
 Journal of Basic & Applied Sciences, 2023, 19, 97-105  

97 

 

 

Published by SET Publisher 
 

Journal of Basic & Applied Sciences 
 

ISSN (online): 1927-5129 
 

Sensitivity Analysis of Wind Turbine Broadband Noise Estimation 
to Semi-Empirical Models Parameters 

Filippo De Girolamo*, Lorenzo Tieghi, Giovanni Delibra, Alessio Castorrini and Alessandro 
Corsini 

Department of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00154, Rome, 
Italy 

 
Article Info: 
 
Keywords:  
Wind turbine rotor noise,  
semi-empirical noise models,  
Trailing edge noise,  
Inflow noise. 
 
Timeline: 
Received: May 10, 2023 
Accepted: June 06, 2023 
Published: July 11, 2023 
 
Citation: De Girolamo F, Tieghi L, 
Delibra G, Castorrini A, Corsini A. 
Sensitivity analysis of wind turbine 
broadband noise estimation to semi-
empirical models parameters. J Basic 
Appl Sci 2023; 19: 97-105. 
 

 

 
Abstract:  
 

The continuous increase of energy demand and the rising concerns on climate 
change, are pushing the European Union decarbonization strategies and transition 
toward renewable based energy systems, with wind energy playing a leading role. 
It is therefore necessary to have a better understanding of how wind turbines 
(WTs) impact on their surroundings, including their noise emissions. Among the 
different methods to compute noise emissions of WTs, semi-empirical models are 
a valid choice to have a-priori estimations of noise spectra and sound pressure 
levels. These models are based on correlation laws for different physical 
mechanisms that contribute to noise generation. Popular models for dominant 
noise sources include the Amiet approach for inflow turbulence noise and the 
Lowson model for turbulent boundary layer-trailing edge noise. Determining the 
parameters involved in these models can be challenging, potentially leading to 
significant errors in noise prediction. In this study, we conducted a novel sensitivity 
analysis of the models by varying different parameters such as turbulent intensity 
and dissipation, boundary layer thickness, and temperature. The selected test case 
is the reference multi-MW horizontal axis wind turbine Neg-Micon 80. The results 
of the multilevel-multivariate analysis, involving 63,360 combinations of the input 
parameters, clearly demonstrate a significant dependence of these models on 
atmospheric turbulence parameters. Furthermore, these models exhibit an higher 
sensitivity to input parameters at lower frequencies of the noise spectrum, which 
are generally associated with higher values of sound pressure level. 
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1. INTRODUCTION 

The increasing penetration of wind turbines and farms 
in human populated areas raises concerns regarding 
their impacts on environment and population. In 
particular, the noise emissions generated by rotors may 
negatively interfere with local human activities [1]. Even 
if some authors agree that most of the rotor 
aerodynamic noise is masked by environmental 
background noise [2], the researches from Bakker et al. 
have found psychological distress and sleep 
disturbances in populations leaving in close proximity 
of wind turbines [3]. In addition, noise emissions from 
wind farms and turbines must comply with regional and 
national regulations [4]. 

Acoustic emissions from wind turbines can be 
classified into mechanical and aerodynamic noises. 
While manufacturers can easily control the former 
through precautionary measures, the latter is 
dependent on the inevitable interaction between the 
wind and the turbine itself. Furthermore, it is worth 
noting that aerodynamic noise increases with rotor 
size. Although the understanding of rotor aerodynamic 
noise mechanisms is not yet fully comprehensive, a 
majority of authors agree in acknowledging that noise 
predominantly originates from interaction between 
leading edge and the atmospheric turbulence (inflow 
turbulence noise) and the wake generated at the 
trailing edge (airfoil self-noise) [5]. 

