Convergence Analysis for Linear Fredholm and Nonlinear Fredholm Hammerstein Integral Equations
PDF

Keywords

Fredholm integral equation
Hammerstein integral equation
Degenerate kernel method
Iterated degenerate kernel method
Legendre polynomials
Convergence rates.

How to Cite

Kant, K. ., Kumar, R. ., & Kumar, B. R. . (2022). Convergence Analysis for Linear Fredholm and Nonlinear Fredholm Hammerstein Integral Equations. Journal of Basic & Applied Sciences, 18, 158–165. Retrieved from https://set-publisher.com/index.php/jbas/article/view/2449

Abstract

In this article, we consider the linear Fredholm integral equations and Fredholm-Hammerstein’s integral equations. We propose the Legendre polynomial based degenerate kernel method to solve linear Fredholm and Fredholm-Hammerstein integral equations. We discuss the convergence and error analysis of the proposed method and also obtain the superconvergence results for iterated degenerate kernel method.

PDF

References

Graham IG, Joe S, Sloan LH. Iterated Galerkin versus iterated collocation for integral equations of the second kind 1985; 355-369. https://doi.org/10.1093/imanum/5.3.355

Kaneko H, Noren RD, Padilla PA. Superconvergence of the iterated collocation methods for Hammerstein equations. Journal of Computational and Applied Mathematics 1997; 80(2): 335-349. https://doi.org/10.1016/S0377-0427(97)00040-X

Atkinson KE. The numerical solution of integral equations of the second kind. Cambridge Monographs on Applied and Computational Mathematics 1996.

Atkinson KE, Potra FA. Projection and iterated projection methods for nonlinear integral equations. SIAM J Numer Anal 1987; 24(6): 1352-1373. https://doi.org/10.1137/0724087

Kumar M, Singh N. Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Computers & Chemical Engineering 2010; 34(11): 1750-1760. https://doi.org/10.1016/j.compchemeng.2010.02.035

Kumar S, Sloan I. A new collocation-typemethod for Hammerstein equations. Math Comp 1987; 48: 585-593. https://doi.org/10.1090/S0025-5718-1987-0878692-4

Mandal M, Kant K, Nelakanti G. Convergence analysis for derivative dependent Fredholm-Hammerstein integral equations with Green’s kernel. J Comput Appl Math 2020; 370: 112599. https://doi.org/10.1016/j.cam.2019.112599

Mandal M, Kant K, Nelakanti G. Discrete Legendre spectral methods for Hammerstein type weakly singular nonlinear Fredholm integral equations. International Journal of Computer Mathematics 2021; 98(11): 2251-2267. https://doi.org/10.1080/00207160.2021.1891225

Lardy LJ. A variation of Nyström’s method for Hammerstein equations. The Journal of Integral Equations 1981; 43-60.

Kumar S. Superconvergence of a collocation-type method for hummerstein equations. IMA Journal of Numerical Analysis 1987; 7(3): 313-313. https://doi.org/10.1093/imanum/7.3.313

Guoqiang H. Extrapolation of a discrete collocation-type method of Hammerstein equations. Journal of Computational and Applied Mathematics 1995; 61(1): 73-86. https://doi.org/10.1016/0377-0427(94)00049-7

Brunner H. On implicitly linear and iterated collocation methods for Hammerstein integral equations. The Journal of Integral Equations and Applications 1991; 475-488. https://doi.org/10.1216/jiea/1181075645

Kaneko H, Xu Y. Degenerate kernel method for Hammerstein equations. Mathematics of Computation 1991; 56(193): 141-148. https://doi.org/10.1090/S0025-5718-1991-1052097-9

Kaneko H, Xu Y. Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM Journal on Numerical Analysis 1996; 33(3): 1048-1064. https://doi.org/10.1137/0733051

Ahues M, Largillier A, Limaye B. Spectral computations for bounded operators. Chapman and Hall/CRC 2001. https://doi.org/10.1201/9781420035827

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.