-stressed 
environment [118]. Waterlogging is mainly responsible 
for reduced cell permeability, root activity, respiration 
process and increased oxidative damage, which 
hampers the stomatal functioning, chlorophyll synthesis 
and photosynthesis [119, 120]. It also enhanced the 
denitrification process that interferes with plants' 
nitrogen and carbon metabolism, causing a decrease in 
soluble sugars and nitrogen availability to plants [121]. 
Waterlogging enhances the leaching of mobile 
nutrients, due to which plants face mineral deficiency 
[119]. In summer maize, waterlogging was responsible 
for decreased chlorophyll content, ear length, ear 
diameter, plant height, leaf area, grain weight, and 
increased bald tip length [122]. 

Drought stress is one of the major challenging issues to 
plant growth and productivity [123]. It is responsible for 
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reduced chlorophyll, gas exchange, and relative water 
content due to increased ROS and lipid peroxidation 
[124]. Higher ROS accumulation damage biomolecules 
like proteins, nucleic acids, lipids, and photosynthetic 
pigments. In response to drought stress, plants altered 
their osmotic potential, water potential, and 
accumulated antioxidative enzymes such as SOD, 
CAT, peroxidase (POD), and ascorbate peroxidase 
(APX) [125]. Plants synthesize osmolytes like proteins, 
proline, GB, phenolics, flavonoids, and soluble sugars 
[126] that helps to alleviate drought stress. 
Phytohormones play an important role in signaling and 
other developmental processes which provide 
tolerance to abiotic stresses [127]. Reduced seed 
germination, blooming, plant height, leaf area, relative 
water content, stomatal conductance, net 
photosynthesis, total biomass, and yield are all results 
of drought stress [128]. 

The exogenous application of GB plays an important 
role in protecting plants under water stress (Table 1). It 
protects plants by adjusting osmotic pressure, gene 
regulation, and other cellular and subcellular 
responses. It also enhances the endogenous GB 
accumulation in plants, which provides better protection 
under various abiotic stresses [129]. GB maintained the 
cell protein concentration, water status, cell membrane 
integrity, antioxidative activity, and photopigments of 
plants under water stress [130]. Exogenous GB has 
been used to alleviate the negative impact of water 
stress and improve growth parameters like pod 
number, pod length, pod thickness, plant height, 
number of leaves, number of branches, and total fresh 
weight of green beans [131]. Exogenous GB spray 
enhanced the buildup of endogenous GB content in 
flax, enhancing its capacity to withstand drought stress 
[132]. In green chiretta, 50 mM and 100 mM GB 
applications under drought stress led to enhanced total 
soluble sugars, osmotic potential, free proline, leaf 
temperature, and crop water stress index [133]. 50, 
100, and 150 µM GB applications stimulated spinach's 
catalase activity, proline, proteins, carotenoids, and 
chlorophyll content under drought conditions [130]. 
Under waterlogging, 50 mM GB application for 25 days 
on tomato plants was responsible for the higher 
accumulation of K+ and Ca2+ along with decreased 
membrane injury [134]. Thus, the GB has been proven 
beneficial for better growth and yield of plants under 
water stress, as shown in Figure 2. The experiments 
suggested that under water stress, GB sustains plants' 
cell protein concentration, hydration status, and 
antioxidative activities along with the integrity of cell 

membranes and photopigments. Further, GB has been 
used to maintain osmotic pressure, cellular and 
subcellular reactions, and ultimately gene regulation to 
reduce the detrimental effects of water stress and 
functions as a potential secondary metabolite. 