However, noise prediction of wind turbines can result in 
complex and computationally expen- sive numerical 
campaigns. Few experimental data are available, and 
numerical simulations based on medium- and high-
fidelity approaches require demanding HPC efforts [6]. 
On the contrary, semi-empirical acoustic models 
(SAMs) are able to estimate the acoustic spectrum and 
sound pressure level (SPL) by setting a few 
parameters and operating conditions of the turbine [7]. 
A review of the main models can be found in Bhargava 
et al. [8]. For instance, Leloudas et al. [9] combined 
Blade-Element Momentum (BEM) method and semi-
empirical models with mea- surements to estimate 
noise emissions from a wind turbine test site, obtaining 
a good agreement between measured and computed 
noise spectrum. A similar approach can be found in 
Zhu et al. [10], where they compared the Brooks-Pope-
Marcolini model [11] for airfoil self-noise prediction with 
measurements from a small-sized wind turbine. The 
results clearly show that accurate eval- uation of the 
boundary layer thickness enhances the accuracy of 
noise prediction. De Girolamo et al. [12] combined the 

actuator line method through URANS approach with 
SAMs to have an accurate estimation of WT self-noise. 

Despite the widespread use of SAMs in the literature, 
the predicted sound pressure level (SPL) can be 
significantly influenced by some of the assumptions 
made by the user. For in- stance, the Amiet model [13] 
for turbulence inflow noise relies on selecting 
appropriate values for the turbulent length scale and 
turbulent intensity. These parameters often need to be 
sta- tistically derived from extensive measurement 
campaigns conducted over a long period of time. When 
it comes to airfoil self-noise, Lowson’s model [8] for 
turbulent boundary layer-trailing edge interaction, also 
poses certain challenges. Specifically, it requires the 
modeling of the boundary layer thickness, which is 
difficult to estimate in advance. 

The aim of this work is to conduct a novel sensitivity 
analysis of the broadband noise estimation given by 
Amiet and Lowson semi-empirical models, to typical 
model input parameters. Turbulent intensity and 
dissipation, boundary layer thickness, and temperature, 
were linearly varied to compute SPL for each input 
combination. Uni-, bi- and multi-variate comparison are 
then carried out to gain insights into parameters’ impact 
on the overall SPL prediction. 

2. SEMI-EMPIRICAL MODELLING OF ROTOR 
NOISE 

Noise emissions in wind turbines as well as in ducted 
turbomachinery can be ascribed to mechanical and 
aerodynamic noise, with the latter being predominant. 
Among the various mechanisms that concur to the 
noise level, the two dominant sources come from the 
interaction (i) between WT blades and turbulent inflow, 
i.e. inflow-turbulence noise, and (ii) between the sharp 
edges of the trailing edges and the turbulent vorticity in 
the boundary layer, i.e. turbulent bound- ary layer-
trailing edge noise [10]. The two mechanisms can be 
estimated using semi-empirical models. The overall 
SPL can therefore be computed as: 

SPLoverall =10 log10 10
0.1!SPLTI +100.1!SPLTE( )         (1) 

where SPLTI and SPLTE are the contribution for inflow 
turbulence and turbulent boundary layer-trailing edge 
noises respectively. The formulation for inflow-
turbulence noise follows the approach of Amiet [14], 
that expresses the SPL as one-third octave bands at a 
given frequency as: 
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where ρ is the air density, c is the wind velocity, Lϵ is  
the turbulent dissipation length scale, d is the blade  
span, re is the distance between receiver and source, 
M the local Mach number, TI the turbulent intensity. D  
is a directivity term that keeps in account the position of 
the receiver, whereas the wavelength k̂  can be 
computed as: 
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The model has been additionally modified to improve 
its accuracy at lower frequencies, according to [15]. 

Based on the Lowson model [8], the SPL due to 
trailing-edge noise can be estimated as: 
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The Strouhal peak frequency fp is a function of the 
Mach number and boundary layer displacement 
thickness δ∗, such as: 

fp =
0.02U M !0.6

" *
          (6) 

In the original formulation, the boundary layer 
displacement thicknesses is estimated based on the 
boundary layer thickness δ, derived from the flat plate 
theory: 

!* = 0.125! = 0.125(0.37Re"0.2 )          (7) 

3. METHODOLOGY 

The two semi-empirical models have been 
implemented within an in-house made Python-v3.8 
framework, shown in Figure 1. The inputs to the 
framework can be divided into environmental, 
depending on the wind conditions, e.g. wind speed, 

ambient temperature and pressure, and geometric 
parameters. In fact, following this approach the blades 
of the WTs are discretized in a series of blade 
elements determined by properties as chord length, 
thickness, boundary layer thickness. The two noise 
models, i.e. Lowson and Amiet, are fed with the input 
data and computed for a single blade element, with 
their outputs summed using a logarithmic operator, to 
compute the SPLoverall for the blade element. The 
process is iterated over the blade elements, obtaining 
the overall SPL of the turbine. Results are eventually 
stored in a hierarchical dataset. The 2.75 MW Neg-
Micon NM80 horizontal-axis wind turbine (WT), as 
referenced in [16] and [17], was used for the study. The 
40.04 m long blade is discretized in 28 elements. 
Boundary layer thickness δ, turbulent intensity TI, 
dissipation length Lϵ, and temperature T were varied as 
indicated in Table 1, for a total of 63,360 trials. 
Calculations required 36 hours on an AMD Opteron 
6380. 

The parameter limits were determined based on 
previous investigations reported in [12]. Specifically, 
the angle of attack and Reynolds number were 
obtained through Reynolds-Averaged Navier-Stokes 
simulations. The Actuator Line Method was used to 
reproduce the wind turbine rotor, considering the rated 
operational conditions outlined in [18]. Consequently, 
the limits for the boundary layer thickness were derived 
using XFoil [19], taking into account the variability 
range of the angle of attack and Reynolds number. 
Turbulent intensity and temperature were selected 
within a range of typical environmental conditions 
typical of wind turbine operations. The temperature 
directly impacts the calculation of density ρ and speed 
of sound c, which are computed assuming standard 
atmospheric pressure (101325 Pa). The minimum 
considered value of the dissipation length is 10 m, as 
the semi-empirical acoustic models require the 
assumption of a compact acoustic source, which is 
valid when the atmospheric dissipation length 
significantly exceeds the characteristic chord 
dimensions of the blade (with a maximum value of 
approximately 3 m in this case). 

4. UNIVARIATE ANALYSIS 

Casalino et al. presented in [20] an exhaustive 
comparison of different codes by the participants of IEA 
Wind Task 29 and 39 [18, 21]. These tasks specifically 
focused on the benchmark configuration of the NM80 
wind turbine. Among these codes, we chose to 
compare our results with numerical data obtained from 
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the NAFNoise code developed by Moriarty et al. [22] 
from the National Renewable Energy Laboratory 
(NREL). 

Table 1: Variability Range of the Factors Included in the 
Analysis 

Variable Min value Max value Step 

δ [m] 0.01 0.08 0.005 

TI [%] 1 30 1 

T [◦C] -10 40 5 

Lϵ [m] 10 120 10 

 

A first characterization of the influence of the models’ 
factors on the computed SPL can be performed by 
analyzing the SPL spectra reported in Figure 2. These 
spectra are obtained by varying the values of a factor 
and setting the remaining variables to a fixed value. 
The variation of the temperature shows a mild influence 
on the predicted SPL, that increases from 42 dB to 44 
dB for the peak value by reducing atmospheric 
temperature from 40 ˚C to 10 ˚C. This leads to the 
conclusion that an incorrect selection of the other 
variables may lead to a strong underprediction of the 

noise emissions of the rotor. The semi-empirical 
aeroacoustics formulations shows instead a strong 
dependency on the boundary layer thickness δ. In 
particular, as this thickness is increased, the peak 
frequency moves at lower frequencies, suggesting that 
large errors in the estimations of δ reflects in incorrect 
prediction of the spectrum shape. Lower values of δ 
are also associated to a lower SPL; for instance SPL 
varies from 40.2 dB in the case of δ = 1 cm to 44.2 dB 
computed with δ = 8 cm. Both the dissipation length Lϵ 
and the turbulent intensity TI strongly affect the SPL 
prediction, as evident from Figure 2c and d. 
Particularly, by increasing the estimation of TI from the 
lower bound (1%) to the chosen maximum (10%) a 
significant increase in SPL is achieved, from 40 dB to 
47 dB. The increase in dissipation length instead 
reflects in a reduction in SPL. However, the 
comparison with reference data highlights that careful 
selection of the TI is necessary to achieve a reliable 
result in terms of noise spectrum. 