Crosstalk between Glycine Betaine and 
Phytohormones  

GB provides tolerance against various abiotic stresses 
via activating antioxidant machinery to detoxify ROS 
molecules and maintains the cellular osmoticum of 
plants. These complete processes require strong 
regulation and intrinsic interaction between several 
biomolecules and signaling cascades (Figure 3). 
Phytohormones are important biomolecules that 
regulate normal physiological activities and ensure 
better growth and development of plants [135]. These 
biomolecules provide tolerance against several abiotic 
stresses via complex signaling cascades, from 
receiving a signal to activation of several stress-specific 
genes [136]. Phytohormones provide a better 
microenvironment for plant growth and development by 
establishing proper source and sink relationships and 
resource partitioning to different organs based on their 
need to acclimatize under adverse environmental 
conditions [137]. Accumulation of GB is positively 
correlated with the accumulation of stress 
phytohormones like ABA, SA, JA, and PAS and vice 
versa. All the phytohormones and biomolecules 
function in a very regulated and correlated manner, 
ensuring plant growth and survival under various 
abiotic stresses, as shown in Figure 3.  

Abscisic Acid 

ABA is one of the important stress phytohormones, 
synthesized in roots and other tissues under various 
abiotic stresses and transported to leaves and other 
plant parts to check stomatal closure and water loss 
[138]. Via activating stress-responsive genes, which 
are involved in the biosynthesis of a number of SMs, 
osmolytes, and antioxidants, ABA provides tolerance to 
abiotic stresses [139]. Betaine aldehyde 
dehydrogenase (BADH) transcription is upregulated in 
leaves and roots in response to ABA, which causes GB 
accumulation in plants [140]. Heat stress enhanced the 
endogenous ABA, which induced BADH gene 
transcription and GB accumulation in plants [141]. 
Exogenous ABA application is well correlated with the 
accumulation of GB in barley plants exposed to salinity, 
drought, and low-temperature stresses [142]. The 
exogenous fluoridone application inhibits the 
biosynthesis of ABA and GB in plants through 
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Figure 3: Crosstalk between glycine betaine with phytohormones during various abiotic stresses (i.e., salinity, water, and 
temperature) in plants. ABA (Abscisic acid); PAL (Phenylalanine ammonia-lyase); SAM (S-Adenosyl methionine); CMO (Choline 
monooxygenase); BADH (Betaine aldehyde dehydrogenase); + (positive correlation); - (negative correlation). 
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alteration in carotenoids biosynthetic pathway in corn 
[143, 144]. Studies suggested a strong and positive 
correlation between ABA and GB, which is beneficial 
for the survival of plants under abiotic stresses (Figure 
3). 

Salicylic Acid  

SA provides immunity against various abiotic stresses 
like salinity, drought, temperature, UV radiations, heavy 
metals, etc., via activating systemic acquired resistance 
in plants. It mediates signaling with other 
phytohormones to stimulate the accumulation of 
osmolytes and strengthen defense mechanisms in 
plants under abiotic stresses [145]. Pretreatment of SA 
enhanced BADH gene expression and GB 
accumulation under osmotic stress [146]. Under salt 
stress (50 mM NaCl), increased endogenous GB was 
caused by the exogenous administration of SA in mung 
bean, resulting in improved photosynthesis, 
antioxidative defense, water potential, and growth 
indices. On the other hand, a decrease in lipid 
peroxidation, Na+, Cl- buildup, and lipid peroxidation 
have been observed [147]. Exogenous application of 
SA enhanced the endogenous GB, proline, soluble 
sugars, antioxidative enzymes, and chlorophyll, which 
further improved water relation and overall yield under 
various abiotic stresses [148]. A positive correlation 
between SA and the biosynthesis of GB has been 
observed in several studies, and it is well correlated 
with the tolerance mechanism of plants against various 
abiotic stresses (Figure 3). 

Jasmonic Acid 

JA is involved in plants defense against various abiotic 
stresses like salinity, drought, temperature, heavy 
metals, and flood by synthesizing various 
osmoprotectants like GB and better antioxidative 
defense mechanisms [149]. The coordination of JA and 
SA has been observed in plants’ defense against UV-B 
stress [150]. Exogenous JA induced antioxidative 
enzymes and reduced oxidative stress in maize plants 
under drought stress [151]. Similarly, JA reduced lipid 
peroxidation, increased antioxidants, and improved the 
K+ content of plants under salt stress [152]. Pre-treated 
soybean seeds with JA enhanced salt tolerance via 
improved osmoprotectant accumulation [153]. 
Exogenous JA application increased the endogenous 
GB in Brassica rapa L. [154]. Thus, the JA and GB play 
an important role in providing tolerance to plants during 
abiotic stresses (Figure 3).  

Ethylene  

Ethylene is an important gaseous plant hormone that 
regulates plants growth under abiotic stress like 
salinity, drought, flood, temperature, heavy metals, and 
UV radiation. It enhances the antioxidative defense 
system of plants, reduces oxidative stress, and 
increases plants’ photosynthetic rate and yield [155]. 
GB and ethylene interact together, as shown in Figure 
3, to provide tolerance against salinity stress in plants 
[156]. Exogenous application of SA enhanced GB 
accumulation via increased methionine biosynthesis 
and decreased ethylene biosynthesis [155]. An 
increase in GB biosynthesis enhanced the 
photosynthetic rate, growth, and yield of stressed 
plants via upregulating antioxidative defense pathways 
[155]. Endogenous ABA and SA is well coordinated for 
the biosynthesis of GB in the chloroplasts [157]. 
Increments in GB accumulation and reduction in 
ethylene content have been observed in plants under 
salt stress [158]. It has been found that plant species 
that accumulate low amounts of ethylene tend to 
synthesize more GB to provide tolerance against 
various abiotic stresses [159]. 

Polyamines  

PAS are small, low molecular weight, plant growth 
regulatory biomolecules produced during various plant 
metabolic processes [160]. PAS are  helpful in 
maintaining plants' normal growth and development 
during various abiotic stresses like salinity, temperature 
and water stresses (Figure 3). They play an important 
role through exogenous application along with 
endogenous levels in plants. PAS favour growth and 
development by preventing the degradation of nucleic 
acids, proteins, and lipids and also enhance protein 
folding during stress conditions. They promote SMs 
accumulation by serving as precursor molecules [161]. 
Similar to GB, PAS work as compatible solutes; both 
molecules coordinate well to regulate the osmotic 
balance of cells during abiotic stresses [162]. Priming 
of salt stressed-seedlings of rice with PAS reflected 
enhanced BADH1 expression in the shoots and roots 
[163]. Exogenous application of spermidine on 
Raphanus sativus seedlings improved the GB and 
proline contents under Cr stress [164].  

CONCLUSIONS AND FUTURE PERSPECTIVES 

Abiotic stresses potentially threaten agricultural 
productivity and food security under current and 
predicted climate change globally. GB is one of the 
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important SMs and functions as a potential osmolyte 
during abiotic stresses in plants. The defensive roles of 
GB against various abiotic stresses are well depicted 
through the exogenous application or when stimulated 
endogenously in plants to ensure better growth and 
development along with their survival under adverse 
environmental conditions. The mechanism of action of 
GB against abiotic stresses can be divided into three 
different phases, i.e. (i) GB acts as a potential osmolyte 
that promotes the accumulation of other compatible 
solutes and maintains the water status of the cell via 
balancing cellular osmoticum and thus provide defense 
against osmotic stress. (ii) GB is helpful for the 
induction of antioxidative defense mechanisms to 
ensure proper quenching of ROS in order to reduce 
oxidative damage in plants. (iii) GB positively 
coordinates with other biomolecules for expressing 
stress-related genes to enhance the tolerance 
capability of plants under various abiotic stresses. 
Researchers throughout the globe are continuously 
involved with experiments to develop tolerant cultivars 
against abiotic stress via transferring the gene for 
glycine betaine biosynthesis (genetic engineering) in 
the sensitive cultivar and to pinpoint the precise 
mechanism by which GB confers tolerance at the 
physiological and molecular levels to the plants. In the 
scenario of climate change, this helps highlight the 
issue of global food security. 
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