5. BI- AND MULTI-VARIATE ANALYSIS 

A multi-dimensional map for the overall SPL was built 
based on the results from parametric analysis. It allows 
an estimation of the relative weights between 

 
Figure 1: Scheme of the Python framework for overall SPL computation. 
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Figure 2: Predicted SPL spectra as a function of a single variable for fixed combination of the other parameters: (a) TI = 5%, Lϵ = 
40 m, δ = 0.04 m (b) TI = 5%, Lϵ = 40 m, T = 20 ˚C (c) TI = 5%, δ = 0.05 m, T = 20 ˚C (d) Lϵ = 40 m, δ = 0.05 m, T = 20 ˚C and 
comparison with numerical data from [20] (TI = 5%, Lϵ = 39 m, T = 14 ˚C). 

parameters. Some of the significant combinations and 
their effects on the overall SPL is reported in Figure 3. 
The different subplots illustrate the SPL as a function of 

two variables, with fixed combinations of the remaining 
factors. The analysis of results suggests that some 
factors have a drastic impact on the predicted SPL, 
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while large variation of others do not affect the outcome 
significantly. In particular: 

• Dissipation rate and turbulent intensity play a 
significant role, as small variations lead to large 
variations of the SPL peak. This can be 
observed in Figure 3a, where SPL drops from 60 
dB to 30 dB. This may seriously impair SAM 
applicability to a case where no accurate data on 
inflow turbulence are available. 

• As a consequence of the Amiet formulation, the 
SPL increases drastically for high values of 
turbulent intensity, and it is dominant in the 
overall SPL prediction with respect to 
temperature, Figure 3b, and δ for TI > 5%, 
Figure 3c. 

• Temperature has a mild influence on the SPL, as 
evident from 3 (b) and (f), with a noticeable effect 
only at extreme values (-10/40 ˚C). 

• The boundary layer thickness δ shows a certain 
degree of correlation with the dissipation length 
selection Figure 3d, resulting in an intermediate 

variation of the SPL from 38 dB (low δ and Lϵ > 
90m) to 45-50 dB (Lϵ < 5m). Nevertheless, such 
correlation can be totally neglected for high 
values of turbulent intensity (TI > 20%). 

The contribution of inflow noise (Amiet model) and 
turbulent boundary layer-trailing edge noise (Lowson 
model) to the SPL for whole space of simulations is 
reported in Figure 4 at four characteristic frequencies. 
The results highlight that, regardless of the wave 
frequency that is considered, the Amiet contribution 
toward overall SPL is dominant for high levels of noise. 
The statistical description of the SPL is reported in 
Table 2, and shows that the average SPL shows a 
tendency to decrease with frequency, whereas the 
standard deviation is also reduced accordingly. This 
observation also suggests that errors resulting from 
uncertainties in the input model parameters have a 
greater impact at lower frequencies, which are 
associated with higher values of SPL. 

At frequencies above 1000 Hz the Lowson model has a 
milder dependency from the variation of model inputs, 
with the range of computed SPLT E that ranges from 11 

 
Figure 3: Overall SPL variability for fixed combination of parameters: (a) Lϵ − TI, δ = 0.02 m, T = 20 ˚C (b) T − TI, δ = 0.02 m, Lϵ 
= 40 m (c) δ − TI, T = 20 ˚C, Lϵ = 40 m (d) δ − Lϵ, T = 20 ˚C, TI = 6% (e) δ − Lϵ, T = 20 ˚C, TI = 6% (f) T − δ, TI = 1%, Lϵ = 40 m. 
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dB to 18.7 dB at 4000 Hz, with respect of the broader 
distribution that is instead observed at 100 Hz, At the 
lowest frequency (100 Hz), the distribution has two 
peaks at 43 dB and 57 dB, with a wide range of 
calculated values spanning from 35 to 60 dB. 

These two peaks arise from the separated effects of 
the semi-empirical models on the overall acoustic 
spectrum. Specifically, the noise generated by turbulent 
inflow carries more weight than the turbulent boundary 
layer-trailing edge noise in the overall noise spectrum 
due to its higher SPL values. Variability of turbulent-
inflow noise (Amiet formulation) shows generally a 
large variability to the input variations, exhibiting a 

higher standard deviation than the Lowson model 
(Table 2). However, similarly to the latter, the 
uncertainty of the model is reduced as frequency 
increases. 

6. CONCLUSIONS 

The sensitivity analysis of SPL prediction for HAWTs 
through semi-empirical acoustics models was 
conducted to assess the impact of four key parameters: 
turbulent dissipation length (Lϵ), turbulent intensity (TI), 
boundary layer thickness (δ), and temperature (T). 
These models are an effective alternative to more 
accurate but computationally expensive CAA methods. 

 
Figure 4: SPL distribution over the total combination of imput parameters (63,360 trials) of overall inflow turbulence (Amiet), 
turbulent boundary layer-trailing edge noise (Lowson) and overall computed SPL at characteristic noise frequencies of 100, 500, 
1000 and 4000 Hz. 

 

Table 2: Values of Means and Standard Deviations Over the Total Trials of Semi-Empirical Models and Overall Noise 
Spectra 

Amiet Lowson Overall 
Frequency [Hz] 

Mean [dB] SD [dB] Mean [dB] SD [dB] Mean [dB] SD [dB] 

100 47.74 7.58 36.13 6.28 48.99 5.78 

500 38.62 7.47 30.28 2.49 40.22 5.23 

1000 33.88 7.25 23.78 3.47 35.15 5.56 

4000 24.74 5.96 14.18 1.39 25.52 5.09 
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An in-house Python framework was employed to 
assess the main aerodynamic noise mechanisms. The 
evaluation included the Amiet model for turbulent inflow 
noise and the Lowson model for turbulent boundary 
layer-trailing edge noise. A comprehensive range of 
values was considered for each of the aforementioned 
parameters, resulting in a total of 63,360 trials. The 
study focused on the reference Neg-Micon NM80 wind 
turbine. 

The univariate analysis revealed that turbulent intensity 
and dissipation length are the parameters that have the 
greatest influence on SPL prediction. On the other 
hand, the uncertainties caused by temperature and 
boundary layer thickness misprediciton are lower in 
terms of maximum SPL level, although increasing 
boundary layer thickness induces a shift of the overall 
SPL peak to lower frequencies, severely changing the 
shape of the spectrum. In addition, the calculations 
were compared with results from NREL, as reported in 
[20], using the NM80 benchmark configuration 
prescribed in the IEA Wind Task 29 and 39. 

Contour plots from the bivariate analysis underlined the 
impact of the turbulent intensity and dissipation length, 
showing that small changes in these parameters can 
lead to a drop up to 30 dB. This underscores the 
importance of precise measurements of atmospheric 
parameters in obtaining accurate predictions of SPL 
using SAMs. There appears to be a slight correlation 
between boundary layer thickness and dissipation 
length, but this correlation becomes negligible for 
turbulent intensities higher than 20%. Furthermore, the 
increase in dissipation length results in a decrease of 
the maximum value of the overall SPL across the 
whole frequency spectrum. 

The Amiet contribution to the overall SPL is dominant 
regardless of the frequency. That can be confirmed 
observing the entire simulation space at characteristic 
noise frequencies of 100, 500, 1000, and 4000 Hz, 
which exhibit that the Amiet model generally generates 
higher values of SPL than the Lowson model. The 
standard deviation decreases as the frequency 
increases, indicating that the semi-empirical acoustic 
models are more sensitive to input parameters at lower 
frequencies. 
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NOMENCLATURE 

D  Directivity [−] 

δ Boundary layer thickness [m] 

δ* Boundary layer displacement thick [m] 

ρ Density [kg/m3] 

c Speed of sound [m/s] 

d Span [m] 

f Frequency [Hz] 

fp Peak frequency [Hz] 

k Wavenumber [1/m] 

Lϵ Dissipation length [m] 

M Mach number [−] 

N Number of ALM elements [−] 

P Pressure [Pa] 

R Radius [m] 

re Source-receiver distance [m] 

T Temperature [˚C] 

t% Airfoil thickness [−] 

TI Turbulence intensity [−] 

U Mean velocity [m/s] 
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